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Abstract .  We present the cellular programming approach, in which par- 
allel cellular machines evolve to solve computational tasks, specifically 
demonstrating that high performance can be attained for the synchro- 
nization problem. We then described an FPGA-based implementation, 
demonstrating that 'evolving ware', evolware, can be attained; the im- 
plementation is facilitated by the cellular programming algorithm's local 
dynamics. The machine's only link to the outside world is an external 
power supply, thereby exhibiting online autonomous evolution. 

1 I n t r o d u c t i o n  

The idea of applying the biological principle of natural evolution to artificial sys- 
tems, introduced more than three decades ago, has seen an impressive growth in 
the past few years; usually grouped under the term evolutionary algorithms or 
evolutionary computation, we find the domains of genetic algorithms, evolution 
strategies, evolutionary programming, and genetic programming [1, 7, 8]. Re- 
search in these areas has traditionally centered on proving theoretical aspects, 
such as convergence properties, effects of different algorithmic parameters, and 
so on, or on making headway in new application domains, such as constraint op- 
timization problems, image processing, neural network evolution, and more. The 
implementation of an evolutionary algorithm, an issue which usually remains in 
the background, is quite costly in many cases, since populations of solutions are 
involved coupled with computationally-intensive fitness evaluations. One possi- 
ble solution is to parallelize the process, an idea which has been explored to some 
extent in recent years (see reviews by [3, 25]); while posing no major problems 
in principle, this may require judicious modifications of existing algorithms or 
the introduction of new ones in order to meet the constraints of a given parallel 
machine. 

In this paper we consider the general issue of evolving machines; while this 
idea finds its origins in the cybernetics movement of the 1940s and the 1950s~ 
it has recently resurged in the form of the nascent field of bio-inspired systems 
and evolvable hardware [14]. In what follows we present the cellular program- 
ming approach, in which parallel cellular machines evolve to solve computational 
tasks [17, 18, 19, 20, 21, 22]. We describe the algorithm and its hardware imple- 
mentation, demonstrating that  'evolving ware', evolware, can be attained; while 
current evolware is hardware-based, future ware may include other forms, such 
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as bioware. Our primary goal in this paper is to demonstrate that  online au- 
tonomous evolware can be attained, which operates without any reference to an 
external device or computer; toward this end we shall concentrate on a specific, 
well-defined synchronization problem. 

The machine model we employ is based on the cellular automata model. 
Cellular automata (CA) are dynamical systems in which space and time are 
discrete. They consist of an array of cells, each of which can be in one of a 
finite number of possible states, updated synchronously in discrete time steps 
according to a local, identical interaction rule. The state of a cell at the next 
t ime step is determined by the current states of a surrounding neighborhood of 
cells; this transition is usually specified in the form of a rule table, delineating 
the cell's next state for each possible neighborhood configuration [24, 26]. The 
cellular array (grid) is n-dimensional, where n --- 1, 2, 3 is used in practice; in 
this work we shall concentrate on n = 1, i.e., one-dimensional grids. 

CAs exhibit three notable features, namely massive parallelism, locality of 
cellular interactions, and simplicity of basic components (cells); thus, they present 
an excellent point of departure for our forays into the evolution of parallel cel- 
lular machines. The machine model we employ is an extension of the original 
CA model, termed non-uniform cellular automata [15]. Such automata function 
in the same way as uniform ones, the only difference being in the cellular rules 
tha t  need not be identical for all cells. 

The evolware implementation is based on FPGA (Field-Programmable Gate 
Array) technology. An FPGA circuit is an array of logic cells, laid out as an 
interconnected grid, with each cell capable of realizing a logic function [13]. The 
cells, as well as the interconnections, are programmable "on the fly", thus offering 
an attractive technological platform for realizing, among others, evolware. 

In Section 2 we present previous work on evolving cellular machines; in par- 
ticular, we present the synchronization problem, a non-trivial, global compu- 
tational task. Section 3 delineates the cellular programming algorithm used to 
evolve non-uniform CAs; as opposed to the standard genetic algorithm, where a 
population of independent problem solutions globally evolves [8], our approach 
involves a grid of rules that  co-evolves locally. In Section 4 we describe the 
FPGA-based evolware; evolution takes place within the machine itself, with no 
reference to or aid from any external device (e.g., a computer that  carries out 
genetic operators) apart from a power supply, thus attaining online autonomous 
evolware. Finally, our conclusions are presented in Section 5. 

