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Abstract

Techniques in evolutionary computation (EC) have improved significantly over
the years, leading to a substantial increase in the complexity of problems that
can be solved by EC-based approaches. The HUMIES awards at the Genetic and
Evolutionary Computation Conference are designed to recognize work that has not
just solved some problem via techniques from evolutionary computation, but has
produced a solution that is demonstrably human-competitive. In this chapter, we
take a look across the winners of the past 10 years of the HUMIES awards, and
analyze them to determine whether there are specific approaches that consistently
show up in the HUMIE winners. We believe that this analysis may lead to interesting
insights regarding prospects and strategies for producing further human competitive
results.
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1 Introduction

In the field of evolutionary computation (EC) ideas from evolutionary biology—
random variation and selection—are harnessed in algorithms that are applied to
complex computational problems. The origins of EC can be traced back to the
1950s and 1960s but the field has come into its own over the past two decades,
proving successful in solving numerous problems from highly diverse domains
(Sipper, 2002). EC techniques are being increasingly applied to difficult real-world
problems, often yielding results that are not merely academically interesting but also
competitive with the work done by creative and inventive humans. Indeed, a recent
emerging theme is that of human-competitive machine intelligence, produced by
evolutionary means (Koza, 2008, 2010).

A recent survey cited 28 instances in which genetic programming (GP), a form of
EC, “has duplicated the functionality of a previously patented invention, infringed
a previously issued patent, or created a patentable new invention” and cited “over
a dozen additional known instances where genetic programming has produced a
human-competitive result that is not patent related” (Koza, 2008). These results
come from an astonishing variety of fields, including image analysis, game playing,
quantum computer programming, software repair, and the design of complex objects
such as analog circuits, antennas, photonic crystals, and polymer optical fibers.

We believe this to be more than a mere novel line of research within a single
research community. Surpassing humans in the ability to solve complex problems is
a grand challenge, with potentially far-reaching, transformative implications.

In this chapter we take a close look at the 42 winners of the past decade (2004–
2013) of Human-Competitive (HUMIE) competitions, seeking to draw conclusions
about past and future directions of the field.

We note that two of the authors (Spector, Sipper) have extensive experience
in human-competitive research, having won between them eight HUMIE awards
(Koza, 2010). In addition, Spector has served as a judge for the HUMIES awards
for some years. Spector and his colleagues earned the competition’s top prize twice,
once for the use of EC to produce quantum computing results that were published
in a top physics journal (Barnum et al, 2000; Spector, 2004) and once for results in
pure mathematics that exceeded human performance by several orders of magnitude
(Spector et al, 2008). Sipper, who has six wins, tackled a string of hard games
and puzzles, evolving game-playing strategies that held their own in competition
against humans (Sipper, 2006; Hauptman et al, 2009; Benbassat et al, 2012). In
collaborative work with a partner from the semiconductors industry Sipper attained
marked improvement over humans in developing automatic defect classifiers for
patterned wafers (Glazer and Sipper, 2008).
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2 The HUMIES

As of 2004, one of the major annual events in the field of evolutionary computation
— the Genetic and Evolutionary Computation Conference 2—boasts a competition
that awards prizes to human-competitive results: The HUMIES. As noted at
the competition site (Koza, 2010): “Techniques of genetic and evolutionary
computation are being increasingly applied to difficult real-world problems—often
yielding results that are not merely interesting, but competitive with the work of
creative and inventive humans.”

To set the stage for our current work we provide examples of HUMIE winners in
two important areas: pure mathematics and games.

Pure mathematics

Spector has produced significant new results in the application of genetic
programming to mathematics, in collaborative work with Distinguished Professor
of Mathematics David M. Clark, at the State University of New York at New Paltz.
Together with two Hampshire College undergraduates and one Hampshire alumnus,
they applied genetic programming to a problem in pure mathematics, in the study
of finite algebras.

Algebraists have been looking at finding “terms” that represent specific functions
in specific algebras for several decades, with particular interest attaching to the
discovery of terms for Mal’cev functions (the significance of which was first made
clear in 1954), Pixley functions (1963), the discriminator function (1970), and
majority functions (1975). The most effective methods previously developed for
finding these terms are uniform search (including exhaustive search and random
search) and construction via the primality theorem. In exhaustive search terms
are enumerated systematically from smallest to largest, while in random search
terms within a range of sizes are generated in random order. Exhaustive search
will always produce the smallest term of the required type if such a term exists,
but it requires astronomical amounts of time, except for the very smallest algebras
or the very simplest terms. Random search has similarly problematic performance
characteristics but without any guarantees concerning size or success. Construction
via the primality theorem gives the most time efficient method known to describe
these terms that applies to any primal algebra, but except for the very smallest
algebras the terms it produces have astronomical length.

