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Abstract- Coevolutionary algorithms have received in-
creased attention in the past few years within the domain
of evolutionary computation. In this paper, we combine
the search power of coevolutionary computation with the
expressive power of fuzzy systems, introducing a novel
algorithm, Fuzzy CoCo: Fuzzy Cooperative Coevolution.
We demonstrate the efficacy of Fuzzy CoCo by applying it
to a hard, real-world problem—breast cancer diagnosis—
obtaining the best results to date while expending less com-
putational effort than formerly.

1 Introduction

In recent years the natural phenomenon of coevolution—the
simultaneous, coupled evolution of two or more species—
has been explored by evolutionary-computation practitioners,
who introduced the notion of coevolutionary algorithms. It
has been shown that, for certain problem domains, coevolu-
tion produces better solutions while incurring a lower compu-
tational cost.

We explore herein the application of coevolution to the de-
sign of fuzzy systems, introducing Fuzzy CoCo: Fuzzy Co-
operative Coevolution. We demonstrate the efficacy of Fuzzy
CoCo by applying it to a hard, real-world problem: breast can-
cer diagnosis.

This paper is organized as follows: in the next section
we present evolutionary fuzzy modeling, namely, the use of
evolutionary-computation techniques in the design of fuzzy
systems. Section 3 provides a brief overview of cooperative
coevolution and summarizes the (relatively few) works in this
novel domain. Section 4 presents Fuzzy CoCo, our coopera-
tive coevolutionary approach to fuzzy modeling. In Section 5
we describe how Fuzzy CoCo is applied to the evolution of
breast cancer diagnostic systems, followed by a presentation
of our results in Section 6. Finally, we present concluding re-
marks in Section 7.

2 Evolutionary Fuzzy Modeling

Fuzzy logic is a computational paradigm that provides a math-
ematical tool for representing and manipulating information
in a way that resembles human communication and reasoning
processes [22]. It is based on the assumption that, in contrast
to Boolean logic, a statement can be partially true (or false),
and composed of imprecise concepts. For example, the ex-
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Figure 1 Example of a fuzzy variable, Temperature has three pos-
sible fuzzy values, labeled Cold, Warm, and Hot, and orthogo-
nal membership functions, plotted above as degree of membership
versus input values. The values Pi define the membership func-
tions. The orthogonality condition means that the sum of all mem-
bership functions at any point is one. In the figure, an example
value 12.5 is assigned the membership values �Cold(12:5) = 0:75,�Warm(12:5) = 0:25, and �Hot(12:5) = 0 (as can be seen the sum�Cold(12:5) + �Warm(12:5) + �Hot(12:5) = 1).

pression “I live near Geneva,” where the fuzzy value “near”
applied to the fuzzy variable “distance”, in addition to being
imprecise is subject to interpretation. A fuzzy variable (also
called a linguistic variable; see Figure 1) is characterized by
its name tag, a set of fuzzy values (also known as linguistic val-
ues or labels), and the membership functions of these labels;
these latter assign a membership value �label(u) to a given
real value u 2 <, within some predefined range (known as
the universe of discourse).

A fuzzy inference system is a rule-based system that
uses fuzzy logic, rather than Boolean logic, to reason about
data [22]. Its basic structure includes four main components,
as depicted in Figure 2 [13]: (1) a fuzzifier, which translates
crisp (real-valued) inputs into fuzzy values; (2) an inference
engine that applies a fuzzy reasoning mechanism to obtain
a fuzzy output; (3) a defuzzifier, which translates this latter
output into a crisp value; and (4) a knowledge base, which
contains both an ensemble of fuzzy rules, known as the rule
base, and an ensemble of membership functions known as the
database.