2 Evolving parallel cellular machines 

The application of genetic algorithms to the evolution of uniform cellular au- 
tomata  was initially studied by [12] and recently undertaken by the EVCA 
(evolving CA) group [4, 5, 6, 9, 10, 11]. They carried out experiments involving 
one-dimensional CAs with k --- 2 and r -- 3, where k denotes the number of 
possible states per cell and r denotes the radius of a cell, i.e., the number of 
neighbors on either side (thus, each cell has 2r + 1 neighbors, including itself). 
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Spatially periodic boundary conditions are used, resulting in a circular grid. A 
common method of examining the behavior of one-dimensional CAs is to dis- 
play a two-dimensional space-time diagram, where the horizontal axis depicts 
the configuration at a certain time t and the vertical axis depicts successive time 
steps (e.g., Figure 1). The term 'configuration' refers to an assignment of 1 states 
to several cells, and 0s otherwise. 

The EVCA group employed a genetic algorithm to evolve uniform CAs to per- 
form two computational tasks, density and synchronization, the latter of which 
we shall consider in this paper. In the synchronization task the CA, given any 
initial configuration, must reach a final configuration, within M time steps, that  
oscillates between all 0s and all ls on successive time steps. As noted by [5], 
this is perhaps the simplest, non-trivial synchronization task. Oscillation is a 
global property of a configuration, whereas a small radius CA employs only lo- 
cal interactions; thus, while local regions of synchrony can be directly attained, 
it is more difficult to design CAs in which spatially distant regions are in phase. 
Since out-of-phase regions can be distributed throughout the lattice, transfer of 
information must occur over large distances (i.e., O(N), where N is the grid 
size) to remove these phase defects and produce a globally synchronous config- 
uration. [5] reported that  in 20% of the evolutionary runs the genetic algorithm 
discovered CAs that  successfully solve the task. 

It is interesting to point out that  the phenomenon of synchronous oscillations 
occurs in nature, a striking example of which is exhibited by fireflies; thousands 
such creatures may flash on and off in unison, having started from totally un- 
coordinated flickerings [2]. Each insect has its own rhythm, which changes only 
through local interactions with its neighbors' lights. Another interesting case 
involves pendulum clocks; when several of these are placed near each other, they 
soon become synchronized by tiny coupling forces transmitted through the air or 
by vibrations in the wall to which they are attached (for a review on synchronous 
oscillations in nature see [23]). 

The model investigated in this paper is that  of non-uniform CAs, where 
cellular rules need not be identical for all cells. Thus, rather than seek a single 
rule that  must be applied universally to all cells in the grid, we allow each 
cell to "choose" its own rule through evolution. As we shall see, the removal 
of the uniformity constraint from the original CA model lends itself to a novel 
algorithm which is more amenable to implementation as evolware, in comparison 
to standard evolutionary algorithms [17, 18, 19, 20, 21, 22]. 

Using the cellular programming algorithm, delineated in the next section, 
we have shown that non-uniform CAs can be evolved to perfectly 1 solve the 
synchronization task. This is achieved with minimal radius, r = 1 CAs (i.e., each 
cell is connected to its two immediate left and right neighbors), as opposed to the 
aforementioned uniform CAs, where r = 3. We have shown that  the performance 

1 The term 'perfect' is used here in a stochastic sense since we cannot exhaustively 
test all 2149 possible initial configurations nor are we in possession to date of a 
formal proof; nonetheless, we have tested our best-performance CAs on numerous 
configurations, for all of which synchronization was attained. 
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level at tained by evolved, non-uniform, r = 1 CAs is bet ter  than any possible 
uniform, r = 1 CA, none of which can solve the synchronization problem. The 
evolved systems were observed to be quasi-uniform, meaning that  the number of 
distinct rules is extremely small with respect to rule space size; furthermore, the 
rules are distributed such that  a subset of dominant rules occupies most of the 
grid [16, 17]. Figure 1 demonstrates the operation of two co-evolved CAs along 
with the corresponding rule maps; these maps depict the distribution of rules by 
assigning a unique color to each distinct rule. 

(a) (b) 

Fig. 1. The  one-dimensional synchronization task: Operation of two co-evolved, 
non-uniform, 2-state CAs, with connectivity radius r ---- 1. Grid size is N = 149. 
White squares represent cells in state 0, black squares represent cells in state 1. The 
pattern of configurations is shown through time (which increases down the page). Top 
figures depict space-time diagrams, bottom figures depict rule maps. 