Spector and colleagues documented the application of genetic programming to
these term-finding problems, producing human-competitive results in the discovery
of particular algebraic terms (e.g., discriminator, Pixley, majority, and Mal’cev
terms) and showing that genetic programming exceeded the performance of every
prior method of finding these terms in either time or size by several orders of
magnitude (Spector et al, 2008). This result earned the gold medal in the 5th

2 see sigevo.org
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Annual HUMIES Awards for Human-Competitive Results Produced by Genetic and
Evolutionary Computation, held at the 2008 Genetic and Evolutionary Computation
Conference. Subsequently, this work led to the development of new mathematical
theory that has been published independently (Clark, 2013).

Games

Ever since the dawn of artificial intelligence in the 1950s, games have been part
and parcel of this lively field. In 1957, a year after the Dartmouth Conference that
marked the official birth of AI, Alex Bernstein designed a program for the IBM 704
that played two amateur games of chess. In 1958, Allen Newell, J. C. Shaw, and
Herbert Simon introduced a more sophisticated chess program (beaten in thirty-five
moves by a ten-year-old beginner in its last official game played in 1960). Arthur L.
Samuel of IBM spent much of the fifties working on game-playing AI programs, and
by 1961 he had a checkers program that could play at the master’s level. In 1961 and
1963 Donald Michie described a simple trial-and-error learning system for learning
how to play Tic-Tac-Toe (or Noughts and Crosses) called MENACE (for Matchbox
Educable Noughts and Crosses Engine). These are but examples of highly popular
games that have been treated by AI researchers since the field’s inception.

Why study games? On this matter Susan L. Epstein wrote:

There are two principal reasons to continue to do research on games... First, human
fascination with game playing is long-standing and pervasive. Anthropologists have
catalogued popular games in almost every culture... Games intrigue us because they address
important cognitive functions... The second reason to continue game-playing research is that
some difficult games remain to be won, games that people play very well but computers do
not. These games clarify what our current approach lacks. They set challenges for us to
meet, and they promise ample rewards (Epstein, 1999).

Studying games may thus advance our knowledge in both cognition and artificial
intelligence, and, last but not least, games possess a competitive angle which
coincides with our human nature, thus motivating both researcher and student alike.

Over the past seven years Sipper has done extensive research in the area of games
(Sipper et al, 2007; Hauptman and Sipper, 2005b,a, 2007b; Azaria and Sipper,
2005a,b; Benbassat and Sipper, 2010; Hauptman and Sipper, 2007a; Hauptman
et al, 2009; Shichel et al, 2005), which culminated in his recent book, “Evolved
to Win” (Sipper, 2011) (see also www.moshesipper.com/games). Among the games
successfully tackled are: chess, backgammon, checkers, Reversi, Robocode (tank-
war simulation), Rush Hour, and FreeCell. These exhibit the full range from two-
player, full-knowledge, deterministic board games, through stochastic, simulation-
based games, to puzzles.

A recent line of research has attempted to build a more general form of evolution-
based game intelligence by employing a structure known as a policy, which is an
ordered set of search-guiding rules (Hauptman et al, 2009; Elyasaf et al, 2012).
Policies are complex structures that allow one to define specific conditions under
which certain actions are performed. They might specify, for example, that a certain
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stratagem for solving a puzzle becomes relevant when certain conditions hold. The
combination of policies and evolution might just prove powerful enough to set up a
general “strategizing machine” (Sipper et al, 2007), i.e., one able to automatically
evolve successful game strategies given a description of the game in question.
Sipper’s work on games has garnered five HUMIE awards to date.

3 A Compendium of a Decade’s Worth of HUMIE Winners

The main intention behind analyzing a decade’s worth of HUMIE winners is to be
able to determine whether there were any particular aspects that were similar across
the various domains that the winners covered. In 2005, John R. Koza, Sameer H. Al-
Sakran, and Lee W. Jones (Koza et al, 2005) did some preliminary analysis, looking
for cross-domain features of programs evolved using Genetic Programming. We
intend to do something similar, but do so from the specific point of view of trying to
identify the aspects of the applications (of any evolutionary computation technique,
and not just Genetic Programming) that make them human-competitive. With the
HUMIES over a decade old now, we also have a larger set of results to analyze
relative to the number of results analyzed in the original Koza paper (Koza et al,
2005).