The decision-making process is performed by the infer-
ence engine using the rules contained in the rule base. These
fuzzy rules define the connection between input and output
fuzzy variables. A fuzzy rule has the form:

if antecedent then consequent,
where antecedent is a fuzzy-logic expression, composed of
one or more simple fuzzy expressions connected by fuzzy op-
erators, and consequent is an expression that assigns fuzzy



Table 1 Parameter classification of fuzzy inference systems [13].
Class Parameters

Reasoning mechanism
Logical Fuzzy operators

Membership function types
Defuzzification method
Relevant variables

Structural Number of membership functions
Number of rules
Antecedents of rules

Connective Consequents of rules
Rule weights

Operational Membership function values

values to the output variables. The inference engine evaluates
all the rules in the rule base and combines the weighted con-
sequents of all relevant rules into a single fuzzy set using the
aggregation operation.

Fuzzy modeling is the task of identifying the parameters
of a fuzzy inference system so that a desired behavior is at-
tained [21]. With the direct approach a fuzzy model is con-
structed using knowledge from a human expert. This task be-
comes difficult when the available knowledge is incomplete
or when the problem space is very large, thus motivating the
use of automatic approaches to fuzzy modeling. One of the
major problems in fuzzy modeling is the curse of dimension-
ality, meaning that the computation requirements grow expo-
nentially with the number of variables.

The parameters of fuzzy inference systems can be clas-
sified into four categories (Table 1) [13]: logical, structural,
connective, and operational. Generally speaking, this order
also represents their relative influence on performance, from
most influential (logical) to least influential (operational). In
fuzzy modeling, logical parameters are usually predefined by
the designer based on experience and on problem charac-
teristics. Structural, connective, and operational parameters
may be either predefined, or obtained by synthesis or search
methodologies.

Fuzzy modeling can be considered as an optimization pro-
cess where part or all of the parameters of a fuzzy system con-
stitute the search space. Generally, the search space, and thus
the computational effort, grows exponentially with the num-
ber of parameters. Therefore, one can either invest more re-
sources in the chosen search methodology, or infuse more a
priori, expert knowledge into the system (thereby effectively
reducing the search space).

Evolutionary algorithms are used to search large, and often
complex, search spaces. They have proven worthwhile on nu-

Fuzzy
Input

Fuzzy

Crisp
Output

Output

Input
Crisp Fuzzifier Defuzzifier

Knowledge base

Rule base

Database

Engine
Inference

Figure 2 Basic structure of a fuzzy inference system.

merous diverse problems, able to find near-optimal solutions
given an adequate performance (fitness) measure. Works in-
vestigating the application of evolutionary techniques in the
domain of fuzzy modeling had first appeared about a decade
ago [4, 5]. These focused mainly on the tuning of fuzzy in-
ference systems involved in control tasks (e.g., cart-pole bal-
ancing, liquid level system, and spacecraft rendezvous opera-
tion). Evolutionary fuzzy modeling has since been applied to
an ever-growing number of domains, branching into areas as
diverse as chemistry, medicine, telecommunications, biology,
and geophysics. For a detailed bibliography on evolutionary
fuzzy modeling up to 1996, the reader is referred to [1, 2].

Depending on several criteria—including the available a
priori knowledge about the system, the size of the parame-
ter set, and the availability and completeness of input/output
data—artificial evolution can be applied in different stages of
the fuzzy-parameters search. Three of the four categories of
fuzzy parameters in Table 1 can be used to define targets for
evolutionary fuzzy modeling: structural parameters, connec-
tive parameters, and operational parameters [13].

Knowledge tuning (operational parameters). The evo-
lutionary algorithm is used to tune the knowledge contained
in the fuzzy system by finding membership function values.

Behavior learning (connective parameters). In this ap-
proach, one supposes that extant knowledge is sufficient in or-
der to define the membership functions. The evolutionary al-
gorithm is used to find either the rule consequents, or an ade-
quate subset of rules to be included in the rule base.

Structure learning (structural parameters). In this ap-
proach, evolution has to deal with the simultaneous design
of rules, membership functions, and structural parameters.
Some methods use a fixed-length genome encoding a fixed
number of fuzzy rules along with the membership function
values. Other methods use variable-length genomes to allow
evolution to discover the optimal size of the rule base.