3 The cellular programming algori thm 

We study 2-state, non-uniform CAs, in which each cell may contain a differ- 
ent rule. A cell's rule table is encoded as a bit string, known as the "genome", 
containing the next-state (output) bits for all possible neighborhood configura- 
tions, listed in lexicographic order; e.g., for CAs with r = 1, the genome consists 
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for each cell i in CA do in parallel 
initialize rule table of cell i 
fi -~ 0 { fitness value } 

end parallel for 
c = 0 { initial configurations counter } 
while not done do 

generate a random initial configuration 
run CA on initial configuration for M time steps 
for each cell i do in parallel 

if cell i is in the correct final state then  
/, =1~+1 

end if 
end parallel for 
e = c + l  
if c rood C -- 0 then  ( evolve every C configurations} 

for each cell i do in parallel 
compute nfi(c) { number of fitter neighbors } 
ifnfi(c) = 0 then rule i is left unchanged 
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule, 

followed by mutation 
else if nfi(c) ----- 2 then replace rule i with the crossover of the two fitter 

neighboring rules, followed by mutation 
else if nf~(c) > 2 then  replace rule i with the crossover of two randomly 

end  i f  
f ,  = o  

end parallel for 
end if 

end while 

chosen fitter neighboring rules, followed by mutation 
(this case can occur if the cellular neighborhood includes 
more than two cells) 

Fig. 2. Pseudo-code of the cellular programming algorithm. 

of 8 bits, where the bit at position 0 is the state to which neighborhood config- 
uration 000 is mapped to and so on until bit 7 corresponding to neighborhood 
configuration 111. Rather than employ a population of evolving, uniform CAs, as 
with genetic algorithm approaches, our algorithm involves a single, non-uniform 
CA of size N,  with cell rules initialized at random. Initial configurations are then 
generated at random, and for each one the CA is run for M time steps (in our 
simulations we used M ~ N so that  computation time is linear with grid size). 
Each cell's/~tness is accumulated over C -- 300 initial configurations, where a 
single run's score is 1 if the cell is in the correct state after M + 4 iterations, and 
0 otherwise. The (local) fitness score for the synchronization task is assigned to 
each cell by considering the last four time steps (i.e., [M + 1..M + 4]); if the se- 
quence of states over these steps is precisely 0 -+ 1 -+ 0 -+ 1 (i.e., an alternation 
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of Os and ls, starting from 0), the cell's fitness score is 1, otherwise this score is 0. 
After every C configurations evolution of rules occurs by applying crossover and 
mutation. This evolutionary process is performed in a completely local manner, 
where genetic operators are applied only between directly connected cells. It is 
driven by nf~(c), the number of fitter neighbors of cell i after c configurations. 
The pseudo-code of our algorithm is delineated in Figure 2. 

Crossover between two rules is performed by selecting at random (with uni- 
form probability) a single crossover point and creating a new rule by combining 
the first rule's bit string before the crossover point with the second rule's bit 
string from this point onward. Mutation is applied to the bit string of a rule 
with probability 0.001 per bit. 

As opposed to the standard genetic algorithm, where a population of indepen- 
dent problem solutions globally evolves [8], our approach involves a grid of rules 
that co-evolves locally [17]. As noted in Section 1, the CA performs computa- 
tions in a completely local manner, each cell having access only to its immediate 
neighbors' states; in addition, the evolutionary process in our case is local since 
application of genetic operators as well as fitness assignment takes place locally. 
This renders our approach more amenable to implementation as evolware, in 
comparison to other approaches, e.g., the standard genetic algorithm. 

4 I m p l e m e n t i n g  e v o l w a r e  

The cellular programming algorithm presented in Section 3 was studied exten- 
sively through software simulation; in this section we present its online, au- 
tonomous hardware implementation, resulting in evolving ware, evolware. To 
facilitate implementation, the algorithm is slightly modified (with no loss in 
performance); the two genetic operators, one-point crossover and mutation, are 
replaced by a single operator, uniform crossover. Under this operation, a new 
rule, i.e., an "offspring" genome, is created from two "parent" genomes (bit 
strings) by choosing each offspring bit from one or the other parent, with a 50% 
probability for each parent [8, 25]. The changes to the algorithm are therefore 
as follows (refer to Figure 2): 

else if nfl (c) -- 1 then  replace rule i with the fitter neighboring rule, 
without mutation 

else if nfi(c) = 2 t hen  replace rule i with the uniform crossover of the 
two fitter neighboring rules, without mutation 

The evolutionary process ends following an arbitrary decision by an outside 
observer (the 'while not done' loop of Figure 2). 

The cellular programming evolware is implemented on a physical board whose 
only link to the "outside world" is an external power supply. The features dis- 
tinguishing this implementation from previous ones [14] are: (1) an ensemble 
of individuals (cells) is at work rather than a single one; (2) genetic operators 
are all carried out on-board, rather than on a remote, ofttine computer; (3) the 
evolutionary phase does not necessitate halting the machine's operation, but is 
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rather intertwined with normal execution mode. These features entail an online 
autonomous  evolutionary process. 

The active components of the evolware board comprise exclusively FPGA 
(Field-Programmable Gate Array) circuits, with no other commercial processor 
whatsoever. An LCD screen enables the display of information pertaining to the 
evolutionary process, including the current rule and fitness value of each cell. The 
parameters M (number of time steps a configuration is run) and C (number of 
configurations between evolutionary phases, see Section 3) are tunable through 
on-board knob selectors; in addition, their current values are displayed. The 
implemented grid size is N -- 56 cells, each of which includes, apart from the 
logic component, a LED indicating its current state (on--l, off=0), and a switch 
by which its state can be manually set 2. We have also implemented an on- 
board global synchronization detector circuit, for the sole purpose of facilitating 
the external observer's task; this circuit is not  used by the CA in any of its 
operational phases. A schematic diagram of the board is depicted in Figure 3. 