The actual HUMIES competition is designed to recognize work that has already
been published that holds its own against humans in one of many ways. For
example, a result produced by EC that reproduces a past patent, or qualifies as a
new patentable invention is considered human-competitive. Similarly, a result that
is publishable in its own right as a new scientific result (notwithstanding the fact that
the result was mechanically created) is also considered human competitive (Koza,
2010).Table 1 lists, in detail, the various criteria for a program to be considered
human-competitive, and also supplies a count of the number of HUMIE winners
that have matched each criterion in the past decade of the HUMIES.

The 42 HUMIE winners of the past decade are listed in Table 2. In addition to
a very brief description of the winning entry and its author(s), the table includes
the specific algorithm used by that entry, where GP is Genetic Programming,
GA is Genetic Algorithms, ES refers to Evolutionary Strategies, DE refers to
Differential Evolution and GBML refers to Genetics Based Machine Learning. A
special category for “noise” is also included. An entry is marked as “noisy” if the
data that was used to evolve the solution may inherently have some noise, such
as data collected from say, a physical measurement, where the source of the noise
is the measurement error. An example of an entry that does not have any noise
would be trying to perform symbolic regression to fit a curve that is already known
mathematically. Since the data that must be fit already has a known mathematical
function, there’s no real noise involved here as far as the data points that the program
that does the regression sees — all data points are perfectly accurate. In our analysis
of the HUMIES (Tables 1, 2, 3, 4, 5), we explicitly chose to ignore whether the
entry won a gold, silver, or bronze award, since we believe that this is insignificant
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to the analysis because an entry that has won any award at all is necessarily human-
competitive.

Table 1: Categories A-H, with a count of the number of HUMIE winners so far
winning in this category, and a description of what each category means. Categories
and Full Descriptions were obtained from the HUMIES website (Koza, 2010).

Category Brief Description Count Full Description

A Patented invention 10 The result was patented as an invention in
the past is an improvement over a patented
invention or would qualify today as a
patentable new invention.

B Equal to accepted scientific result 20 The result is equal to or better than a result
that was accepted as a new scientific result
at the time when it was published in a
peer-reviewed scientific journal.

C Could be put in archive of results 8 The result is equal to or better than a result
that was placed into a database or archive
of results maintained by an internationally
recognized panel of scientific experts.

D Publishable as new scientific result 29 The result is publishable in its own right
as a new scientific result independent of
the fact that the result was mechanically
created.

E Best incremental solution 25 The result is equal to or better than the
most recent human-created solution to a
long-standing problem for which there has
been a succession of increasingly better
human-created solutions.

F Achievement in field at time of discovery 25 The result is equal to or better than a result
that was considered an achievement in its
field at the time it was first discovered.

G Indisputable difficulty 26 The result solves a problem of
indisputable difficulty in its field.

H Human competition contender 9 The result holds its own or wins a
regulated competition involving human
contestants (in the form of either
live human players or human-written
computer programs).



Analyzing the HUMIES 7

T
ab

le
2

:
T

h
e

4
2

H
U

M
IE

w
in

n
er

s
o

f
th

e
p

as
t

d
ec

ad
e.

A
lg

=
A

lg
o

ri
th

m
,N

=
N

o
is

y
d

at
a,

A
-H

ar
e

d
efi

n
ed

in
T

ab
le

1
.

