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Small-world networks, exhibiting short nodal distances and high clustering, and scale-
free networks, typified by a scale-free, power-law node-degree distribution, have been
shown to be widespread both in natural and artificial systems. We propose a new type
of network — cluster-dense network — characterized by multiple clusters that are highly
intra-connected and sparsely inter-connected. Employing two graph-theoretic measures
— local density and relative density — we demonstrate that such networks are prevalent
in the world of networks.
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Over the past decade complex networks, both natural and artificial, have moved into
the center stage of scientific research. It has been shown that such diverse networks
as the World Wide Web, power grids, and the brain have surprising structural
commonalities, belonging to one or both of two categories: small-world networks,1

and scale-free networks.2

Small-world networks are highly clustered, much like regular lattices, yet have
small characteristic path lengths, like random graphs. This is evidenced by focusing
on two graph properties: average path length L, and clustering coefficient C. L

measures the average separation between two vertices in the graph, and is defined
as the number of edges in the shortest path between two nodes, averaged over all
pairs of nodes. C measures the cliquishness of a typical neighborhood: the average
fraction of pairs of neighbors of a node that are also neighbors of each other. More
precisely, assume node i in the network has ki edges connecting it to ki other nodes.
These nodes are all neighbors of node i and at most ki(ki − 1)/2 edges can exist
between them. Denote by Ei the number of these edges that actually exist. The
clustering coefficient Ci of node i is then defined as the ratio between Ei and the
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total number of possible edges, i.e., Ci = 2Ei/(ki(ki−1)). The clustering coefficient
C of the whole network is the average Ci over all i. While random networks3 display
both low L and C values (i.e., poorly clustered with short nodal distances) and
regular lattices exhibit both high L and C values (i.e., highly clustered with long
nodal distances), small-world networks are characterized by low L and high C: They
are highly clustered yet thanks to “shortcuts” nodal distances are kept low. Many
examples of such networks are now known to exist, e.g., movie actors,1 power grids,1

nervous systems,1 human language,4 electronic circuits,5 and metabolic networks.6

Scale-free networks focus on another graph property, degree distribution, defining
P (k) as the probability that a vertex in the network has k neighbors (degree k).2 In
a regular lattice all nodes have the same number of edges and so plotting the degree
distribution — P (k) vs. k — would result in a single sharp spike (delta distribution).
A completely random network obeys a Poisson distribution.7 Scale-free networks
are characterized by a scale-free, power-law degree distribution: P (k) ∼ k−γ . Such
networks comprise a multitude of low-degree nodes and relatively few high-degree
nodes (usually called “hubs”; Fig. 1). As with their small-world brethren, over
the past few years many networks have been shown to be scale-free, e.g., the World
Wide Web,2,8 human sexual contacts,9 brain functional networks,10 and the US
airline routing map.7 The latter is an illustrative case in point as it differs drastically
from the US roadmap. In the airline routing map nodes represent airports and
links represent direct flights between them. The degree distribution is scale-free:
a few hubs with flights to most US cities, and a vast majority of nodes with but
a few links connecting them to hubs. The US roadmap, on the other hand, is
fairly uniform: each major city has at least one link to the highway system but no
city is served by hundreds of highways. It is thus an exponential network (Poisson
distribution), with connectivity peaking at an average value and then decaying
exponentially.7

Fig. 1. A scale-free network with N = 10 nodes. Shown also are average path length L, clustering
coefficient C, and degree distribution (k: node degree, #k: number of nodes with degree k).
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Fig. 2. (a) Network derived from Fig. 1 by adding edges such that two clusters are formed. (b)
Network derived from (a) by increasing the size of the two clusters, such that the left one becomes
a 150-node clique (fully connected subgraph) and the right one becomes a 100-node clique. Note
that while the network of Fig. 1 exhibits a typical scale-free degree distribution, networks (a)
and (b) do not. Binning similar-degree nodes together, (b) is in fact quite an atypical scale-free
network, with a positive exponent of approximately 1 rather than the usual negative exponent.
Dlocal and Drelative are shown for (a) and (b) (the network of Fig. 1 has no clusters).

The network shown in Fig. 1 is typical scale-free: there are eight low-degree
nodes, all with degree 1, and two hubs, both with degree 5. Now consider the net-
work of Fig. 2(a), whose nodes are identical to that of Fig. 1, but with added edges
that clearly form two clusters. The degree distribution is no longer typical scale-
free; this is emphasized in Fig. 2(b). If not scale-free, then perhaps the networks
of Fig. 2 are small-world? Indeed, as shown, they exhibit low L and high C —



July 21, 2008 14:1 WSPC/141-IJMPC 01265

942 M. Sipper

the two hallmarks of small-world networks. So we seem to have on our hands non-
scale-free, small-world networks, which is quite unremarkable: the examples given
by Ref. 1 almost a decade ago fall into this exact same category — small-world, but
with probability of finding a highly connected node (that is, a large k) decreasing
exponentially with k.2

My argument herein is that we are, nonetheless, faced with a new category
of network, unlike small-world networks studied so far. The networks of Fig. 2
display a characteristic form of clustering that merits special attention. In order
to quantify their uniqueness, I employ two graph-theoretic measures: local density,
Dlocal, a measure of a cluster’s inner density of edges, and relative density, Drelative,
a measure of a cluster’s “introvertness”.11,12 Given a graph, a cluster c is a connected
subgraph. The internal degree, degint, of c is the number of edges that have both
endpoints in c; the external degree, degext, of c is the number of edges that have
only one endpoint in c. The local density, Dlocal, of cluster c with k nodes is the
ratio of the internal degree of the cluster to the maximum possible — k(k − 1)/2:

Dlocal(c) =
2degint(c)
k(k − 1)

.

