
0018-9162/99/$10.00 © 1990 IEEE18 Computer

Cy
be

rs
qu

ar
e

T
The Emergence of
Cellular Computing

he von Neumann architecture—which is based upon
the principle of one complex processor that sequen-
tially performs a single complex task at a given
moment—has dominated computing technology for
the past 50 years. Recently, however, researchers have
begun exploring alternative computational systems
based on entirely different principles.

Although emerging from disparate domains, the work
behind these systems shares a common computational
philosophy, which I call cellular computing. This phi-
losophy promises to provide new means for doing com-
putation more efficiently—in terms of speed, cost, power
dissipation, information storage, and solution quality.
Simultaneously, cellular computing offers the potential
of addressing much larger problem instances than pre-
viously possible, at least for some application domains.

THREE PRINCIPLES
At its heart, cellular computing consists of three

principles: simplicity, vast parallelism, and locality.

Simplicity
The basic processor used as the fundamental unit of

cellular computing—the cell—is simple: Although a
current, general-purpose processor can perform quite

complicated tasks, a cell by itself can do very little.
Formally, this notion can be captured by, say, the dif-
ference between a universal Turing machine and a
finite-state machine. In practice, our field’s 50 years of
experience in building computing machines gives us
a good notion of what “simple” means. For exam-
ple, an AND gate is simple while a Pentium proces-
sor is not.

Vast parallelism
Most parallel computers contain no more than a

few dozen processors. In the parallel computing
domain, the term massively parallel usually describes
those few machines that consist of several thousand
or, at most, tens of thousands of processors.

Cellular computing involves parallelism on a much
larger scale, with the number of cells often measured
by the exponential notation 10 x. To distinguish this
huge number of processors from that involved in clas-
sical parallel computing, I use the term vast paral-
lelism. This quantitative difference leads to novel
qualitative properties, as Philip Anderson notes in an
article on many-body physics whose title, “More Is
Different,” befits cellular computing as well.1

For a more detailed exploration of the differences

Von Neumann’s

complex-processor architecture

is the ruling yin of computer technology, but

cellular computing promises to be the new yang.

Moshe Sipper
Swiss Federal Institute of Technology, Lausanne

Draf
t

July 1999 19

between cellular and parallel computing, see the
“Cellular vs. Parallel Computing” sidebar.

Locality
Cellular computing is also distinguished by its local

connectivity pattern between cells. All interactions take
place on a purely local basis: A cell can only communi-
cate with a few other cells, most or all of which are phys-
ically close by. Further, the connection lines usually carry
only a small amount of information. One implication
of this principle is that no one cell has a global view of
the entire system—there is no central controller.

A different paradigm
Combining these three principles results in the def-

inition cellular computing = simplicity + vast paral-
lelism + locality. Because the three principles are
highly interrelated, attaining vast parallelism, for
example, is facilitated by the cells’ simplicity and local
connectivity.

Changing any single term in the equation results in
a different computational paradigm, as Figure 1’s
“computing cube” shows. In it, each of the three prop-
erties has been placed along one axis. So, for exam-
ple, foregoing the simplicity property results in the
distributed computing paradigm. Cellular computing
has been placed further along the parallelism axis to
emphasize the “vastness” aspect.

The “Cellular Computing Examples” sidebar shows
how cellular computing can be applied to six real-
world computing tasks. To illustrate cellular comput-
ing’s key concepts, I refer to these examples
throughout this article.

PROPERTIES OF CELLULAR MODELS
The properties of cellular computing models are

highly flexible and can be tailored to specific tasks.
Each characteristic that follows presents a choice from
several alternatives; the ensemble of these choices
results in a specific cellular model.

Cellular versus
Parallel Computing

You could argue that the concept of cel-
lular computing is not new at all, but is sim-
ply a synonym for parallel computing. Yet
the two domains are quite disparate in terms
of the models employed and issues studied.
Parallel computing has traditionally dealt
with a small number of powerful processors,
addressing issues such as scheduling, con-
currency, message passing, and synchro-
nization. The only conceivable area of
intersection between parallel and cellular
computing concerns the few so-called “mas-
sively parallel machines” built and studied
by parallel computing practitioners.1

We see that decades of parallel computing
research have not produced the expected
results—parallel machines are not ubiqui-
tous, and most programmers continue to
use sequential programming languages. I
believe one reason for this lack of success is
the domain’s ambitious goal, at least at the
outset, of supplanting the serial computing
paradigm. However, as parallel computing
pioneer Michael J. Flynn recently remarked,
“Human reasoning ... is basically a sequen-
tial process, although its implementation
may be parallel.” He noted that “we signif-
icantly underestimated the difficulty in
achieving the performance speedup expected
from parallel processors.”2