E
nt

ry
F

ir
st

A
ut

ho
r

A
lg

T
yp

e
Y

ea
r

N
S

et
ti

ng
A

pp
li

ca
ti

on
A

re
a

T
ec

hn
iq

ue
A

B
C

D
E

F
G

H

A
nt

an
ae

L
oh

n
G

P
D

es
ig

n
20

04
X

G
ov

er
nm

en
t

E
le

ct
ri

ca
l

en
gi

ne
er

in
g,

A
nt

en
na

s

D
ev

el
op

m
en

ta
l

G
P

X
X

X

Q
ua

nt
um

S
pe

ct
or

G
P

P
ro

gr
am

m
in

g
20

04
A

ca
de

m
ia

Q
ua

nt
um

S
ta

ck
-b

as
ed

,
D

ev
el

op
m

en
ta

l
X

X

S
A

T
G

P
he

ur
is

ti
cs

F
uk

un
ag

a
G

P
D

es
ig

n
20

04
A

ca
de

m
ia

O
pt

im
iz

at
io

n
S

tr
on

gl
y

ty
pe

d
G

P
X

K
in

em
at

ic
M

ac
hi

ne
S

tr
ai

gh
t

L
in

e
L

ip
so

n
G

P
D

es
ig

n
20

04
A

ca
de

m
ia

M
ec

ha
ni

ca
l

en
gi

ne
er

in
g

D
ev

el
op

m
en

ta
l

G
P

X

O
rg

an
iz

at
io

n
D

es
ig

n
O

pt
im

iz
at

io
n

K
ho

sr
av

ia
ni

G
P

O
pt

im
iz

at
io

n
20

04
A

ca
de

m
ia

O
pe

ra
ti

on
s

re
se

ar
ch

S
ta

nd
ar

d
G

P
X

X
X

C
ir

cu
it

D
es

ig
n

S
to

ic
a

G
A

D
es

ig
n

20
04

X
G

ov
er

nm
en

t
E

le
ct

ro
ni

cs
M

ix
tr

in
si

c
ev

ol
ut

io
n

(S
W

&
H

W
)

X
X

2D
P

ho
to

ni
c

cr
ys

ta
ls

P
re

bl
e

G
P

D
es

ig
n

20
05

A
ca

de
m

ia
P

ho
to

ni
cs

T
re

e
an

d
bi

tm
ap

re
pr

es
en

ta
ti

on
s

X
X

X

Q
ua

nt
um

A
tt

os
ec

on
d

D
yn

am
ic

s
B

ar
te

ls
E

S
O

pt
im

iz
at

io
n

20
05

X
A

ca
de

m
ia

Q
ua

nt
um

S
ta

nd
ar

d
E

S
X

X
X

O
pt

ic
al

L
en

s
S

ys
te

m
s

K
oz

a
G

P
D

es
ig

n
20

05
In

du
st

ry
O

pt
ic

s
D

ev
el

op
m

en
ta

l
G

P
X

X
X

X
Q

ua
nt

um
F

ou
ri

er
T

ra
ns

fo
rm

A
lg

or
it

hm
M

as
se

y
G

P
D

es
ig

n
20

05
A

ca
de

m
ia

Q
ua

nt
um

D
ev

el
op

m
en

ta
l

G
P

X
X

X

A
ss

em
bl

y
P

ro
gr

am
s

E
dg

ar
G

P
P

ro
gr

am
m

in
g

20
05

A
ca

de
m

ia
S

of
tw

ar
e

en
gi

ne
er

in
g

M
ic

ro
G

P
X

X

S
pa

ce
S

ys
te

m
s

D
es

ig
n

T
er

ri
le

G
A

O
pt

im
iz

at
io

n
20

05
G

ov
er

nm
en

t
M

ec
ha

ni
ca

l
en

gi
ne

er
in

g
X

X
X

G
am

e
P

la
yi

ng
S

ip
pe

r
G

P
D

es
ig

n
20

05
A

ca
de

m
ia

ga
m

es
st

an
da

rd
G

P
X

Im
ag

e
C

om
pr

es
si

on
G

ra
se

m
an

n
G

A
D

es
ig

n
20

05
A

ca
de

m
ia

Im
ag

e
pr

oc
es

si
ng

C
oe

vo
lu

ti
on

ar
y

X
X

X
X

S
in

us
oi

da
l

O
sc

il
la

to
rs

A
gg

ar
w

al
G

A
D

es
ig

n
20

06
A

ca
de

m
ia

E
le

ct
ro

ni
cs

G
A

X
X

X
X

P
ho

to
ch

em
is

tr
y

S
as

tr
y

G
A

O
pt

im
iz

at
io

n
20

06
A

ca
de

m
ia

C
he

m
is

tr
y

M
ul

ti
-o

bj
ec

ti
ve

G
A

X
X

X
X



8 Karthik Kannappan et al.

T
ab

le
2

(c
o

n
ti

n
u

ed
):

T
h

e
4

2
H

U
M

IE
w

in
n

er
s

o
f

th
e

p
as

t
d

ec
ad

e.
A

lg
=

A
lg

o
ri

th
m

,N
=

N
o

is
y

d
at

a,
A

-H
ar

e
d

efi
n

ed
in

T
ab

le
1

.