Both behavior and structure learning can be viewed as rule-
base learning processes with different levels of complexity.
They can thus be assimilated within other methods from ma-
chine learning, taking advantage of experience gained in this
latter domain. In the evolutionary algorithm community there
are two major approaches for evolving such rule systems: the
Michigan approach and the Pittsburgh approach [8]. A more
recent method has been proposed specifically for fuzzy mod-
eling: the iterative rule learning approach [3]. These three ap-
proaches are presented below.

The Michigan approach. Each individual represents a
single rule. The fuzzy inference system is represented by the
entire population. Since several rules participate in the infer-
ence process, the rules are in constant competition for the best
action to be proposed, and cooperate to form an efficient fuzzy
system. The cooperative-competitive nature of this approach
renders difficult the decision of which rules are ultimately re-
sponsible for good system behavior. It necessitates an effec-
tive credit assignment policy to ascribe fitness values to indi-
vidual rules.



The Pittsburgh approach. Here, the evolutionary al-
gorithm maintains a population of candidate fuzzy systems,
each individual representing an entire fuzzy system. Selec-
tion and genetic operators are used to produce new genera-
tions of fuzzy systems. Since evaluation is applied to the en-
tire system, the credit assignment problem is eschewed. This
approach allows to include additional optimization criteria
in the fitness function, thus affording the implementation of
multi-objective optimization. The main shortcoming of this
approach is its computational cost, since a population of full-
fledged fuzzy systems has to be evaluated each generation.

The iterative rule learning approach. As in the Michi-
gan approach, each individual encodes a single rule. An evo-
lutionary algorithm is used to find a single rule, thus provid-
ing a partial solution. The evolutionary algorithm is used it-
eratively for the discovery of new rules, until an appropri-
ate rule base is built. To prevent the process from finding
redundant rules (i.e., rules with similar antecedents), a pe-
nalization scheme is applied each time a new rule is added.
This approach combines the speed of the Michigan approach
with the simplicity of fitness evaluation of the Pittsburgh ap-
proach. However, as with other incremental rule-base con-
struction methods, it can lead to a non-optimal partitioning of
the antecedent space.

3 Cooperative Coevolution

Coevolution refers to the simultaneous evolution of two or
more species with coupled fitness. Such coupled evolution fa-
vors the discovery of complex solutions whenever complex
solutions are required [10]. Simplistically speaking, one can
say that coevolving species can either compete (e.g., to obtain
exclusivity on a limited resource) or cooperate (e.g., to gain
access to some hard-to-attain resource). In a competitive co-
evolutionary algorithm the fitness of an individual is based on
direct competition with individuals of other species, which in
turn evolve separately in their own populations. Increased fit-
ness of one of the species implies a diminution in the fitness of
the other species. This evolutionary pressure tends to produce
new strategies in the populations involved so as to maintain
their chances of survival. This “arms race” ideally increases
the capabilities of each species until they reach an optimum.
For further details about competitive coevolution, the reader
is referred to [17].

Cooperative (also called symbiotic) coevolutionary algo-
rithms involve a number of independently evolving species
which together form complex structures, well-suited to solve
a problem. The fitness of an individual depends on its ability
to collaborate with individuals from other species. In this way,
the evolutionary pressure stemming from the difficulty of the
problem favors the development of cooperative strategies and
individuals. Single-population evolutionary algorithms often
perform poorly—manifesting stagnation, convergence to lo-
cal optima, and computational costliness—when confronted
with problems presenting one or more of the following fea-
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Figure 3 Potter’s cooperative coevolutionary system. The figure
shows the evolutionary process from the perspective of Species 1.
The individual being evaluated is combined with one or more rep-
resentatives of the other species so as to construct several solutions
which are tested on the problem. The individual’s fitness depends on
the quality of these solutions.

tures: (1) the sought-after solution is complex, (2) the prob-
lem or its solution is clearly decomposable, (3) the genome
encodes different types of values, (4) strong interdependen-
cies among the components of the solution, (5) components-
ordering drastically affects fitness. Cooperative coevolution
addresses effectively these issues, consequently widening the
range of applications of evolutionary computation.

