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ABSTRACT
We present the application of genetic programming (GP) to zero-
sum, deterministic, full-knowledge board games. Our work ex-
pands previous results in evolving board-state evaluation functions
for Lose Checkers to a 10x10 variant of Checkers, as well as Re-
versi. Our system implements strongly typed GP trees, explicitly
defined introns, and a selective directional crossover method.

Categories and Subject Descriptors
I.2.6 [Parameter learning]: Knowledge acquisition; I.2.1 [Applications
and Expert Systems]: Games; I.2.8 [Problem Solving, Control
Methods, and Search]: Heuristic methods

General Terms
Design

Keywords
Genetic programming, games, board games, alpha-beta search

1. INTRODUCTION
Developing players for board games has been part of AI research

for decades. Board games have precise, easily formalized rules
that render them easy to model in a programming environment. In
this work we will focus on full knowledge, deterministic, zero-sum
board games, expanding on our previous results in Lose Check-
ers [1].

We apply tree-based GP to evolving players for a number of
games. Our guide in developing our design, aside from previous
research games and GP, is nature itself. Evolution by natural selec-
tion is first and foremost nature’s algorithm, and as such will serve
as a source for ideas. Though it is by no means assured that an idea
that works in the natural world will work in our synthetic environ-
ment, it can be seen as evidence that it might. We are mindful of
evolutionary theory, particularly as pertaining to the gene-centered
view of evolution. This view, presented by Williams [21] and ex-
panded upon by Dawkins [3], focuses on the gene as the unit of se-
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lection. It is from this point of view that we consider how to adapt
the ideas borrowed from nature into our synthetic GP environment.

2. THE GAMES
The games we explore in this work—Lose Checkers, 10x10 Check-

ers, and Reversi—are zero-sum, deterministic, full-knowledge, two-
player board games played on annXn board for some givenn.

We worked on two variants of Checkers. The first was the 8x8
Lose Checkers variant, which is similar to the popular American
Checkers game but has a different objective—to lose all of one’s
pieces. The second variant was an expansion of the rule set of
American Checkers to a 10x10 board, creating a significantly higher
branching factor and higher game complexity (due, in addition to
the increased branching factor, to the existence of 30 pieces instead
of 24 on the opening board).

Reversi, also known as Othello, is a popular game with a rich
research history [13, 7, 11]. Though a board game played on an
8x8 board, it differs widely from the Checkers variants in that it is
a piece-placing game rather than a piece-moving game. In Reversi
the number of pieces on the board increases during play, rather than
decreasing as it does in Checkers. The number of moves (not count-
ing the rare pass moves) in Reversi is limited by the board’s size,
making it a short game.

3. PREVIOUS WORK
In the years since Strachey [20] first designed a Checkers-playing

algorithm, there has been much work on Checkers-playing com-
puter programs. Notable progress was made by Samuel [15, 16],
the first to use machine learning to create a competent Checkers-
playing computer program. Samuel’s program managed to beat a
competent human player in 1964. In 1989 a team of researchers
from the University of Alberta led by Jonathan Schaeffer began
working on an American Checkers program called Chinook. By
1990 Chinook’s level of play was comparable to that of the best hu-
man players. Chinook continued to grow in strength, establishing
its dominance [18]. In 2007, Schaeffer et al. [17] solved Checkers
and became the first to completely solve a major board game.

To date, there has been limited research interest in Lose Check-
ers, all of it quite recent [5, 19]. This work concentrates either
on search [5] or on finding a good evaluation function [19]. The
8x8 variant of Reversi has received its fair share of research atten-
tion. Early landmark work by Rosenbloom [13] yielded IAGO, an
expert level Reversi program. Subsequent work by Lee and Ma-
hajan [7] greatly improved on IAGO’s level of play by utilizing
Bayesian learning to improve the player’s evaluation function. The
evolutionary approach has been applied to Reversi by several re-
searchers. Moriarty and Miikkulainen [11] evolved artificial neu-
ral networks (ANNs) using the marker-based approach to evolve a
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Table 1: Domain-specific terminal nodes. F: floating point, B:
boolean.