Commenting on the reasons parallel

computing has not entirely lived up to its
promise, Flynn said: “It is difficult to find
large and consistent degrees of parallelism
within a single program, because parti-
tioning is too difficult. It is difficult to find
parallel algorithms or tools to decompose
an existing algorithm into many concur-
rent tasks.” He concluded that “If parallel
processors are going to solve this and other
problems, the problems’ representations
should be designed for these machines
We need to represent problems in a cellu-
lar form .… ”

Parallel computing teaches cellular com-
puting practitioners that they should not
aim for an all-encompassing, general-pur-
pose paradigm that will supplant the
sequential one. Rather, we should find those
niches where such models can excel. Several
clear proofs-of-concept already exist that
demonstrate how cellular computing can
efficiently solve difficult problems.

Consider a high-speed bullet train that
arrives at its destination, only to allow its pas-
sengers to disembark through but a single
port. This is clearly a waste of the train’s par-
allel exit system, which consists of multiple
ports dispersed throughout the train. This
metaphor, which I dub the slow bullet train,
illustrates an important point about parallel
systems: their potential (ill-) use in a highly
sequential manner. Arthur W. Burks, who
completed von Neumann’s work on self-

reproducing cellular automata,3 notes: “Thus
von Neumann’s cellular structure allows for
an indefinite amount of parallelism. But in
designing his self-reproducing automaton,
von Neumann did not make much use of the
potential parallelism of his cellular structure.
Rather, his self-reproducing automaton
works like a serial digital computer .… ” This
is perhaps the quintessential example of a
slow bullet train: embedding a sequential uni-
versal Turing machine within the highly par-
allel cellular-automaton model.

For most cellular computing models, you
can prove computation universality by
embedding some form of serial universal
machine. This proves that in theory the
model is at least as powerful as any other
universal system. However, in practice such
a construction defeats the purpose of cellu-
lar computing by completely degenerating
the parallelism aspect. Thus, on the whole,
we want to avoid slowing the fast train.

References

1. W.D. Hillis, The Connection Machine,
MIT Press, Cambridge, Mass., 1985.

2. M.J. Flynn, “Parallel Processors Were the
Future ... and May Yet Be,” Computer,
Dec. 1996, pp. 151-152.

3. J. von Neumann, Theory of Self-Repro-
ducing Automata, edited and completed
by A.W. Burks, University of Illinois
Press, Urbana, 1966.

20 Computer

Cell type
Because the cell is the basic unit of computation, we

must decide first the exact form it will take:

• Discrete cells take on a value from a discrete,
finite range of possibilities. These values are often
called states. The number of possible states may
be small or large.

• Continuous cells take on an analog value from a
given continuous range. The state in this case is
analog.

Cell definition
The cell’s dynamic behavior over time is defined as

a function of its neighbors’ values, to which it has
access. Any of the following techniques may be used.

• Exhaustive enumeration lists the cell’s next state for
each of the possible neighborhood configurations
of states. This technique is usually used for discrete
models with a small number of states per cell.

• Parameterized function describes the cell’s next
state as a function of its neighbors. You can distin-
guish between linear and nonlinear cell functions.

• Program computes the cell’s next state given the
neighboring values.

• Behavioral rules specify the cell’s behavior in dif-
ferent situations, thus resulting in a specification
of its dynamic behavior. These rules may be

drawn from, for example, those of molecular
biology or quantum physics.

Cell mobility
Cells may either be immobile or mobile. An immo-

bile cell changes only in value. A mobile cell actually
moves within a given environment. The self-replicat-
ing loops of the satisfiability problem example in the
“Cellular Computing Examples” sidebar can be con-
sidered mobile at the loop level but immobile at the
cellular-automaton level, where only their state val-
ues change in time.

Connectivity scheme
Because cells interact with their neighbors, a con-

nectivity scheme must be specified:

• Regular grid. A regular grid involves an n-dimen-
sional array (where n = 1,2,3 is used in practice)
of a given geometry: rectangular, triangular,
hexagonal, and so on. Regularity implies that all
cells have the same connectivity pattern. In the
cellular neural network example, the grid has a
two-dimensional, rectangular geometry, with each
cell connected to its eight immediate neighbors,
whose state values it can access. When finite grids
are involved, you must specify the boundary con-
ditions. Usually, you either assign fixed boundary
cells that do not change over time or consider the

Cellular
computing

Partially connected
neural networks

Fully connected
neural networks

Distributed
computing

Shared-memory
parallel computing

General-purpose
serial architecture

Finite-state
machinesSimpleComplex

Se
ri

al
Pa

ra
lle

l

Glo
ba

l

Lo
ca

l

Figure 1. A graphical
representation of the
equation simple +
vastly parallel + local
= cellular computing.