Paredis [10] applied cooperative coevolution to problems
which involved finding simultaneously the values of a solu-
tion and their adequate order. In his approach, a population
of solutions coevolves alongside a population of permutations
performed on the genotypes of the solutions. Moriarty [9]
used a cooperative coevolutionary approach to evolve neu-
ral networks. Each individual in one species corresponds to a
single hidden neuron of a neural network and its connections
with the input and output layers. This population coevolves
alongside a second one whose individuals encode sets of hid-
den neurons (i.e., individuals from the first population) form-
ing a neural network. Potter [16] developed a model in which
a number of populations explore different decompositions of
the problem. Below we detail this framework as it forms the
basis of our own approach.

In Potter’s system, each species represents a subcompo-
nent of a potential solution. Complete solutions are obtained
by assembling representative members of each of the species
(populations). The fitness of each individual depends on the
quality of (some of) the complete solutions it participated
in, thus measuring how well it cooperates to solve the prob-
lem. The evolution of each species is controlled by a sepa-
rate, independent evolutionary algorithm. Figure 3 shows the
general architecture of Potter’s cooperative coevolutionary
framework, and the way each evolutionary algorithm com-
putes the fitness of its individuals by combining them with se-
lected representatives from the other species. A greedy strat-
egy for the choice of representatives of a species is to use one
or more of the fittest individuals from the last generation.



Results presented by Potter show that his approach ad-
dresses adequately issues like problem decomposition and in-
terdependencies between subcomponents [16]. The coopera-
tive coevolutionary approach performs as good as, and some-
times better than, single-population evolutionary algorithms.
Finally, cooperative coevolution usually requires less compu-
tation than single-population evolution as the populations in-
volved are smaller and the convergence measured as number
of generations is faster.

4 Fuzzy CoCo: A Cooperative Coevolutionary
Approach to Fuzzy Modeling

Fuzzy CoCo is a Cooperative Coevolutionary approach to
fuzzy modeling where two coevolving species are defined:
database (membership functions) and rule base. This ap-
proach is based primarily on the framework defined by Pot-
ter [16] (Section 3).

A fuzzy modeling process has usually to deal with the si-
multaneous search for operational and connective parameters
(Table 1). These parameters provide an almost complete def-
inition of the linguistic knowledge describing the behavior of
a system, and the values mapping this symbolic description
into a real-valued world (a complete definition also requires
structural parameters whose definition is best suited for hu-
man skills). Thus, fuzzy modeling can be thought of as two
separate but intertwined searching processes: (1) the search
for the membership functions (i.e., operational parameters)
that define the fuzzy variables, and (2) the search for the rules
(i.e., connective parameters) used to perform the inference.

Fuzzy modeling presents several features discussed in
Section 3 which justify the application of a cooperative-
coevolutionary approach: (1) The required solutions can be
very complex, since fuzzy systems with a few dozen variables
may call for hundreds of parameters to be defined. (2) The
proposed solution—a fuzzy inference system—can be decom-
posed into two distinct components: rules and membership
functions. (3) Membership functions are represented by con-
tinuous, real values, while rules are represented by discrete,
symbolic values. (4) These two components are interdepen-
dent because the membership functions defined by the first
group of values are indexed by the second group (rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling prob-
lem is solved by two coevolving cooperative species. Individ-
uals of the first species encode values which define completely
all the membership functions for all the variables of the sys-
tem. For example, with respect to the variable Temperature
shown in Figure 1, this problem is equivalent to finding the
values of P1, P2 and P3.

Individuals of the second species define a set of rules of the
form:

if (v1 is A1) and ... and (vn is An) then (output is C),
where the term Av indicates which one of the linguistic labels
of fuzzy variable v is used by the rule. For example, a valid
rule could contain the expression

if . . . and (Temperature is Warm) and ... then ...
which includes the membership functionWarmwhose defin-
ing parameters are contained in the first species.