Node name Type Return value
EnemyManCount() F The enemy’s man count
FriendlyManCount() F The player’s man count
ManCount() F FriendlyManCount()

– EnemyManCount()

Mobility() F
The number of plies available to
the player

IsEmptySquare(X,Y) B True iff square empty

IsFriendlyPiece(X,Y) B
True iff square occupied by
friendly piece

IsManPiece(X,Y) B
True iff square occupied by
man

Table 2: Function nodes. Fi: floating-point parameter, Bi:
boolean parameter.

Node name Type Return value
LowerEqual(F1,F2) B True iff F1 ≤ F2

NOTG(B1,B2) B Logical NOT of B1

IfTrue(B1,F1,F2) F F1 if B1 is true andF2

otherwise
Minus(F1,F2) F F1 − F2

MultERC(F1) F F1 times random number
NullJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

highly competent Revresi player program that does not use search.
Eskin and Siegel presented some preliminary work in applying GP
to Reversi without using search [4]. Chong et al. [2] presented a
program using shallow search, with evolved feed-forward ANNs
encoded with board-spatial features as its board evaluation func-
tion.

4. EVOLUTIONARY SETUP
The individuals in the population act as board-evaluation func-

tions, to be combined with a standard game-search algorithm. The
value they return for a given board state is seen as an indication of
how good that board state is for the player whose turn it is to play.
The evolutionary algorithm was written in Java. We chose to im-
plement a strongly typed GP framework [10] supporting a boolean
type and a floating-point type. Support for a multi-tree interface
was also implemented. On top of the basic crossover and muta-
tion operators described by Koza [6], another form of crossover
was implemented—which we designated “one-way crossover”—
as well as a local mutation operator. The original setup is detailed
in [1]. Its main points and recent updates are detailed below.

To achieve good results on multiple games using deeper search
we enhanced our system with the ability to run in parallel multiple
threads. The basic GP tree nodes used for the games are presented
in Tables 1 and 2 (also supported by our setup but not presented
in Table 2 for lack of space are four binary boolean functions—
AND, NAND, NOR, andOR). The NOTG and NULLJ func-
tion nodes both contain explicitly defined introns (described be-
low). On top of these some basic terminal node were used, in-
cluding the boolean valuestrue andfalse as well as the numeric
values0 and1, and an ephemeral random constant (ERC) chosen
at random from[−5.0, 5).

4.1 One-Way Crossover
One-way crossover does not consist of two individuals swapping

parts of their genomes but rather of one individual inserting a copy
of part of its genome into another individual, without receiving any
genetic information in return. In our case, the one-way crossover
is done by randomly selecting a subtree in both participating in-
dividuals, and then inserting a copy of the selected subtree from
the first individual in place of the selected subtree from the second
individual.

This type of crossover operator is uni-directional. There is a
donor and a receiver of genetic material. In this work, we utilized
this directionality to make crossover more than a random opera-
tor by always choosing the individual with higher fitness to act as
the donor in one-way crossover. This sort of nonrandom genetic
operator favors the fitter individuals as they have a better chance
of surviving it. Algorithm 1 shows the pseudocode representing
how crossover is handled in our setup. As can be seen, one-way
crossover is expected to be chosen at least half the time, giving the
fitter individuals a survival advantage, but the fitter individuals can
still change due to the standard “two-way” crossover.

Algorithm 1 Crossover.
Randomly choose two different previously unselected individu-
als from population for crossover:I1 andI2
if I1.F itness ≥ I2.F itness then

Perform one-way crossover withI1 as donor andI2 as re-
ceiver

else
Perform two-way crossover withI1 andI2

end if

Using the vantage point of the gene-centered view of evolution
it is easier to see the logic of crossover in our setup. In a gene-
centered world, we look at genes as competing with each other,
the more effective ones out-reproducing the rest. This, of course,
should already happen in a setup using the generic two-way crossover
alone; our approach strengthens this trend. The individuals with
high fitness that are more likely to get chosen as donors in one-way
crossover, are also more likely to contain more good genes than the
less-fit individuals that get chosen as receivers. This genetic oper-
ator thus causes an increase in the frequency of the genes that lead
to better fitness.

4.2 Explicitly Defined Introns
In natural living systems not all DNA has phenotypic effect. This

non-coding DNA, sometimes referred to as Junk DNA, is prevalent
in virtually all eukaryotic genomes. In GP, so-called introns are
areas of code that do not affect survival and reproduction (usually
this can be replaced with “do not affect fitness”). In the context of
tree-based GP the term “areas of code” applies to subtrees.