July 1999 21

grid to be wrapped around itself in a torus-like
fashion.

• Graph. This is essentially a nonregular grid that
can take the form of a directed or undirected graph.

As with the notion of cell simplicity, we resort to argu-
ments from practice for our definition. A fully con-
nected grid, where each cell is connected to each other,
also comprises a possible connectivity scheme, but one
that falls outside the realm of cellular computing.

Cellular topology or underlying environment
The connectivity scheme applies to the cellular topol-

ogy itself: The cells are what make up the grid or graph.
Alternatively, you can create an environment for the

cells. In this case, the topology need not necessarily be
rendered explicitly, as in graph form, but may be given
implicitly via a physical or artificial environment that
induces spatial contact through random or directed
motion. In the DNA-computing example, the physics
of molecular motion in a test tube provides an implicit
environment, and thus there is no rigid topological
structure.

Marco Dorigo and Luca Maria Gambardella2 pro-
vide an example of an explicit underlying environ-
ment. Simple mobile cells, called ants, explore in
parallel a given graph to solve the traveling salesman
problem. In this case, the mobile cells are the ants, and
the graph represents not the connectivity of the cells
themselves but rather their underlying environment.

Connection lines
As with cells, connection lines are simple, in the

sense that the information content transmitted over

them is small. A connection might involve, say, merely
transmitting the state values of the neighboring cells.

Temporal dynamics
Cellular computing involves systems that change in

time at both the cellular and system level. These tem-
poral changes involve two separate choices:

• Synchrony versus asynchrony. Synchronous
temporal dynamics describe cells that advance in
discrete steps, all changing their values simulta-
neously. Asynchrony means that no such syn-
chronous updating schedule exists. This is not
necessarily a black-and-white choice. For exam-
ple, you may have a melange of both strategies
in which all cells within a block are updated
simultaneously, while the blocks themselves are
updated asynchronously.

• Discrete versus continuous. Discrete time describes
system behavior in terms of discrete temporal
events, be they synchronous or asynchronous.
Continuous time means that no such discrete divi-
sion exists. The cell’s behavior may be specified in
this latter case by differential operators.

Uniformity
This property refers to the degree of regularity in

cellular computing’s other properties.

• Cells. Are all cells of the same type? Are they iden-
tically defined so that they execute the same func-
tion? For example, my colleagues and I studied
the pseudorandom numbers example with
nonuniform cellular automata.3 In this model,

Cellular Computing Examples
These six examples span a wide range

of cellular-computing properties and illus-
trate the paradigm’s key concepts.

Generating pseudorandom
numbers with cellular automata

Cellular automata may be the quintes-
sential example of cellular computing, as
well as the first to appear on the scene.
Conceived in the late 1940s by Stanislaw
Ulam and John von Neumann, cellular
automata model a dynamic system in
which space and time are discrete.1

A cellular automaton consists of an
array of cells, each of which can be in one
of a finite number of possible states. The
cells are updated synchronously in discrete
time steps, according to a local, identical

interaction rule. The state of a cell at the
next time step is determined by the current
states of a surrounding neighborhood of
cells. This transition is often specified in
the form of a rule table, which delineates
the cell’s next state for each possible neigh-
borhood configuration. (The cellular array
is n-dimensional, where n = 1,2,3 is used
in practice.)

Since their inception, cellular automata
have been used as a formal model for
studying phenomena in several fields,
including physics, biology, and computer
science. In recent years, interest in using
cellular automata as actual computing
devices has grown.2 Pseudorandom num-
ber generation is one example of this prob-
lem type. Many applications require
random numbers, yet finding good ran-

dom-number generators is difficult. In the
past decade, cellular automata have been
used to generate random numbers, with
their efficacy and viability demonstrated
by applying standard tests of randomness.2

Cellular adder
In a recent work, Simon Benjamin and

Neil Johnson3 presented a cellular automa-
ton that can perform binary addition: Given
two binary numbers encoded as the initial
configuration of cellular states, the grid con-
verges in time toward a final configuration
that is their sum. This work suggests a pos-
sible wireless nanometer-scale realization of
the adding cellular automaton that uses cou-
pled quantum dots. As Benjamin and
Johnson point out, the device is a nanome-
ter-scale classical computer rather than a

22 Computer

different cells may execute different transition
functions, as opposed to the original uniform
model, in which all cells execute the same func-
tion. Recent work indicates that, for a certain
class of cellular automata, nonuniformity pre-
sents definite computational advantages.4

• Connectivity. Depending on how a cell connects
to its neighbors, the connectivity scheme can be
either a regular or nonregular grid.