The two evolutionary algorithms used to control the evo-
lution of the two populations are instances of a simple ge-
netic algorithm. Figure 4 presents the Fuzzy CoCo algorithm
in pseudo-code format. The genetic algorithms apply fitness-
proportionate selection to choose the mating pool, and apply
an elitist strategy with an elitism rate Er to allow some of the
best individuals to survive into the next generation. Standard
crossover and mutation operators are applied with probabili-
ties Pc and Pm, respectively.

begin Fuzzy CoCo
g:=0
for each species S

Initialize populations PS(0)
Evaluate population PS(0)

end for
while not done do

for each species S
g:=g+1ES(g) = elite-select PS(g � 1)P 0S(g) = select PS(g � 1)P 00S (g) = crossover P 0S(g)P 000S (g) = mutate P 00S (g)PS(g) = P 000s (g) + ES(g)
Evaluate population PS(g)

end for
end while

end GA
Figure 4 Pseudo-code of Fuzzy CoCo. Two species coevolve in
Fuzzy CoCo: membership functions and rules. The elitism strategy
extractsES individuals to be reinserted into the population after evo-
lutionary operators have been applied (i.e., selection, crossover, and
mutation). Selection results in a reduced population P 0S(g) (usually,
the size of P 0S(g) is kP 0Sk = kPSk � kESk). The line “Evaluate
population PS(g)” is elaborated in Figure 5.

We introduced elitism to avoid the divergent behavior of
Fuzzy CoCo, observed in our preliminary trial runs. Non-
elitist versions of Fuzzy CoCo often tend to lose the genetic
information of good individuals found during evolution, con-
sequently producing populations with mediocre individuals
scattered throughout the search space. This is probably due to
the relatively small size of the populations which renders dif-
ficult the preservation of good solutions while exploring the
search space. The introduction of simple elitism produces an
undesirable effect on the Fuzzy CoCo performance: popula-
tions converge prematurely even with reduced values of the
elitism rate Er. To offset this effect without losing the advan-
tages of elitism, it is necessary to increase the mutation proba-
bility Pm by an order of magnitude (Table 3) so as to improve
the exploration capabilities of the algorithm.

A more detailed view of the fitness evaluation process is
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Figure 5 Fitness evaluation in Fuzzy CoCo. (a) Several individu-
als from generation g � 1 of each species are selected according to
their fitness to be the representatives of their species during gener-
ation g; these representatives are called “cooperators.” (b) During
the evaluation stage of generation g (after selection, crossover, and
mutation—see Figure 4), individuals are combined with the selected
cooperators of the other species to construct fuzzy systems. These
systems are then evaluated on the problem domain and serve as a ba-
sis for assigning the final fitness to the individual being evaluated.

depicted in Figure 5. An individual undergoing fitness eval-
uation establishes cooperations with one or more representa-
tives of the other species, i.e., it is combined with individuals
from the other species to construct fuzzy systems. The fitness
value assigned to the individual depends on the performance
of the fuzzy systems it participated in (specifically, either the
average or the maximal value).

Representatives, called here cooperators, are selected
both, fitness-proportionally and randomly from the last gener-
ation since they have already been assigned a fitness value (see
Figure 4). In Fuzzy CoCo, Ncf cooperators are probabilisti-
cally selected according to their fitness, usually the fittest in-
dividuals, thus favoring the exploitation of known good solu-
tions. The other Ncr cooperators are selected randomly from
the population to represent the diversity of the species, main-
taining in this way exploration of the search space.

Fuzzy Subsystem

Input DiagnosticAppraisal

Threshold Subsystem

Figure 6 Proposed diagnosis system. Note that the fuzzy subsystem
displayed to the left is in fact the entire fuzzy inference system of
Figure 2.

5 Applying Fuzzy CoCo to Breast Cancer Diag-
nosis

The Wisconsin Breast Cancer Diagnosis (WBCD) problem
involves classifying a presented case as to whether it is benign
or malignant. It admits a relatively high number of variables
and consequently a large search space. The WBCD database
[7] consists of nine visually assessed characteristics obtained
from fine needle aspirates1 of breast masses, each of which is
ultimately represented as an integer value between 1 and 10.
The measured variables are as follows: (1) Clump Thickness
(v1); (2) Uniformity of Cell Size (v2); (3) Uniformity of Cell
Shape (v3); (4) Marginal Adhesion (v4); (5) Single Epithelial
Cell Size (v5); (6) Bare Nuclei (v6); (7) Bland Chromatin (v7);
(8) Normal Nucleoli (v8); and (9) Mitosis (v9).