Introns occur naturally in GP, provided that the function and ter-
minal sets allow for it. As bloat progresses, the number of nodes
that are part of introns tends to increase. Luke [9] focused on invi-
able code introns: Introns that cannot be replaced by anything that
can possibly change the individual‘s operation. In [1] we made an-
other distinction between two types of inviable code introns: Live-
code introns, which though inviable may still be translated into
code that will run, and dead-code introns, whose code is never run.

Explicitly defined introns (EDIs) in GP are introns that reside
in an area of the genome specifically designed to hold introns. As
the individual runs it will simply ignore these introns. In our setup,
EDIs exist under everyNullJ andNOTG node. In both functions
the rightmost subtree does not affect the return value in any way.



This means that every instance of one of these function nodes in an
individual’s tree defines an intron, which is always of the dead-code
type—a fact the program can take into account (by not generating
any code for that subtree). In our setup, when converting individ-
uals into C code, the EDIs are simply ignored, a feat that can be
accomplished with ease as they are dead-code introns that are easy
to find.

Our search of the literature discovered no exploration of EDIs
in tree-based GP, but the prevalence of explicit introns in EA re-
search as well as in junk DNA in nature suggested that this is an
avenue worth exploring. Nordin et al. [12] explored EDIs in linear
GP, finding that they tend to improve fitness and shorten runtime.
Earlier work showed that using introns was also helpful in GAs [8].

4.3 Fitness Calculation
After initializing the fitness of all individuals in the population

to 0, fitness calculation was carried out in the fashion described
in Algorithm 2. Essentially, evolving players faced two types of
opponents: external “guides” (described below) and their own co-
horts in the population. The latter method of evaluation is known as
coevolution [14], and is referred to below as the coevolution round.

Algorithm 2 Fitness evaluation.
// Parameter:GuideArr – array of guide players
for i← 1 to GuideArr.length do

for j ← 1 to GuideArr[i].NumOfRounds do
Every individual in population deemed fit enough plays
GuideArr[i].roundSize games against guidei.

end for
end for
Every individual in the population playsCoP layNum games
as black againstCoP layNum random opponents in the popu-
lation.

The method of evaluation described requires some information
from the user, including the number of guides, their designations,
and the number of co-play opponents for the coevolution round.
All these are program run parameters that the program accepts from
the user via parameter files. Tweaking these parameters allows for
different setups.

Guide-Play Rounds.Two types of guides were implemented: A
random player and an alpha-beta player. The random player chose
a move at random. The alpha-beta player searched up to a preset
depth in the game tree and used a hand-crafted evaluation function
for states in which there was no clear winner.

Coevolution Rounds.In a co-play round each member of the
population in turn played Black in a number of games equal to
the parameterCoP layNum againstCoP layNum random oppo-
nents from the population playing White. The opponents were cho-
sen in a way that ensured that each individual also played exactly
CoP layNum games as White.

When playing against a guide or against one of its cohorts, each
player in the population received 1 point added to its fitness for
every win, and 0.5 points for every draw.

4.4 Selection and Procreation
In the selection stage we used tournament selection with a tour-

nament size of 2 to select the parents of the next generation from
the population according to their fitness. In the procreation stage,
genetic operators were applied to the parents in order to create the
next generation.

During procreation every individual was chosen for crossover
with probabilitypxo and self-replicated with probability1 − pxo.

Table 3: Lose Checkers: Relative levels of play for different
benchmark (guide) players. Here and in the subsequent tables,
αβi refers to an alpha-beta player using a search depth ofi and
a hand-crafted evaluation function.

1st Player 2nd Player 1st Player win ratio
αβ2 random 0.9665
αβ3 αβ2 0.8502
αβ5 αβ3 0.82535
αβ7 αβ5 0.8478
αβ8 αβ3 0.5873
αβ5 αβ8 0.55620

Table 4: Lose Checkers: Results of top runs using shallow
search. Player usesαβ search of depth 4 coupled with evolved
evaluation function, whileBenchmark Opponent usesαβ search
of depth 5 coupled with a random evaluation function. Here
and in the subsequent tables, theXCo notation in the Fitness
Evaluation column implies that the CoP layNum parameter
discussed in text was set toX. Y αβi implies that each individ-
ual playedY games against guideαβi during fitness evaluation.
Here and in the subsequent tables, Benchmark Score is the re-
sult of having an evolved player play a 1000-game tournament
against a benchmark opponent.