Determinism versus nondeterminism
In a deterministic model, for any given input the

system always goes through the same trajectory of
states, ending with the same output. For a nondeter-
ministic system, the same input may result in differ-
ent trajectories, and possibly different outputs. Non-
determinism may be inherent to the system’s func-
tional definition, as with probabilistic and fuzzy sys-
tems, or it may result from faults.

OPERATIONAL AND BEHAVIORAL ASPECTS
To understand how a cellular-computing system

functions as a whole, you must first grasp seven
operational and behavioral aspects of cellular com-
puting.

Programming
Because cellular computing differs from the single-

sequential-complex processor model, new program-
ming techniques are required. These techniques can
be divided broadly into two categories:

• Direct programming. Given a problem to solve,
the programmer completely specifies the system

at the outset. For example, in cellular automata
and cellular neural networks this approach
implies not only specifying the cell type, connec-
tivity, and so forth, but also delineating the pre-
cise cellular function for each cell. Thus, when
the system receives an input that is an instance of
the current problem, it computes a correct out-
put. Direct programming does not imply a com-
pletely handcrafted system, however, because
synthesis tools can be used; rather, it means that
the programmer derives a complete specification
at the outset. As we shall see, direct programming
becomes difficult when global problems are
involved.

• Adaptive methods. For many problems, the pro-
grammer cannot fully specify the system at the
outset. In these cases, the programmer only par-
tially specifies the system, which is then subjected
to an adaptive process—such as learning, evolu-
tion, or self-organization—to produce the desired
functionality. For example, nonuniform cellular
automata have been evolved using an evolution-
ary algorithm known as cellular programming.3

In this case, the programmer determines the basic
structure—grid dimensionality, connectivity pat-
tern, and so on—at the outset, then evolves the
cellular-transition functions. The connectivity
scheme can also be evolved.3 Both learning meth-
ods and evolutionary algorithms have been
applied to cellular neural networks to find the cel-
lular-function parameters needed to solve a given
problem. Evolutionary algorithms have also been
applied in DNA computing, for example, to find
good encodings of nucleotide sequences.5

true quantum computer. Because it need not
maintain wave function coherence, it is far
less delicate than a quantum computer.

Solving the contour-extraction
problem with cellular neural networks

We can regard a cellular neural network
as a cellular automaton in which cellular
states are analog rather than discrete, and
the time dynamics are either discrete or
continuous.4 The past decade’s study has
resulted in a lore of both theory and prac-
tice, including potentially major applica-
tion areas such as image processing. For
example, in the contour-extraction prob-
lem, the network is presented with a gray-
scale image, and it extracts contours that
resemble edges (resulting from large
changes in gray-level intensities). This

operation, oft-used as a preprocessing
stage in pattern recognition, is one exam-
ple of the many image-processing prob-
lems solved by cellular neural networks.

Solving the directed Hamiltonian
path problem by DNA computing

Programmers have considered using
natural or artificial molecules as basic
computational elements—cells—for some
time. Leonard Adleman5 recently gave the
decisive proof-of-concept by using molec-
ular-biology tools to solve an instance of
the directed Hamiltonian path problem:
Given an arbitrary directed graph, you
must find whether there exists a path
between two given vertices that passes
through each vertex exactly once.

Adleman used oligonucleotides, short

chains of usually up to 20 nucleotides, to
encode vertices and edges of a given graph.
Next, he placed multiple copies of the
oligonucleotides in a real test tube; these
oligonucleotides then randomly linked
with each other, forming molecules that
represent paths through the graph.
Adleman then applied molecular-biology
procedures to sift through the plethora of
candidate DNA-molecule solutions, thus
solving the problem—that is, finding out
whether a Hamiltonian path exists or not.