The diagnostics in the WBCD database were furnished by
specialists in the field. The database itself consists of 683
cases, with each entry representing the classification for a cer-
tain ensemble of measured values:case v1 v2 v3 : : : v9 diagnostic1 5 1 1 : : : 1 Benign2 5 4 4 : : : 1 Benign: : : : : :683 4 8 8 : : : 1 Malignant

There are several studies based on this database. Among
them, researchers having interpretability of the diagnostic
as a prior objective, have applied the method of extract-
ing Boolean rules from neural networks [18–20]. Our own
work on the evolution of fuzzy rules for the WBCD problem
showed that it is possible to obtain diagnostic systems exhibit-
ing high performance, coupled with interpretability and a con-
fidence measure [11–13]. In our previous work we used a sim-
ple genetic algorithm rather than Fuzzy CoCo.

The solution scheme we propose for the WBCD problem is
depicted in Figure 6. It consists of a fuzzy system and a thresh-
old unit. The fuzzy system computes a continuous appraisal
value of the malignancy of a case, based on the input values.
The threshold unit then outputs a benign or malignant diag-
nostic according to the fuzzy system’s output.

Our previous knowledge about the WBCD problem repre-
sents valuable information to be used for our choice of fuzzy
parameters. When defining our setup we took into consider-
ation the following three results concerning the composition
of potential high-performance systems: (1) small number of
rules; (2) small number of variables; and (3) monotonicity
of the input variables [13]. Some fuzzy models forgo inter-

1Fine needle aspiration is an outpatient procedure that involves using a
small-gauge needle to extract fluid directly from a breast mass [6].



P d

1
Low High

0 Variable

Membership

Figure 7 Fuzzy variables for the WBCD problem. All the variables
have two labels: Low and High, and orthogonal membership func-
tions. P and d define the start point and the length of membership-
function edges, respectively.

pretability in the interest of improved performance. Where
medical diagnosis is concerned [14], interpretability—also
called linguistic integrity—is the major advantage of fuzzy
systems. This motivated us to take into account the following
five semantic criteria, defining constraints on the fuzzy param-
eters [13]: (1) distinguishability; (2) justifiable number of ele-
ments; (3) coverage; (4) normalization; and (5) orthogonality.

Referring to Table 1, and taking into account the above cri-
teria, we delineate below the fuzzy system setup:� Logical parameters: singleton-type fuzzy systems;

min-max fuzzy operators; orthogonal, trapezoidal input
membership functions; weighted-average defuzzifica-
tion.� Structural parameters: two input membership functions
(Low and High); two output singletons (benign and ma-
lignant); a user-configurable number of rules. The rel-
evant variables are one of Fuzzy CoCo’s objectives.� Connective parameters: the antecedents and the conse-
quent of the rules are searched by Fuzzy CoCo. The
algorithm also searches for the consequent of the de-
fault rule which plays the role of an else condition.
All rules have unitary weight.� Operational parameters: the input membership func-
tion values are to be found by Fuzzy CoCo. For the out-
put singletons we used the values 2 and 4, for benign
and malignant, respectively.

Fuzzy CoCo is thus used to search for four parameters: in-
put membership function values, relevant input variables, and
antecedents and consequents of rules. These search goals are
more ambitious than those defined in our previous work [11–
13] as the consequents of rules are added to the search space.
The genomes of the two species are constructed as follows:� Species 1: Membership functions. There are nine vari-

ables (v1 – v9), each with two parameters P and d, defin-
ing the start point and the length of the membership-
function edges, respectively (Figure 7).� Species 2: Rules. The i-th rule has the form:

if (v1 is Ai1) and ... and (v9 is Ai9) then
(output is Ci),

Aij can take on the values: 1 (Low), 2 (High), or 0
or 3 (Other). Ci can take on the values: 1 (Benign)
or 2 (Malignant). Relevant variables are searched for
implicitly by letting the algorithm choose non-existent
membership functions as valid antecedents; in such a
case the respective variable is considered irrelevant.