Run identifier Fitness Evaluation Benchmark Score
r00090 10αβ2+20Co 632.0
r00091 10αβ2+20Co 645.0
r00096 25Co 608.0
r00097 25Co 575.0
r00098 40Co 575.5
r00099 40Co 633.5

The implementation and choice of specific crossover operator is as
in Algorithm 1. After crossover every individual underwent muta-
tion with probabilitypm.

5. RESULTS
Below we summarize our main novel results using the new multi-

threaded system. We reported on previous results in [1]. The guides
used in fitness evaluation also served as the post-evolutionary bench-
mark players. We evaluated our guide players by testing them
against each other in matches of 10,000 games. The overall trend
when increasing search depth was towards improvement in level of
play, though in some cases and for some search depths the hand-
crafted players did poorly. We avoided testing our players against
these latter hand-crafted players.

Note that in all the results presented below the player does not
specialize in playing the benchmark opponent but rather faces an
ever-changing array of opponents among its cohorts in the popula-
tion.

As there is no known simple board-evaluation function for Lose
Checkers we used a random evaluation for nontrivial board states.
Table 3 demonstrates the relative levels of play of the different
hand-crafted players. The players that used search depths of 4 and
6 did poorly and we removed them from this table.

Our best runs to date for Lose Checkers are presented in Table 4.
As the table demonstrates, our players, using a search depth of 4,
were able to outperform the strongαβ5 player.

For 10x10 checkers and Reversi we used the simple yet effective
method of material evaluation (piece counting) to evaluate board
states. We had hand-crafted players randomly alternate between



Table 5: 10x10 Checkers: Results of top runs using shallow
search. Player usesαβ search of depth 3 (runs 84, 85) or 2
(runs 92–95) coupled with evolved evaluation function, while
Benchmark Opponent usesαβ search of depth 3 coupled with a
material evaluation function.

Run identifier Fitness Evaluation Benchmark Score
r00084 50Co 889.0
r00085 50Co 927.0
r00092 25Co 732.0
r00093 25Co 615.5
r00094 25Co 554.0
r00095 25Co 631.0

Table 6: Reversi: Results of top runs using shallow search.
Player usesαβ search of depth 4 coupled with evolved evalu-
ation function, while Benchmark Opponent usesαβ search of
depths 5 and 7 coupled with a material evaluation function.

Run Fitness Benchmark Score Benchmark Score
identifier Evaluation vsαβ5 vsαβ7
r00100 25Co 875.0 758.5
r00101 25Co 957.5 803.0
r00102 40Co 942.5 640.5
r00103 40Co 905.5 711.5
r00108 40Co 956.0 760.0
r00109 40Co 912.5 826.0
r00110 40Co 953.5 730.5
r00111 40Co 961.0 815.5

two different material evaluation functions in order to generate a
playing strategy that was not entirely predictable. The average
score ofαβ2 playing 10x10 Checkers against the random player
was 0.99885.αβ3 scored an average of 0.5229 againstαβ2.

Our best runs to date for 10x10 Checkers are presented in Ta-
ble 5. As the table demonstrates our players were able to outper-
form theαβ3 player using a search depth of 2 (runs 92–95), and to
overwhelm it using a search depth of 3 (runs 84–85).

The average score ofαβ2 playing Reversi against the random
player was 0.8471.αβ3 scored an average of 0.6004 againstαβ2.
αβ5 scored an average of 0.7509 againstαβ3. αβ7 scored an av-
erage of 0.7509 againstαβ5.

Our best runs to date for Reversi are presented in Table 6. As the
table demonstrates, our players were able to outperform theαβ5
andαβ7 players using a search depth of 4.

6. CONCLUSIONS
Expanding on previous work [1] we presented the genetic pro-

gramming approach as a tool for discovering effective strategies
for playing zero-sum, deterministic, full-knowledge board games.
Guided by the gene-centered view of evolution, we introduced sev-
eral new ideas and adaptations of existing ideas for augmenting the
GP approach. Having evolved successful players, we established
that tree-based GP is applicable to board-state evaluation in three
distinct nontrivial board games.
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