E
nt

ry
F

ir
st

A
ut

ho
r

A
lg

T
yp

e
Y

ea
r

N
S

et
ti

ng
A

pp
li

ca
ti

on
A

re
a

T
ec

hn
iq

ue
A

B
C

D
E

F
G

H

E
ll

ip
se

D
et

ec
ti

on
Y

ao
G

A
C

la
ss

ifi
ca

ti
on

20
06

X
A

ca
de

m
ia

Im
ag

e
pr

oc
es

si
ng

M
ul

ti
-p

op
ul

at
io

n
X

X
X

In
te

re
st

P
oi

nt
D

et
ec

ti
on

O
la

gu
e

G
P

C
la

ss
ifi

ca
ti

on
20

06
X

G
ov

er
nm

en
t

C
om

pu
te

r
vi

si
on

S
ta

nd
ar

d
G

P
X

X
X

X
X

X

P
ol

ym
er

O
pt

ic
al

F
ib

re
s

M
an

os
G

A
D

es
ig

n
20

07
A

ca
de

m
ia

P
ol

ym
er

s
D

ev
el

op
m

en
ta

l
G

A
X

X
X

X
M

at
e-

In
-N

C
he

ss
P

ro
bl

em
S

ip
pe

r
G

P
D

es
ig

n
20

07
A

ca
de

m
ia

G
am

es
K

oz
a-

st
yl

e
G

P
X

X
X

X
X

D
ia

gn
os

in
g

P
ro

st
at

e
C

an
ce

r
L

lo
r

G
B

M
L

C
la

ss
ifi

ca
ti

on
20

07
X

A
ca

de
m

ia
M

ed
ic

in
e

X
X

X

A
ut

om
at

ed
A

lp
ha

be
t

R
ed

uc
ti

on
M

et
ho

d
B

ac
ar

di
t

G
A

C
lu

st
er

in
g

20
07

A
ca

de
m

ia
B

io
lo

gy
E

xt
en

de
d

C
om

pa
ct

G
en

et
ic

A
lg

or
it

hm
(E

D
A

)

X
X

X
X

F
in

it
e

A
lg

eb
ra

s
S

pe
ct

or
G

P
R

eg
re

ss
io

n
20

08
A

ca
de

m
ia

M
at

he
m

at
ic

s
S

ta
ck

-b
as

ed
,

D
ev

el
op

m
en

ta
l

X
X

X
X

X

R
T

L
B

en
ch

m
ar

k
C

ir
cu

it
s

P
ec

en
ka

G
A

D
es

ig
n

20
08

In
du

st
ry

,
A

ca
de

m
ia

E
le

ct
ro

ni
cs

N
on

-b
in

ar
y

G
A

X
X

E
vo

lv
in

g
A

ut
om

at
ic

D
ef

ec
t

C
la

ss
ifi

ca
ti

on
G

la
ze

r
G

A
C

la
ss

ifi
ca

ti
on

20
08

In
du

st
ry

,
A

ca
de

m
ia

E
le

ct
ro

ni
cs

S
ta

nd
ar

d
G

A
X

X
X

X
X

S
of

tw
ar

e
P

at
ch

es
F

or
re

st
G

P
P

ro
gr

am
m

in
g

20
09

A
ca

de
m

ia
S

of
tw

ar
e

en
gi

ne
er

in
g

A
S

T
w

it
h

w
ei

gh
te

d
pr

og
ra

m
pa

th
X

U
se

r
Id

en
ti

fi
ca

ti
on

on
S

m
ar

t
P

ho
ne

s
S

ha
hz

ad
G

A
C

la
ss

ifi
ca

ti
on

20
09

A
ca

de
m

ia
S

ec
ur

it
y

G
A

w
it

h
P

ar
ti

cl
e

S
w

ar
m

O
pt

im
iz

at
io

n
X

X
X

X

G
P

-R
us

h
-

R
us

h
H

ou
r

P
uz

zl
e

H
au

pt
pm

an
G

P
D

es
ig

n
20

09
A

ca
de

m
ia

G
am

es
P

ol
ic

y-
ba

se
d

G
P

X
X

X
X

X

D
es

cr
ip

to
r

O
pe

ra
to

rs
P

er
ez

G
P

D
es

ig
n

20
09

G
ov

er
nm

en
t

C
om

pu
te

r
vi

si
on

S
ta

nd
ar

d
G

P
X

X
X

X
X

X
X

P
ro

te
in

S
tr

uc
tu

re
P

re
di

ct
io

n
K

ra
sn

og
or

G
P

R
eg

re
ss

io
n

20
10

X
A

ca
de

m
ia

B
io

lo
gy

S
ta

nd
ar

d
X

X
X

D
om

ai
n-

In
de

pe
nd

en
t

S
at

is
fi

ci
ng

P
la

nn
in

g
P

ie
rr

e
M

H
P

la
nn

in
g

20
10

A
ca

de
m

ia
P

la
nn

in
g

X
X

X
X



Analyzing the HUMIES 9

T
ab

le
2

(c
o

n
ti

n
u

ed
):