Table 2 delineates the parameters encoding for both
species’ genomes, which together describe an entire fuzzy
system. Note that in our previous work both membership
functions and values were encoded in the same genome, i.e.,
there was only one species.

Table 2 Genome encoding of parameters for both species. Genome
length for membership functions is 54 bits. Genome length for rules
is 19�Nr + 1, where Nr denotes the number of rules.

Parameter Values Bits Qty Total bits

Species 1: Membership functionsP [1-8] 3 9 27d [1-8] 3 9 27
Total 54

Species 2: RulesA [0-3] 2 9�Nr 18�NrC [1,2] 1 Nr + 1 Nr + 1
Total 19�Nr + 1

To evolve the fuzzy inference system, we applied a
Fuzzy CoCo algorithm with the same evolutionary param-
eters for both species. Values and ranges of values used
for these parameters were defined according to preliminary
tests performed on benchmark problems (mostly function-
optimization problems found in Potter [16]). Table 3 de-
lineates these values. The algorithm terminates when the
maximum number of generations, Gmax is reached (we setGmax = 1000 + 100 �Nr, i.e., dependent on the number of
rules used in the run), or when the increase in fitness of the best
individual over five successive generations falls below a cer-
tain threshold (in our experiments we used as threshold value10�4). Note that mutation rates are relatively higher than with
a simple genetic algorithm, which is typical with coevolution-
ary algorithms [16]. This is due in part to the small population
sizes and to elitism.

Table 3 Fuzzy CoCo set-up for the WBCD problem.
Parameter Values

Population size Np 40
Maximum generations Gmax 1000 + 100Nr
Crossover probability Pc 1
Mutation probability Pm f0.1,0.2,0.3g
Elitism rate Er f0.4,0.5,0.6g
“Fit” cooperators Ncf 1
Random cooperators Ncr f1,2,3g

Our fitness function combines two criteria: 1) Fc—
classification performance, computed as the percentage of
cases correctly classified and 2) Fv—the maximum number
of variables in the longest rule. The fitness function is given



by F = Fc � �Fv , where � = 0:0015. Fc, the percentage
of correctly diagnosed cases, is the most important measure
of performance. Fv measures the linguistic integrity (inter-
pretability), penalizing systems with a large number of vari-
ables in their rules. The value �was calculated to allow Fv to
occasion a fitness difference only among systems exhibiting
the same classification performance.

We stated earlier that cooperative coevolution reduces the
computational cost of the search process. In order to measure
this cost we calculate the maximum number of fuzzy-system
evaluations performed by a single run of Fuzzy CoCo. Each
generation, the Np individuals of each population are evalu-
ated (Ncf + Ncr) times. The total number of fuzzy-system
evaluations is then 2 � Gmax � Np � (Ncf + Ncr). This
value goes from 352 � 103 evaluations for a one-rule system
search, up to 480�103 evaluations for a five-rule system. The
number of fuzzy-system evaluations required by our single-
population approach was 500�103 for a one-rule system and900 � 103 for a five-rule system [13].

6 Results

A total of 193 evolutionary runs were performed, all of
which found systems whose classification performance ex-
ceeds 95.1%. In particular, considering the best individual
per run (i.e., the evolved system with the highest classifica-
tion success rate), 167 runs led to a fuzzy system whose per-
formance exceeds 97.5%, and of these, 11 runs found systems
whose performance exceeds 98.5%.

Table 4 compares our best systems with the top systems
obtained in our own previous work, which were the best re-
ported to date [13] (also, see [13], for several references con-
cerning breast-cancer diagnostic systems). The evolved fuzzy
systems described in this paper can be seen to surpass those
obtained by our previous approach in terms of performance,
while still containing simple, interpretable rules. As shown in
Table 4, we obtained higher-performance systems for all five
rule-base sizes, i.e., from one-rule systems all the way up to
five-rule systems.