The extremely small cell size in this form
of cellular computing gives rise to vast par-
allelism on an entirely new scale. Adleman
estimated that such molecular computers
could be profoundly faster, more energy effi-
cient, and able to store much more infor-
mation than current-day supercomputers,

July 1999 23

The cellular properties described earlier relate to
characteristics of the basic system and can be consid-
ered as the first-order dynamics. Programming, espe-
cially via adaptive methods, can be considered a form
of high-order dynamics, where some of these basic
properties change in time.

Local versus global problems
A local problem involves computing a property that

can be expressed in purely local terms, as a function
of the local cellular neighborhood. Such local opera-
tors abound in the domain of low-level image pro-
cessing, for example, where we define various filters
and noise-reducing operations in terms of the cell’s
nearest neighbors.

I define a global problem in this context as one that
involves computation of a nonlocal property.

The difference between global and local problems
is not a hard distinction but a matter of degree. Some
properties may be only slightly nonlocal, requiring but
a small extension beyond the cell’s local neighbor-
hood, while other properties may be highly global, in
the sense that the entire ensemble of cells must be con-
sidered to compute a correct output. Although this
distinction between global and local problems is by
no means formal, it does provide an idea of the dif-
ferent problem classes that exist. The majority exam-
ple typifies a global problem in which, to compute a
correct output, you must consider the entire grid.

Finding local interaction rules to solve global prob-
lems poses a considerable challenge for the system
designer. Especially when addressing global problems,
it can be difficult to design highly local systems to
exhibit a specific behavior. Such problems are prime

candidates for adaptive programming methods.
The distinction between local and global can be

quite subtle. For example, in the majority example
you might consider the naive solution, whereby every
cell computes the local majority of its neighboring
cells. This does not, however, solve the problem at all
since it does not result in computation of the global
majority over the entire grid. You can easily solve the
majority problem using, for example, a fully con-
nected neural network: A single neuron connected to
all input bits, with its threshold properly set, comprises
a solution. Thus, in this case, full connectivity is a form
of global information.

The issue of local versus global problems relates to
emergent computation, the appearance of global
information-processing capabilities not explicitly rep-
resented in the system’s elementary components nor
in their local interconnections. Currently, emergent
computation is ill-defined, with a rigorous, accepted
definition still lacking.

Input/output
The I/O question involves two issues. First, as with

any problem-solving paradigm, you must specify the
set of legal inputs and the desired outputs for the prob-
lem at hand. Second, with regard to implementation,
you must consider the representation of inputs and
outputs in the cellular model, how inputs are pre-
sented to the system, and how the output is read out.
For example, in the cellular automata solution to the
majority example, the input is considered to be the
initial configuration of states, and the output is read
off the final configuration, in a particular manner.3 In
the cellular adder example, some researchers6 present

at least with respect to certain problem classes.
You could argue that DNA molecules vio-

late the cell-simplicity principle. However,
while such molecules may exhibit complex
behavior from the biologist’s viewpoint, they
can be treated as simple elements from the
computational point of view. As Richard
Lipton notes, “Our model of how DNA
behaves is simple and idealized. It ignores
many complex known effects but is an
excellent first-order approximation.”6 In
DNA computing we typically treat the basic
cell, or DNA molecule, as a simple elemen-
tal unit on which a few basic operations can
be performed in the test tube.6 This paral-
lels several other instances in computer sci-
ence where irrelevant low-level details are
abstracted away. For example, we usually
regard the transistor as a simple switch, con-

sidering immaterial the complex atomic and
subatomic physical phenomena that under-
lie its operation.

Solving the satisfiability problem
with self-replicating loops

Since the publication of von Neumann’s
seminal work in the late 1940s,7 the study
of artificial self-replicating structures has
produced a plethora of results. Although
much of this research has concentrated on
theoretical issues, recent studies have raised
the possibility of using such self-replicating
machines to perform computations.8

Hui-Hsien Chou and James Reggia’s
work,9 for example, shows that self-repli-
cating structures can be used to solve the
NP-complete problem known as satisfia-
bility. Given a Boolean predicate like

you must find the assignment of Boolean
values to the binary variables x1, x2, and x3

that satisfies the predicate by making it eval-
uate to True, if such an assignment exists.
Chou and Reggia embedded within a two-
dimensional, cellular-automaton “uni-
verse” simple self-replicating structures in
the form of loops. Each loop represents one
possible satisfiability solution to the prob-
lem; when the loop replicates it gives rise to
“daughter” loops, representing different
candidate solutions, which go on to self-
replicate in their turn. Under a form of arti-
ficial selection, replicants representing
promising solutions proliferate while those
representing failed solutions are lost.

