
Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA97).
Copyright Springer-Verlag KG, Vienna, 1997.

Evolving Asynchronous and Scalable Non-uniform

Cellular Automata

Moshe Sipper, Marco Tomassini,∗ and Mathieu S. Capcarrere

Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens,

CH-1015 Lausanne, Switzerland. E-mail: {name.surname}@di.epfl.ch.

Abstract

We have previously shown that non-
uniform cellular automata (CA) can be
evolved to perform computational tasks,
using the cellular programming algorithm.
In this paper we focus on two novel issues,
namely, the evolution of asynchronous CAs,
and the scalability of evolved synchronous
systems. We find that asynchrony presents
a more difficult case for evolution though
good CAs can still be attained. We de-
scribe an empirically-derived scaling proce-
dure by which successful CAs of any size
may be obtained from a particular evolved
system. Our motivation for this study
stems in part from our desire to attain re-
alistic systems that are more amenable to
implementation as “evolving ware,” evol-
ware.

1 Introduction

Cellular automata (CA) are dynamical systems in
which space and time are discrete. A cellular au-
tomaton consists of an array of cells, each of which
can be in one of a finite number of possible states,
updated synchronously in discrete time steps accord-
ing to a local, identical interaction rule. The state of
a cell at the next time step is determined by the pre-
vious states of a surrounding neighborhood of cells;
this transition is usually specified in the form of a rule
table, delineating the cell’s next state for each pos-
sible neighborhood configuration. The cellular array
(grid) is n-dimensional, where n = 1, 2, 3 is used in
practice (in this work we shall concentrate on n = 1).

CAs exhibit three notable features, namely, mas-
sive parallelism, locality of cellular interactions, and
simplicity of basic components (cells). A major im-
pediment preventing ubiquitous computing with CAs

∗M. Tomassini is also with the Computer Science In-
stitute, University of Lausanne.

stems from the difficulty of utilizing their complex
behavior to perform useful computations. Designing
CAs to exhibit a specific behavior or perform a partic-
ular task is highly complicated, thus severely limiting
their applications; automating the design (program-
ming) process would greatly enhance the viability of
CAs [1].

One possible approach, taken in this paper, is to
employ artificial evolution. The model investigated
by us is an extension of the original CA model, termed
non-uniform cellular automata. Such automata func-
tion in the same way as uniform ones, the only differ-
ence being in the local cellular rules that need not be
identical for all cells. Our approach involves the cel-
lular programming algorithm, by which non-uniform
CAs evolve to perform non-trivial, global computa-
tional tasks [2–7] (for a description of the algorithm
the reader is referred to these references).

The tasks for which non-uniform CAs were evolved
via cellular programming include, among others, den-
sity and synchronization. Both involve two-state
CAs, i.e., each cell can be in one of two states, 0
or 1, with connectivity radius r = 1, meaning that
each cell is connected to one neighbor on either side
(thus, each cell has 2r + 1 neighbors, including it-
self). The one-dimensional density task is to decide
whether or not the initial configuration contains more
than 50% 1s, relaxing to a fixed-point pattern of all
1s if the initial density of 1s exceeds 0.5, and all
0s otherwise (Figure 1) [1, 2]. The term ‘configura-
tion’ refers to an assignment of states to grid cells.
In the one-dimensional synchronization task the CA,
given any initial configuration, must reach a final
configuration, within M time steps, that oscillates
between all 0s and all 1s on successive time steps
(Figure 2) [2, 8]. Spatially periodic boundary con-
ditions are applied, resulting in a circular grid (for an
r = 1 CA this means that the leftmost and rightmost
cells are connected). It should be emphasized that
both tasks comprise non-trivial computational prob-

Page 1

Draf
t



lems for a small radius CA (r ≪ N , where N is the
grid size) [1, 2, 8].

Our previous studies involving cellular program-
ming consisted of evolving parallel cellular machines
to perform computational tasks. Our machine model
was attained by considering a generalization of the
original CA model, namely, non-uniform CAs, where
cellular rules need not necessarily be identical. In
this paper we study an additional generalization,
namely, asynchronous CAs, as well as the scalabil-
ity of evolved synchronous systems. Our motivation
stems in part from our desire to attain more realis-
tic systems that are amenable to implementation as
“evolving ware,” evolware [2, 3].