Table 4 Comparison of the best systems evolved by Fuzzy CoCo
with the top systems obtained in our previous work with a single-
population approach [13]. Shown below are the classification perfor-
mance values of the top systems obtained by these approaches, along
with the number of variables of the longest rule in parentheses. Re-
sults are divided into five classes, in accordance with the number of
rules-per-system, going from one-rule systems to five-rule ones.

Rules
per
system

Single
population
GA [13]

Fuzzy CoCo

best average best
1 97.07% (4) 97.12% (3) 97.36% (4)
2 97.36% (4) 97.66% (4.1) 98.54% (5)
3 97.80% (6) 97.91% (4.4) 98.54% (4)
4 97.80% (-) 98.00% (4.7) 98.54% (3)
5 97.51% (-) 97.98% (5.2) 98.68% (5)

We next describe two of our top-performance systems,

Databasev1 v2 v3 v4 v5 v6 v7 v8 v9
P 5 1 2 3 6 2 3 5 1
d 8 6 2 1 4 7 3 8 2

Rule base
Rule 1 if (v2 is Low) and (v3 is Low) and (v7 is Low)

then (output is benign)
Rule 2 if (v1 is Low) and (v4 is Low) and (v6 is Low) and

(v8 is Low) and (v9 is Low) then (output is be-
nign)

Rule 3 if (v1 is High) and (v5 is Low) and (v6 is High)
and (output is malignant)

Rule 4 if (v1 is High) and (v4 is Low) and (v6 is High)
and (v8 is Low) then (output is malignant)

Rule 5 if (v1 is High) and (v4 is High) and (v6 is High)
and (v8 is High) and (v9 is High) then (output
is malignant)

Default else (output is malignant)

Figure 8 The best evolved, fuzzy diagnostic system with five rules.
It exhibits an overall classification rate of 98.68%, and its longest rule
includes 5 variables.

Databasev1 v2 v3 v4 v5 v6 v7 v8 v9
P 3 2 3 3 1 8 2
d 8 2 1 5 5 1 1

Rule base
Rule 1 if (v1 is Low) and (v3 is Low) and (v7 is Low) and

(v8 is Low) then (output is benign)
Rule 2 if (v1 is Low) and (v4 is Low) and (v6 is Low) and

(v8 is Low) and (v9 is Low) then (output is be-
nign)

Default else (output is malignant)

Figure 9 The best evolved, fuzzy diagnostic system with two rules.
It exhibits an overall classification rate of 98.54%, and a maximum
of 5 variables in the longest rule.

which serve to exemplify the solutions found by Fuzzy CoCo.
The first system, delineated in Figure 8, presents the highest
classification performance evolved to date. It consists of five
rules (note that the else condition is not counted as an ac-
tive rule) with the longest one including 5 variables. This sys-
tem obtains an overall classification rate (i.e., over the entire
database) of 98.68%.

In addition to the above five-rule system, evolution found
systems with 2, 3, and 4 rules exhibiting the second-best clas-
sification performance (Table 4). Among these three systems,
we consider as best the system with the smallest number of
conditions (i.e., the total number of variables in the rules).
Figure 9 presents one such system. This two-rule system, con-
taining a total of 9 conditions, obtains an overall classification
rate of 98.54%. Its longest rule has 5 variables.

7 Concluding remarks

We presented Fuzzy CoCo, a new, cooperative coevolutionary
approach to fuzzy modeling. We applied Fuzzy CoCo to the



Wisconsin breast cancer diagnosis problem comparing it with
the non-coevolutionary approach we applied to the same prob-
lem [13]. Our coevolved systems attained a higher classifica-
tion performance (note that our previous work’s performance
was the best shown to date), and required less computation to
obtain the diagnostic systems than the single-population ap-
proach.

These promising results have incited us to engage in fur-
ther investigation of this approach. We are currently pursu-
ing two avenues of research: (1) application of Fuzzy CoCo
to more complex diagnosis problems; and (2) improving and
expanding upon the methodology presented herein (e.g., by
adapting the set-up according to the particularities of each
species). Our underlying goal is to provide an approach
for automatically producing high-performance, interpretable
fuzzy systems for real-world diagnosis problems.
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