This work can be considered a form of

() ()x x x x x1 2 3 1 3∨ ∨¬ ∧ ∨ ¬ x2∨¬

24 Computer

the cellular automaton’s possible implementation as
a nanometer-scale device, specifically addressing the
I/O issue.

Implementation
While many experiments with cellular-computing

systems are done via software simulation, a primary
goal is to construct actual machines based on these
novel principles. Only then will the full power of the
paradigm be realized.

One major implementation advantage involves the
low degree of connectivity. As noted by Danny Hillis,
“As switching components become smaller and less
expensive, we begin to notice that most of our costs
are in wires, most of our space is filled with wires, and
most of our time is spent transmitting from one end of
the wire to the other Most of the wires must be
short. There is no room for anything else.”7 Another
aspect that potentially facilitates implementation is
the cells’ simplicity.

To date, several novel implementations of “cell-
ware” have been demonstrated, including

• cellular automata implemented as special-pur-
pose digital hardware;

• evolving, nonuniform cellular automata imple-
mented using configurable processors;

• the cellular neural network analog chip;
• molecular computing carried out in actual test

tubes; and
• quantum-dot cellular automata, where logic

states are encoded not as voltages, as with con-
ventional digital architectures, but rather by the
positions of individual electrons.

In cellular computing, implementation issues are
often entwined with those concerning the underlying
model. That is, you don’t design a theoretical model
and then consider its implementation, but rather you
must address these two issues simultaneously.
Choosing the basic properties of the model has imme-
diate consequences on implementation, and vice
versa—often you start with implementation con-
straints that have implications where the underlying
model is concerned. Indeed, this interplay between
model properties and system aspects is characteristic
of cellular computing in general.

Scalability
Cellular computing offers a paradigm potentially

more scalable than classical models, thanks to local con-
nectivity, the absence of a central processor that must
communicate with every single cell, and the simplicity
of the cells themselves. Thus, prima facie, adding cells
should not pose a major problem. In reality, however,
this issue is not trivial at either the model or implemen-
tation level. As I note elsewhere,3 simple scaling, which
involves a straightforward augmentation in resources
such as cells and connections, does not necessarily bring
about task scaling, defined as the maintenance of at least
the same performance level for the problem at hand.

Robustness
A system’s robustness derives from its ability to func-

tion in the face of faults. When cells function incorrectly,
communication links fail, or some other mishap occurs,
we want the system to continue functioning, or at least
exhibit graceful degradation.

The attributes of cellular systems give rise, in many

DNA computing in a cellular automaton,
using self-replicating loops in a vastly paral-
lel fashion. A molecular implementation of
this approach might be had by using recently
created synthetic self-replicators. Lipton6

presented a DNA-computing solution to the
satisfiability problem that’s similar to
Adleman’s method, noting that “biological
computations could potentially have vastly
more parallelism than conventional ones.”

Solving the majority problem
with cellular automata

In this problem, a binary-state cellular
automaton should classify an arbitrary ini-
tial configuration of states (the input) by
whether there is a majority of 0s or 1s. Since
majority is a global configuration property
(the 1s can be distributed throughout the
entire grid) whereas the cellular automaton is

highly local (that is, no single cell can directly
compute the answer by itself), the problem
is not trivial. Several researchers have studied
it over the past decade, applying evolutionary
computation techniques to evolve solutions.2

References

1. J. von Neumann, Theory of Self-Repro-
ducing Automata, edited and completed
by A.W. Burks, University of Illinois Press,
Urbana, 1966.

2. M. Sipper, Evolution of Parallel Cellular
Machines: The Cellular Programming Ap-
proach, Springer-Verlag, Heidelberg, 1997.

3. S.C. Benjamin and N.F. Johnson, “A Pos-
sible Nanometer-Scale Computing Device
Based on an Adding Cellular Automa-
ton,” Applied Physics Letters, 1997, pp.
2,321-2,323.

4. L.O. Chua and T. Roska, “The CNN Par-
adigm,” IEEE Trans. Circuits and Sys-
tems, Mar. 1993, pp. 147-156.

5. L.M. Adleman, “Molecular Computation
of Solutions to Combinatorial Problems,”
Science, 1994, pp. 1,021-1,024.

6. R.J. Lipton, “DNA Solution of Hard
Computational Problems,” Science, 1995,
pp. 542-545.

7. M. Sipper et al., eds., special issue on Arti-
ficial Self-Replication, Artificial Life, 1998.

8. M. Sipper et al., “A Phylogenetic, Onto-
genetic, and Epigenetic View of Bio-
Inspired Hardware Systems,” IEEE
Trans. Evolutionary Computation, 1997,
pp. 83-97.