2 Evolving asynchronous CAs

One of the prominent features of the CA model is its
synchronous mode of operation, meaning that all cells
are updated simultaneously. A preliminary study of
asynchronous CAs, where one cell is updated at each
time step, was carried out in Ref. [9], where the dif-
ferent dynamical behavior of synchronous and asyn-
chronous CAs was compared; the authors argued that
some of the apparent self-organization of CAs is an
artifact of the synchronization of the clocks. Ref. [10]
noted that asynchronous updating makes it more dif-
ficult for information to propagate through the CA
and that, furthermore, such CAs may be harder to
analyze. Asynchronous CAs have also been discussed
in Refs. [2, 11, 12], though it seems clear that they
have received a limited amount of attention to date.

The issue investigated in this section is that of
evolving asynchronous CAs to perform the density
and synchronization tasks. The grid is partitioned
into blocks in which synchronous updating takes place
(i.e., all cells within a block are updated simultane-
ously), while the blocks themselves are updated asyn-
chronously (rather than have all blocks updated at
once); thus, inter-block updating is synchronous while
intra-block updating is asynchronous. The number of
blocks per grid, #b, is a tunable parameter, entail-
ing a scale of asynchrony, ranging from complete syn-
chrony (#b = 1) to complete asynchrony (#b = N).
There are two main differences between our investiga-
tion and previous ones: (1) rather than consider only
complete asynchrony (#b = N), we have introduced
the above scale, and (2) asynchronous CAs were pre-
viously studied from a more abstract point of view,
whereas we are interested in evolving them to perform
a veritable computation.

Three models of asynchrony are considered, which
differ in the scheduling of intra-block updating (inter-

block updating is always synchronous):

Model 1 At every time step each block is updated
independently of the others with probability
pupdate, chosen so as to insure that at least one
block is updated per time step with probability
≥ 0.99.

Model 2 At each time step a different block is cho-
sen at random without replacement, such that
every #b steps, all blocks are updated exactly
once. We denote by logical step the succession
of #b time steps necessary for one full update
cycle, in which all cells are updated (thus, one
logical step is equivalent to one time step in the
synchronous model, with respect to cell updat-
ing).

Model 3 All blocks are updated in a fixed, random
order every logical step. This is similar to the
second model, in that each cell is guaranteed to
have updated its state every logical step, how-
ever, the (random) update order is fixed (rather
than selected anew each logical step). Note that
though the update order is deterministic, this
model is interesting in that cells are not updated
in a regular manner; neighboring cells may be
updated at different points in time, which ren-
ders the computation more difficult.

Cyclic behavior cannot arise in the first model,
since the notion of a logical step, i.e., a fixed number
of time steps after which all cells will have been up-
dated, does not exist; however, a fixed point, such as
that desired for the density problem, can be attained.
Models 2 and 3 can be applied to the synchronization
problem since cyclic behavior may be attained, if one
considers the CA’s configuration every logical step,
i.e., the alternation between all 0s and all 1s takes
place every #b time steps.

Our results for the density task show that model-1
asynchronous CAs can be evolved whose performance
is comparable to the synchronous case,1 provided the
number of blocks does not exceed three (#b ≤ 3); for
#b > 3, successful asynchronous CAs did not evolve.
Figure 1 demonstrates the operation of an evolved,
non-uniform, model-1 asynchronous CA on the den-
sity task. For the synchronization task, successful
model-3 CAs with #b ≤ 8 were evolved (grid sizes
considered were in the range N ∈ [100, 150]); apply-
ing model 2, no successful CA had emerged from the
evolutionary process.

1Performance results for the synchronous case are re-
ported, e.g., in Refs. [2, 5].