T
h

e
4

2
H

U
M

IE
w

in
n

er
s

o
f

th
e

p
as

t
d

ec
ad

e.
A

lg
=

A
lg

o
ri

th
m

,N
=

N
o

is
y

d
at

a,
A

-H
ar

e
d

efi
n

ed
in

T
ab

le
1

.

E
nt

ry
F

ir
st

A
ut

ho
r

A
lg

T
yp

e
Y

ea
r

N
S

et
ti

ng
A

pp
li

ca
ti

on
A

re
a

T
ec

hn
iq

ue
A

B
C

D
E

F
G

H

S
ol

vi
ng

It
er

at
ed

F
un

ct
io

ns
us

in
g

G
P

S
ch

m
id

t
G

P
R

eg
re

ss
io

n
20

10
A

ca
de

m
ia

M
at

he
m

at
ic

s
S

ym
bo

li
c

re
gr

es
si

on
al

go
ri

th
m

X
X

X

M
ix

ed
-I

nt
eg

er
E

vo
lu

ti
on

S
ta

te
gi

es
-M

ed
ic

al
Im

ag
es

T
ho

m
as

E
S

O
pt

im
iz

at
io

n
20

10
X

A
ca

de
m

ia
Im

ag
e

pr
oc

es
si

ng
,

M
ed

ic
in

e

M
ix

ed
-I

nt
eg

er
E

vo
lu

ti
on

S
tr

at
eg

ie
s

X
X

X

F
re

eC
el

l
E

ly
as

af
G

A
D

es
ig

n
20

11
A

ca
de

m
ia

G
am

es
S

ta
nd

ar
d

G
A

X
X

X
X

X
V

er
fi

ci
at

io
n

al
go

ri
th

m
fo

r
ev

ol
va

bl
e

ha
rd

w
ar

e
L

uk
as

G
P

O
pt

im
iz

at
io

n
20

11
A

ca
de

m
ia

E
le

ct
ro

ni
cs

C
ar

te
si

an
G

P
X

X
X

O
pt

im
al

B
ro

ad
-b

an
d

S
to

ke
s/

M
ue

ll
er

P
ol

ar
im

et
er

L
et

ne
s

G
A

D
es

ig
n

20
11

A
ca

de
m

ia
O

pt
ic

s
S

ta
nd

ar
d

G
A

X
X

X
X

X
X

X

G
am

e
D

es
ig

n
B

ro
w

ne
G

P
D

es
ig

n
20

12
A

ca
de

m
ia

G
am

es
E

vo
lv

in
g

ru
le

tr
ee

s
X

X
X

A
ut

om
at

ed
P

ro
be

M
ic

ro
sc

op
y

W
oo

ll
ey

G
A

O
pt

im
iz

at
io

n
20

12
A

ca
de

m
ia

M
ec

ha
ni

ca
l

en
gi

ne
er

in
g

C
el

lu
la

r
G

A
X

X
X

X
X

X

A
ut

om
at

ed
P

ro
gr

am
R

ep
ai

r
D

ew
ey

-V
og

t
G

P
P

ro
gr

am
m

in
g

20
12

A
ca

de
m

ia
S

of
tw

ar
e

en
gi

ne
er

in
g

G
P

ov
er

A
S

T
ed

it
op

er
at

io
ns

X
X

F
re

eC
el

l
S

ip
pe

r
G

P
D

es
ig

n
20

13
A

ca
de

m
ia

G
am

es
P

ol
ic

y-
ba

se
d

G
P

X
X

X
X

X
Ju

pi
te

r
M

oo
n

S
ea

rc
h

Iz
zo

D
E

D
es

ig
n

20
13

G
ov

er
nm

en
t

M
ec

ha
ni

ca
l

en
gi

ne
er

in
g

S
el

f-
ad

ap
ta

ti
on

di
ff

er
en

ti
al

ev
ol

ut
io

n
al

go
ri

th
m

,
A

sy
nc

hr
on

ou
s

is
la

nd
m

od
el

X
X

X
X

S
ol

id
st

at
e

N
M

R
pu

ls
e

se
qu

en
ce

s
B

ec
hm

an
n

G
A

O
pt

im
iz

at
io

n
20

13
A

ca
de

m
ia

P
hy

si
cs

S
ta

nd
ar

d
G

A
X

X
X

X
X

X
X



10 Karthik Kannappan et al.

Table 3: A summary of the algorithms used by the HUMIE winners.