9. H.-H. Chou and J.A. Reggia, “Problem
Solving During Artificial Selection of Self-
Replicating Loops,” Physica D, 1998, pp.
293-312.

cases, to increased resilience. Local connectivity allows
for easier fault containment by confining the fault to
one region, preventing its easy spread throughout the
system, while the vast number of extant cells enables
a large part of the system to remain operational.

Hierarchy
Hierarchical decomposition is ubiquitous in both

natural and artificial systems.
In computer science there is the programming hier-

archy: high-level language, intermediate code, assem-
bly language, machine language, and the transistor
level. Such a hierarchy facilitates the end-user’s task
enormously.

In nature we find organizational hierarchies, such as
the molecule-cell-organ infrastructure, as well as pro-
cessing hierarchies, such as the human visual system,
which begins with low-level image processing in the
retina and ends with high-level operations—such as
face recognition—performed in the cortical regions.

Such hierarchical forms also have their place in cel-
lular computing, being either fixed at the outset or
emerging through adaptive programming. As an exam-
ple, consider self-replicating loops, where we can dis-
tinguish between two levels: the lower, cellular-
automaton level and the higher, self-replicating loops
level. These levels can be considered separately, and you
can even imagine a different low-level implementation
using synthetic molecules. Thus, we can consider the
two levels a programming hierarchy. Furthermore, the
levels in this example exhibit different behaviors: The
cellular-automaton level consists of immobile cells that
operate in synchronous mode, while the loop level con-
sists of mobile cells—the loops—that can be considered
to operate asynchronously.

Cellular computing has attracted increasing
research interest recently. Work in this field has
produced exciting results that hold prospects

for a bright future. Yet several questions must be
answered before cellular computing can become a
mainstream paradigm. What classes of computational
tasks are most suited to it? Can these be formally
defined, or informal guidelines established? How do
we match the specific properties and behaviors of a
given model to a suitable class of problems?

Once we derive a baseline from the answers to these
questions, we can extend cellular computing’s pro-
gramming methodologies and possibly introduce
novel ones. Evolution, learning, and self-organization
have been shown viable. More recently, the use of
ontogeny—the developmental process of a multicel-
lular organism—has also been explored.8

What specific application areas invite a cellular-
computing approach? Research has raised several pos-
sibilities:

• Image processing. Applying cellular com-
puters to perform image-processing tasks
arises as a natural consequence of their
architecture. For example, in a two-dimen-
sional grid, a cell (or group of cells) can
correspond to an image pixel, with the
machine’s dynamics designed to perform a
desired image-processing task. Research
has shown that cellular image processors
can attain high performance and exhibit
fast operation times for several problems.

• Fast solutions to NP-complete problems.
Even if only a few such problems can be dealt
with, doing so may still prove highly worthwhile.
NP-completeness implies that a large number of
hard problems can be efficiently solved, given an
efficient solution to any one of them. The list of
NP-complete problems includes hundreds of
cases from several domains, such as graph the-
ory, network design, logic, program optimiza-
tion, and scheduling, to mention but a few.

• Generating long sequences of high-quality ran-
dom numbers. This capability is of prime import
in domains such as computational physics and
computational chemistry. Cellular computers
may prove a good solution to this problem.

• Nanoscale calculating machines. Cellular com-
puting’s ability to perform arithmetic operations
raises the possibility of implementing rapid calcu-
lating machines on an incredibly small scale. These
devices could exceed current models’ speed and
memory capacity by many orders of magnitude.

• Novel implementation platforms. Such platforms
include reconfigurable digital and analog proces-
sors, molecular devices, and nanomachines.

For cellular computing to become viable, it must
prove its scalability. This issue is still in doubt, as
Lipton noted when he observed that Adleman “solved
the HPP [Hamiltonian Path Problem] with brute force:
He designed a biological system that ‘tries’ all possi-
ble tours of the given cities.”9 Yet even if you use 1023

parallel computers, Lipton warns, you “cannot try all
tours for a problem with 100 cities. The brute force
algorithm is simply too inefficient.”10

Scalability also relates to the hierarchy question.
For example, when either artificial or natural systems
are scaled up by orders of magnitude, a hierarchical
structure is usually imposed, be it programming, orga-
nizational, processing, or some other form.