Page 2



time
↓

Figure 1: One-dimensional density task. Operation
of a coevolved, non-uniform CA with connectivity ra-
dius r = 1. The CA is asynchronous, model 1. Grid
size is N = 150, with two 75-cell blocks (#b = 2).
White squares represent cells in state 0, black squares
represent cells in state 1. The pattern of configura-
tions is shown for the first 665 time steps, with time
increasing down the page. The randomly generated
initial configuration has a density of 1s greater than
0.5, and the CA relaxes to a fixed pattern of all 1s,
which is the correct output.

The deterministic updating schedule of model 3
renders it easier for evolution to cope with, as com-
pared with model 2. For both, however, an obstacle
that hinders the evolutionary algorithm is the need
to adapt to block boundaries. A “good” rule in cell i
may be of no use, or even detrimental, in cell i+1, if a
block boundary occurs between these two cells. Two
strategies were observed to emerge through the evo-
lutionary process in order to cope with this problem:
either specialized rules are evolved at block bound-
aries (different than the rules present in the rest of
the block), or a rule is evolved that is essentially in-
sensitive to the presence or absence of a boundary.

3 Scaling evolved CAs

In this section we return to synchronous, non-uniform
CAs, our interest lying in the scalability issue. Essen-
tially, this involves two separate matters: the evolu-
tionary algorithm and the evolved solutions. As to
the former, we note that as our cellular programming
algorithm is local it scales better in terms of hard-
ware resources than the standard (global) genetic al-

gorithm; adding grid cells requires only local connec-
tions in our case whereas the standard genetic algo-
rithm includes global operators such as fitness rank-
ing and crossover [2]. In this section we concentrate
on the second issue, namely, how can the grid size be
modified given an evolved grid of a particular length,
i.e., how can evolved solutions be scaled? This has
been purported as an advantage of uniform CAs, since
one can directly use the evolved rule in a grid of any
desired size. However, this form of simple scaling does
not bring about task scaling; as demonstrated, e.g., in
Ref. [13] for the density task, performance decreases
as grid size increases. Previously, we had attained
successful systems for a random number generation
task using a simple scaling scheme involving the du-
plication of the rules grid [7]. Below we report on a
more sophisticated, empirically-obtained scheme that
has proven successful.

Given an evolved non-uniform CA of size N , our
goal is to obtain a grid of size N ′, where N ′ is given
but arbitrary (N ′ may be > N or < N), such that
the original performance level is maintained. This re-
quires an algorithm for determining which rule should
be placed in each cell of the size N ′ grid, so as to
preserve the original grid’s “essence,” i.e., its emer-
gent global behavior. Thus, we must determine what
characterizes this latter behavior. We first note that
there are two basic rule structures of importance in
the original grid (shown for r = 1):

• The local structure with respect to cell i, i ∈
{0, . . . , N − 1}, is the set of three rules in cells
i−1, i, and i+1 (indices are computed modulus
N since the grid is circular).

• The global structure is derived by observing the
zones of identical rules present in the grid.2 For
example, for the following evolved N = 15 grid:

R1R1R1R1 R2R2 R3 R4R4R4R4 R1 R5R5R5

where Rj , j ∈ {1, . . . , 5}, denotes a distinct rule,
the number of zones is 6, and the global struc-
ture is given by the list {R1, R2, R3, R4, R1, R5}.

We have found that if these structures are pre-
served, the scaled CA’s behavior is identical to that
of the original one. A heuristic principle is to expand
(or reduce) a zone of identical rules which spans at
least four cells, while keeping intact zones of length
three or less. It is straightforward to observe that a
zone of length one or two should be left untouched,
so as to maintain the local structure. As for a zone of
length three, there is no a priori reason why it should

2We use here the term ‘zone’ to denote a region of cells
with the same evolved rule; this is not to be confused with
the synchrony ‘blocks’ of the previous section.