The architecture of a single cell is shown in Figure 4. The binary state is 
stored in a D-type flip-flop whose next state is determined either randomly, 
enabling the presentation of random initial configurations, or by the cell's rule 
table, in accordance with the current neighborhood of states. Each bit of the 
rule's bit string is stored in a D-type flip-flop whose inputs are channeled through 
a set of multiplexors according to the current operational phase of the system: 

1. During the initialization phase of the evolutionary algorithm, the (eight) rule 
bits are loaded with random values; this is carried out once per evolutionary 
run. 

2. During the execution phase of the CA, the rule bits remain unchanged. This 
phase lasts a total of C * M time steps (C configurations, each one run for 
M time steps). 

3. During the evolutionary phase, and depending on the number of fitter neigh- 
bors, nfi(c) (Section 3), the rule is either left unchanged (n]'i(c) = 0), re- 
placed by the fitter left or right neighboring rule (nf~(c) = 1), or replaced by 
the uniform crossover of the two fitter rules (nfi(c) = 2). 

To determine the cell's fitness score for a single initial configuration, i.e., 
after the CA has been run for M + 4 time steps (Section 3), a four-bit shift 
register is used (Figure 5); this register continuously stores the states of the cell 
over the last four time steps (It + 1..t 4- 4]). An AND gate tests for occurrence 
of the "good" final sequence (i.e., 0 -+ 1 --+ 0 --~ 1), producing the HIT signal, 
signifying whether the fitness score is 1 (HIT) or 0 (no HIT). 

Each cell includes a fitness counter and two comparators for comparing the 
cell's fitness value with that  of its two neighbors. Note that  the cellular connec- 
tions are entirely local, a characteristic enabled by the local operation of the 
cellular programming algorithm. In the interest of cost reduction, a number of 
resources have been implemented within a central control unit, including the 

2 This is used to test the evolved system after termination of the evolutionary process, 
by manually loading initial configurations. 
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Fig. 3. Schematic diagram of evolware board: (1) LED indicators of cell states (upper 
right); (2) switches for manually setting the initial configuration (upper right, below 
LEDs); (3) display and knobs for controlling the M parameter (time steps) of the 
cellular programming algorithm (upper left); (4) display and knobs for controlling 
the C parameter (number of initial configurations between evolutionary phases) of 
the cellular programming algorithm (middle left); (5) synchronization indicator (lower 
left); (6) LCD display of evolved rules and fitness values (lower right). 

random number generator and the M and C counters. Note that  these are im- 
plemented on-board and do not comprise a breach in the machine's autonomous 
mode of operation. 

The random number generator is implemented with a linear feedback shift 
register (LFSR), producing a random bit stream that  cycles through 232 - 1 
different values (the value 0 is excluded since it comprises an undesirable attrac- 
tor). As a cell uses at most eight different random values at any given moment, 
it includes an 8-bit shift register through which the random bit stream prop- 
agates. The shift registers of all grid cells are concatenated to form one large 
stream of random bit values propagating through the entire CA. Cyclic behavior 
is eschewed due to the odd number of possible values produced by the random 
number generator (232 --  1) and to the even number of random bits per cell. 
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Fig. 4. Circuit design of a cell. 
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Fig. 5. Circuit used (in each cell) after execution of an initial configuration to detect 
whether a cell receives a fitness score of I (HIT) or 0 (no HIT). 

5 C o n c l u s i o n s  

In this paper we considered the general issue of evolving machines. We presented 
the cellular programming approach, in which parallel cellular machines evolve to 
solve computational tasks, specifically demonstrating that  high performance can 
be attained for the synchronization problem. We then described an FPGA-based 
implementation, demonstrating that  'evolving ware', evolware, can be attained; 
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the implementation was facilitated by the cellular programming algorithm's local 
dynamics. The machine's only link to the outside world is an external power 
supply, thereby exhibiting online autonomous evolution. 

Evolving, cellular machines hold potential both scientifically, as vehicles for 
studying phenomena of interest in areas such as complex adaptive systems and 
artificial life~ as well as practically, showing a range of potential future appli- 
cations ensuing the construction of adaptive systems. Our primary goal in this 
paper was to demonstrate that  online autonomous evolware can be attained, to- 
ward which end we concentrated on a specific, well-defined problem. The success 
of our system raises the possibility of constructing more complex evolware, able 
to tackle real-world problems, that  call for adaptive behavior. 
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