Lipton10 addresses the issues of implementation and
robustness as well, citing the errors generated by less-
than-perfect operation as a possible barrier to build-
ing DNA computers. This imperfection motivated
Russell Deaton and colleagues5 to apply evolutionary
techniques that search for better DNA encodings, thus

July 1999 25

As we work to shape
this new paradigm,
it is encouraging
to consider that
nature is cellular

computing’s ultimate
proof-of-concept.

reducing the errors during DNA computation. In my
own work,3 I’ve studied the effects of random faults on
the behavior of some evolved cellular automata, show-
ing that they exhibit graceful degradation in perfor-
mance and can tolerate a certain level of faults.

Many natural systems exhibit striking problem-solv-
ing capacities, while adhering to the principles of cel-
lular computing. There may be a two-way street: We
can seek inspiration in natural processes, creating novel
cellular methodologies; at the same time, research into
cellular computing, though mainly an engineering
activity, may increase our understanding of computa-
tion in nature. Indeed, as we work to shape this new
paradigm, it is encouraging to consider that nature is
cellular computing’s ultimate proof-of-concept. ❖

Acknowledgments
I thank Mathieu Capcarrère, Daniel Mange, Eduardo

Sanchez, Marco Tomassini, and the anonymous review-
ers for their many helpful remarks and suggestions. This
work was supported in part by grant 2000-049349.96
from the Swiss National Science Foundation.

References
1. P.W. Anderson, “More Is Different,” Science, 1972, pp.

393-396.
2. M. Dorigo and L.M. Gambardella, “Ant Colony Sys-

tem: A Cooperative Learning Approach to the Travel-
ing Salesman Problem,” IEEE Trans. Evolutionary
Computation, 1997, pp. 53-66.

3. M. Sipper, Evolution of Parallel Cellular Machines: The
Cellular Programming Approach, Springer-Verlag, Hei-
delberg, 1997.

4. M. Sipper, “Computing with Cellular Automata: Three

Cases for Nonuniformity,” Physical Review E, 1998, pp.
3,589-3,592.

5. R. Deaton et al., “A DNA Based Implementation of an
Evolutionary Search for Good Encodings for DNA Com-
putation,” Proc. 1997 IEEE Int’l Conf. Evolutionary
Computation (ICEC 97), IEEE Press, Piscataway, N.J.,
1997, pp. 267-271.

6. S.C. Benjamin and N.F. Johnson, “A Possible Nanome-
ter-Scale Computing Device Based on an Adding Cellu-
lar Automaton,” Applied Physics Letters, 1997, pp.
2,321-2,323.

7. W.D. Hillis, The Connection Machine, MIT Press, Cam-
bridge, Mass., 1985.

8. M. Sipper et al., “A Phylogenetic, Ontogenetic, and Epi-
genetic View of Bio-Inspired Hardware Systems,” IEEE
Trans. Evolutionary Computation, 1997, pp. 83-97.

9. L.M. Adleman, “Molecular Computation of Solutions to
Combinatorial Problems,” Science, 1994, pp. 1,021-1,024.

10. R.J. Lipton, “DNA Solution of Hard Computational Prob-
lems,” Science, 1995, pp. 542-545.

Moshe Sipper is a senior researcher in the Logic Systems
Laboratory at the Swiss Federal Institute of Technology,
Lausanne. His chief interests involve the application of
biological principles to artificial systems, including evo-
lutionary computation, cellular computing, bio-inspired
systems, evolving hardware, complex adaptive systems,
artificial life, and neural networks. Sipper has published
close to 70 papers in these areas and the book Evolu-
tion of Parallel Cellular Machines: The Cellular Pro-
gramming Approach (Springer-Verlag, 1997). Sipper
received a BA in computer science from the Technion-
Israel Institute of Technology and an MSc and a PhD in
computer science from Tel Aviv University.

Contact Sipper at Moshe.Sipper@epfl.ch.

As seen
in the

May issue
of Computer

Perl Creator
Larry Wall
“The most revolutionary thing about language
design these days is that we’re putting more effort
into larger languages.”

Jini Lead Architect
Jim Waldo
“The big wads of software that we have grown used
to might be replaced by small, simple components
that do only what they need to do and can be com-
bined together.”

Tcl Creator
John Ousterhout
“Scripting languages will be used
for a larger fraction of applica-
tion development in the years
ahead.”

Innovative Technology for Computer Professionals May 1999

http://computer.org

Two New
Awards Honor
Innovators,
p. 11

Middleware
Steps Forward

Thompson On
Unix and Beyond

CORBA 3
Preview

http://computer.org

Software
revolutionaries

on software

Software
revolutionaries

on software