Page 3



be left unperturbed, rather, this has been found to
hold empirically. A possible explanation may be that
in such a three-cell zone the local structure RjRjRj

appears only once, thereby comprising a “primitive”
unit that must be maintained. As an example of this
procedure, consider the above N = 15 CA– scaling
this grid to size N ′ = 19 results in:
R1R1R1R1R1 R2R2 R3 R4R4R4R4R4R4R4 R1 R5R5R5

Note that both the local and global structures are
preserved. We tested our scaling procedure on sev-
eral CAs that were evolved to solve the synchro-
nization task. The original grid sizes were N =
100, 150, which were then scaled to grids of sizes
N ′ = 200, 300, 350, 450, 500, 750. In all cases the
scaled grids exhibited the same performance level as
that of the original ones. An example of a scaled
system is shown in Figure 2.

Figure 2: One-dimensional synchronization task– ex-
ample of a scaled CA. An evolved, size N = 149 CA
was scaled to a size N ′ = 350 CA, shown above.

4 Conclusions

We studied the evolution of non-uniform CAs via cel-
lular programming, concentrating on two novel issues,
namely, asynchrony and scalability. We introduced
three models of asynchrony, previously unstudied in
this context, finding that asynchronous CAs can be
evolved to perform the computational tasks in ques-
tion. Though it seems that asynchrony presents a
more difficult case for evolution, it is premature to
draw any definitive conclusions at this point, since we
have only considered two problems, using relatively

small-size grids. We feel that successful asynchronous
CAs can be evolved, though this will probably entail
larger grids (coupled with larger blocks). We next de-
scribed a scaling procedure for synchronous CAs, by
which an evolved system of given size may be used to
obtain augmented or reduced grids. Our tests suggest
that this procedure yields scaled systems whose per-
formance level is identical to the original one. Though
preliminary, we hope that further studies along these
lines will help deepen our knowledge of evolving cel-
lular systems, as well as propel us toward the attain-
ment of more realistic adaptive systems, that can ul-
timately be implemented as evolving ware, evolware.

References

[1] M. Mitchell, J. P. Crutchfield, and P. T. Hraber.
Evolving cellular automata to perform computa-
tions: Mechanisms and impediments. Physica D,
75:361–391, 1994.

[2] M. Sipper. Evolution of Parallel Cellular Machines:
The Cellular Programming Approach. Springer-
Verlag, Heidelberg, 1997.

[3] M. Sipper. The evolution of parallel cellular ma-
chines: Toward evolware. BioSystems, 1997. (to ap-
pear).

[4] M. Sipper. Evolving uniform and non-uniform cellu-
lar automata networks. In D. Stauffer, editor, Annual
Reviews of Computational Physics, volume V. World
Scientific, Singapore, 1997. (to appear).

[5] M. Sipper. Co-evolving non-uniform cellular au-
tomata to perform computations. Physica D, 92:193–
208, 1996.

[6] M. Sipper and E. Ruppin. Co-evolving architectures
for cellular machines. Physica D, 99:428–441, 1997.

[7] M. Sipper and M. Tomassini. Generating paral-
lel random number generators by cellular program-
ming. International Journal of Modern Physics C,
7(2):181–190, 1996.

[8] R. Das, J. P. Crutchfield, M. Mitchell, and J. E.
Hanson. Evolving globally synchronized cellular au-
tomata. In L. J. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Al-
gorithms, pages 336–343, San Francisco, CA, 1995.
Morgan Kaufmann.

[9] T. E. Ingerson and R. L. Buvel. Structure in asyn-
chronous cellular automata. Physica D, 10:59–68,
1984.

[10] S. Wolfram. Approaches to complexity engineering.
Physica D, 22:385–399, October 1986.

[11] M. A. Nowak, S. Bonhoeffer, and R. M. May. Spa-
tial games and the maintenance of cooperation. Pro-
ceedings of the National Academy of Sciences USA,
91:4877–4881, May 1994.

[12] H. Bersini and V. Detour. Asynchrony induces sta-
bility in cellular automata based models. In R. A.
Brooks and P. Maes, editors, Artificial Life IV, pages
382–387, Cambridge, Massachusetts, 1994. The MIT
Press.

[13] J. P. Crutchfield and M. Mitchell. The evolu-
tion of emergent computation. Proceedings of the
National Academy of Sciences USA, 92(23):10742–
10746, 1995.

Page 4