Algorithm Count

Genetic Programming (GP) 22
Genetic Algorithms (GA) 15
Evolutionary Strategies (ES) 2
Differential Evolution (DE) 1
Genetics Based Machine Learning (GBML) 1
Metaheuristic 1

Table 4: Categorization of the application domains of the HUMIE winners. Note
that some winners may come under multiple application categories. The number in
brackets after the application categories denotes the number of HUMIE winners in
that particular application category.

Application Count Application Category

Antennas 1 Engineering (19)
Biology 2 Science (7)
Chemistry 1 Science (7)
Computer vision 2 Computer science (7)
Electrical engineering 1 Engineering (19)
Electronics 5 Engineering (19)
Games 6 Games (6)
Image processing 3 Computer science (7)
Mathematics 2 Mathematics (3)
Mechanical engineering 4 Engineering (19)
Medicine 2 Medicine (2)
Operations research 1 Engineering (19)
Optics 2 Engineering (19)
Optimization 1 Mathematics (3)
Photonics 1 Engineering (19)
Physics 1 Science (7)
Planning 1 Computer science (7)
Polymers 1 Engineering (19)
Quantum 3 Science (7)
Security 1 Computer science (7)
Software engineering 3 Engineering (19)
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Table 5: A count of the broad types of problems that the HUMIE winners solved.

Problem Type Count
Classification 5
Clustering 1
Design 20
Optimization 8
Planning 1
Programming 4
Regression 3

4 Lessons Learned

First and foremost, we note that techniques from evolutionary computation have
been used to solve problems from a very wide variety of domains in a human
competitive way ; the past 10 years of HUMIES awards alone have winners that have
solved problems in a human-competitive way in 21 different domains (see Table 4).
This clearly suggests that techniques based on EC are rather widely applicable, and
are not confined to specific fields.

Second, Genetic Programming (GP) and Genetic Algorithms (GAs) certainly
seem to be winning strategies at the HUMIES, with 22 papers based on GP and
15 papers based on GAs having won the HUMIES so far (See Table 3). In other
words, a combined 37 papers out of the 42 overall HUMIE winners, or roughly
88% of the winners, used either GP or GAs.

Next, the problem “type” analysis from Table 5 seems to show an interesting
trend, with a lot of the problems that evolutionary computation (EC) seems to solve
human-competitively being design problems. We use the term design in a rather
broad way, to include both designing concrete entities such as an antenna, as well
as designing more subtle entities, such as say, designing a winning strategy for a
game. This leads us to note that EC may be particularly well suited to designing new
entities from scratch in a human-competitive way. The authors note that classifying
problems based on a “type” is a slightly subjective process and that some problems
may fit several types at times, but we believe that the above analysis is still sufficient
to note how good EC is when it comes to design problems.

Another interesting trend at the HUMIES seems to be the abundance of papers
that have combined domain specific knowledge effectively with evolution in a way
where evolution helps combine and adapt existing human knowledge in innovative
new ways. For example, Stephanie Forrest’s paper (Forrest et al, 2009) uses existing
human knowledge embedded in non-faulty parts of the code to repair parts of the
code that are faulty. Policy based GP (Hauptman et al, 2009; Elyasaf et al, 2012)
is another such area where human knowledge is integrated into an EC system that
then evolves a solution that is human competitive. This particular trend certainly
suggests a rethink of the artificial (intelligence)-to-(human) intelligence (A/I) ratio,
suggested by John Koza et al., which states that GP delivers a high amount of
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artificial intelligence relative to the relatively minimal amount of human intelligence
that is put in to the system (Koza et al, 2003). In the context of human-competitive
machine intelligence, our analysis suggests that looking for a high A to I ratio is not
the best way to seek promising problems. Instead, we suggest that the focus should
be on the additional knowledge gained by some automatic technique that makes the
system human competitive. To quote Moshe Sipper from his book Evolved to Win

(Sipper, 2011),

Rather than aiming to maximize A/I we believe the “correct” equation is:

A− I ≥ Mε

where Mε stands for “meaningful epsilon”. When wishing to attain machine competence in
some real-life, hard-to-learn domain, then, by all means, imbue the machine with as much
I(ntelligence) as possible! After all, if imbuing the I reduces the problem’s complexity to
triviality, then it was probably not hard to begin with. Conversely, if the problem is truly
hard, then have man and machine work in concert to push the frontiers of A as far as
possible. Thus, it is not max(A/I) that is of interest but the added value of the machine’s
output: Granting the designer “permission” to imbue the machine with as much I as he
can, will it then produce a ∆A = A − I, namely, added intelligence, that is sufficiently
meaningful? Even if this meaningful epsilon Mε is small in (some) absolute terms, its
relative value can be huge (e.g., a chip that can pack 1-2% more transistors, or a game
player that is slightly better and thus world champion).

We believe that this approach of looking at the additional intelligence gained
by an automated system is crucial not just for Genetic Programming, but for
Artificial Intelligence on the whole. We strongly encourage people to build artificial
intelligence systems that make as much use of existing human knowledge as
possible.

5 Concluding Remarks

Overall, analyzing a decade’s worth of HUMIES papers seems to suggest that when
combined effectively with domain-specific knowledge, GP and GA are approaches
to EC that are highly effective in producing human-competitive results, in a
very wide array of fields. We strongly encourage further research in the human-
competitive domain, particularly with EC approaches such as GA and GP, used in
conjunction with human knowledge in the current field. One aspect that we note
in particular is the significance of collaboration with experts outside the computer
science domain, which leads to several interesting insights in multiple fields.

We would also like to mention the gradual shift from a high Artificial Intelligence
to Human Intelligence (A/I) ratio, towards a focus on the additional intelligence
gained by using an intelligent system, irrespective of how much human intelligence
one supplies to it. One interesting aspect that must be brought up when moving
away from high (A/I) is interpretability, particularly when a human is involved in a
feedback loop used to improve the system. In her recent work, Cynthia Rudin has
been suggesting interpretability as a key feature in several prediction systems, and
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notes that experts are more likely to use an interpretable system compared to a black
box system that they do not understand (Letham et al, 2012; Rudin et al, 2012; Wang
et al, 2013). While most of evolutionary computation has historically been using a
black-box approach, interpretability might eventually become rather important too
(both in EC-based approaches and in other machine learning approaches) to build
human-competitive systems, particularly when human experts are involved in both
building the system and improving its quality.

In a recent paper Kiri Wagstaff argues that much of current machine learning
(ML) research has lost its connection to problems of import to the larger world of
science and society (Wagstaff, 2012). In reference to the much-used (and perhaps
much-abused) UCI archive she eloquently writes,

“Legions of researchers have chased after the best iris or mushroom classifier. Yet this flurry
of effort does not seem to have had any impact on the fields of botany or mycology.”

Wagstaff identifies several problems that underlie the “Machine Learning for
Machine Learning’s Sake” stance, including: overly focusing on benchmark data
sets, with little to no relation to the real world; too much emphasis on abstract
metrics that ignore or remove problem-specific details, usually so that numbers can
be compared across domains; and lack of follow-through:

“It is easy to sit in your office and run [some] algorithm on a data set you downloaded
from the web. It is very hard to identify a problem for which machine learning may offer a
solution, determine what data should be collected, select or extract relevant features, choose
an appropriate learning method, select an evaluation method, interpret the results, involve
domain experts, publicize the results to the relevant scientific community, persuade users to
adopt the technique, and (only then) to truly have made a difference.”

She argues for making machine learning matter: asking how one’s work
impacts the original problem domain; greater involvement of domain experts; and
considering the potential impact on society of a problem one elects to work on. She
proposes a number of admirable Impact Challenges as examples of machine learning
that matters, e.g., a law passed or a legal decision made that relies on the result of
an ML analysis, and $100M saved through improved decision making provided by
an ML system.

We think that Wagstaff actually bolsters research into human-competitive results
produced by EC. Despite her opining that, “human-level performance is not the
gold standard. What matters is achieving performance sufficient to make an impact
on the world”, we think that the problems in Table 2 are very strongly coupled to
the real world. Indeed, most, if not all, of them have involved expertise (and often
actual experts) in a real-world problem domain, and the competition itself sets out
to underscore the impact of such research on society at large. Thus, the HUMIE
winners may all be unknowingly responding to Wagstaff’s challenge, creating
machine learning that matters.
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