By convention, the density of an empty- or a single-vertex cluster is zero. The
relative density, Drelative, of cluster c is the ratio of internal edges to the total
number of edges impinging upon the cluster:

Drelative(c) =
degint(c)

degint(c) + degext(c)
.

Figure 2 shows these measures for the networks in question (the scale-free net-
work of Fig. 1 has no clusters). As can be seen both Dlocal and Drelative are high
(Dlocal � 0, Drelative � 0), exemplifying what we call cluster-dense networks: net-
works rich in relatively dense clusters, which are also “introverted,” i.e., have few
connections outside the cluster.

Note that the classes of cluster-dense and small-world networks, while overlap-
ping, are not identical. A small-world network need not necessarily embody any
natural clustering: A high clustering coefficient C, evidencing a node’s local neigh-
borhood clustering, does not in itself entail the global existence of clusters (two
people may share many friends, who in turn share many friends, etc — without
there being naturally occurring clusters). Conversely, a cluster-dense network is not
necessarily small-world: Watts13 (see also Ref. 14) carries out an in-depth analysis
of the small-world phenomenon, along the way asking what graph has the lowest
possible characteristic path length and what is the most clustered graph possible.
The former is attained by a random graph while toward the latter Watts proposes
the “connected caveman graph”: n/(k + 1) isolated cliques (“caves”) of size k + 1
nodes, where one edge from each clique is extracted and connected to a neighboring
clique such that all cliques form a connected loop. This network has C ≈ 1 and large
L (i.e., L increases linearly with network size n), the latter characteristic rendering
it non-small-world. The network is, of course, cluster-dense.
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Fig. 3. (a) Friendship choices among fourth graders.15 Triangles represent boys and circles rep-
resent girls. Three clusters are clearly visible. (We ignore the graph’s being directional, as we are
interested in any social interaction, regardless of its directionality.) (b) Social ties surrounding a
homeless woman (Respondent) (graph appears in Ref. 16 [reprinted with permission], based on
data reported by Ref. 17). Three clusters are distinctly visible.
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Fig. 4. (a) Distribution of adults of Zygaena filipendulae (a moth species) and observed move-
ments between populations [reprinted with permission].18 Interestingly, here the inter-cluster edges
represent nodal movements (migration). Computing Dlocal and Drelative can be done by ascribing
the (relatively few) transferred nodes to their cluster of origin. Six clusters are present, each with
Dlocal = 1 (all moths may interact within a cluster) and Drelative ≈ 1 (number of migrating
moths � number of moths within cluster). (b) Ad-hoc wireless network, artificially constructed
to maximize the product of Dlocal and Drelative of clusters in a dynamically forming network
[reprinted with permission].11
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The main question is how prevalent are cluster-dense networks: Are they worthy
of study as a class unto its own? Figures 3 and 4 provide some evidence in favor
of an affirmative reply. The first two examples (Fig. 3) display typical cluster-
dense networks that arise naturally amongst humans: a friendship network and
a support network. This demonstrates one method by which such networks are
formed: natural aggregation, as occurs with humans and, more generally, in the
faunal world. Figure 4(a) shows a faunal cluster-dense network: moth populations.
Figure 4(b) shows a man-made cluster-dense network — an ad-hoc wireless network
that was designed through algorithmic aggregation: by seeking to maximize the
product of Dlocal and Drelative of clusters in a dynamically forming network.11

The literature contains reports of other cluster-dense networks:

• The social human milieu probably provides ample examples, due to the human
instinct to socialize; e.g., Freeman16 discusses cluster-dense networks of visiting
patterns among households in El Cerrito, New Mexico in 1940, and family clusters
in Atirro, Costa Rica.

• Turning to artificial networks, the World Wide Web exhibits communities (of
pages and links) that are typical cluster-dense.19,20

• Animals tend to aggregate into flocks, schools, herds, packs, bevies, swarms,
hordes, troops, and so forth, many of which also display characteristics of cluster-
dense networks (e.g., Fig. 4(a)). As (another) example, consider penguins in the
Galápagos islands,21 which form an interaction network that is also cluster-dense:
high local density per island (high Dlocal), and high relative density between
islands (high Drelative) due to a physical barrier (the Pacific Ocean). Another
example is that of butterfly populations.22,23

Average path length, clustering coefficient, and degree distribution, often being
easy to compute, renders small-world and scale-free networks easily identifiable.a

Cluster-dense networks are harder to detect since identifying clusters is generally
intractable, the basic questions related to graph partitioning and thus being NP-
complete.20,24 Nonetheless, many clustering algorithms can provide good approx-
imate solutions; moreover, humans, quite proficient at the clustering task, may
provide a quick resolution (albeit for relatively small-sized networks, networks that
afford good visualization, or both).

Cluster-dense networks probably arise often both in natural and man-made sys-
tems. Their dynamics may be quite different than those of other proposed network
models and could thus benefit from special consideration.
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aThis is not always true. As noted by Watts,13 for large social networks even local parameters
like k and C can be hard to estimate.



July 21, 2008 14:1 WSPC/141-IJMPC 01265

946 M. Sipper

References

1. D. J. Watts and S. H. Stogatz, Nature 393, 440 (1998).
2. A.-L. Barabási and R. Albert, Science 286, 509 (1999).
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