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Abstract

The shortest common superstring (SCS) problem, known to be NP-Complete, seeks the shortest string that contains all strings
from a given set. In this paper we compare four approaches for finding solutions to the SCS problem: a standard genetic algorithm,
a novel cooperative-coevolutionary algorithm, a benchmark greedy algorithm, and a parallel coevolutionary-greedy approach.
We show the coevolutionary approach produces the best results, and discuss directions for future research.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

In recent years we have been witness to the
application of bio-inspired algorithms to the so-
lution of a plethora of hard problems in com-
puter scienceSipper (2002). One such bio-inspired
methodology—evolutionary algorithms—we apply
herein to the NP-Complete problem known as the
shortest common superstring(SCS). The SCS problem
seeks the shortest string that contains all strings from
a given set. Finding the shortest common superstring
has applications in data compressionStorer (1988),
because data may be stored efficiently as a superstring.
SCS also has important applications in computational
biology Lesk (1988), where the DNA-sequencing
problem is to map a string of DNA: laboratory tech-
niques exist for reading relatively short strands of
DNA; to map a longer sequence, many copies are
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made, which are then cut into smaller overlapping
sequences that can be mapped. A typical approach is
to reassemble them by finding a short (common) su-
perstring. The SCS problem, which is NP-Complete
Garey and Johnson (1979), is also MAX-SNP
hard Blum et al. (1994). It is conjectured that no
polynomial-time algorithm exists, that can approxi-
mate the optimum to within a predetermined constant.
In this paper we compare four approaches for find-
ing solutions to the SCS problem: a standard genetic
algorithm (GA), a novel cooperative-coevolutionary
algorithm, a benchmark greedy algorithm, and a par-
allel coevolutionary-greedy approach. We show that
our coevolutionary approach is best when consider-
ing sets containing approximately 50–80 strings. This
paper is organized as followsi the next section we
present previous work on the SCS problem and on
cooperative coevolution.Section 3describes the three
algorithms applied inSection 4to the SCS problem.
In Section 5we combine said algorithms to obtain
better results. Finally, we present concluding remarks
and suggestions for future work inSection 6.
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2. Preliminaries and previous work

2.1. The shortest common superstring problem

Let S = {s1, . . . , sn} be a set of strings (denoted
blocks) over some alphabet�. A superstringof S is
a strings such that eachsi in S is a substring ofs.
A trivial (and usually not the shortest) solution is the
concatenation of all blocks, namely,s1 · · · sn. For two
stringsu andv let overlap(u, v) be the maximum over-
lap betweenu andv, i.e., the longest suffix ofu (in
terms of characters) that is a prefix ofv; let prefix(u, v)
be the prefix ofu obtained by removing its overlap
with v; let merge(u, v) be the concatenation ofu and
v with the overlap appearing only once. For example,
given the alphabet� = {a, b, c} and a set of strings
S = {cbca, cac}, the shortest common superstring of
S is the stringcbcac. A longer superstring would be
cacbcab. In addition, the following relations hold:

overlap(cbca, cac) = ca,
overlap(cac, cbca) = c,
prefix(cbca, cac) = cb,
merge(cac, cbca) = cacbca.

Note that, in general,overlap(A, B) �≡ overlap(B, A)

(the same holds forprefix and merge). Given a list
of blocks s1, s2, . . . , sn, we define thesuperstring
s = 〈s1, s2, . . . , sn〉 to be the stringprefix(s1, s2) ·
prefix(s2, s3) . . . .prefix(sn, s1) · overlap(sn, s1). To
wit, superstring is the concatenation of all strings,
“minus” the overlapping duplicates. Each superstring
of a set of strings defines a permutation of the set’s
elements (the order of their appearance in the super-
string), and every permutation of the set’s elements
corresponds to a single superstring (derived by ap-
plying the {lit superstring} operator). Several linear
approximations for the SCS problem have been pro-
posed.Blum et al. (1994)were the first to introduce
an approximation algorithm that produces a solution
within a factor of 3 from the optimum. The best factor
currently known is 2.5, and was achieved bySweedyk
(1999). Our bibliography research revealed no appli-
cation of evolutionary algorithms to the SCS problem.

2.2. Cooperative coevolution

Coevolutionrefers to the simultaneous evolution
of two or more species with coupled fitness. Such

coupled evolution favors the discovery of complex
solutions whenever complex solutions are required
Paredis (1995). Simplistically speaking, one can say
that coevolving species either compete (e.g., to ob-
tain exclusivity on a limited resource) or cooperate
(e.g., to gain access to some hard-to-attain resource).
In a competitive coevolutionary algorithm the fitness
of an individual is based on direct competition with
individuals of other species, which in turn evolve
separately in their own populations. Increased fitness
of one of the species implies a diminution in the fit-
ness of the other species. This evolutionary pressure
tends to produce new strategies in the populations
involved so as to maintain their chances of survival.
This “arms race” ideally increases the capabilities of
each species until they reach an optimum. For further
details on competitive coevolution, the reader is re-
ferred toRosin and Belew (1997). Cooperative (also
called symbiotic) coevolutionary algorithms involve
a number of independently evolving species, which
together form complex structures, well-suited to solv-
ing a problem. The fitness of an individual depends
on its ability to collaborate with individuals from
other species. In this way, the evolutionary pressure
stemming from the difficulty of the problem favors
the development of cooperative strategies and individ-
uals. Single-population evolutionary algorithms often
perform poorly—manifesting stagnation, convergence
to local optima, and computational costliness—when
confronted with problems presenting one or more of
the following featuresPeña-Reyes and Sipper (2000,
2001b): (1) the sought-after solution is complex, (2)
the problem or its solution is clearly decomposable,
(3) the genome encodes different types of values,
(4) strong interdependencies among the components
of the solution, (5) components-ordering drastically
affects fitness. Cooperative coevolution addresses
effectively these issues, consequently widening the
range of applications of evolutionary computation.
citetparedis95 applied cooperative coevolution to
problems which involved finding simultaneously the
values of a solution and their adequate order. In his
approach, a population of solutions coevolves along-
side a population of permutations performed on the
genotypes of the solutions.Potter (1997)and Potter
and De Jong (2000)developed a model in which a
number of populations explore different decompo-
sitions of the problem. More recently,Peña-Reyes
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Fig. 1. Potter’s cooperative coevolutionary system. The figure shows the evolutionary process from the perspective of Species 1. The
individual being evaluated is combined with one or morerepresentativesof the other species so as to construct several solutions which
are tested on the problem. The individual’s fitness depends on the quality of these solutions.

and Sipper (2000, 2001b,a)used cooperative co-
evolution to evolve fuzzy systems. Below we detail
the framework of Potter and DeJong as it forms
the basis of our own approach. In Potter’s system,
each species represents a subcomponent of a po-
tential solution. Complete solutions are obtained by
assemblingrepresentativemembers of each of the
species (populations). The fitness of each individual
depends on the quality of (some of) the complete
solutions it participated in, thus measuring how well
it cooperates to solve the problem. The evolution of
each species is controlled by a separate, indepen-
dent evolutionary algorithm.Fig. 1 shows the general
architecture of Potter’s cooperative coevolutionary
framework, and the way each evolutionary algorithm
computes the fitness of its individuals by combining
them with selected representatives from the other
species. The representatives can be selected via a
greedy strategy as the fittest individuals from the last
generation. Results presented byPotter and De Jong
(2000)show that their approach addresses adequately
issues like problem decomposition and interdepen-
dencies between subcomponents. The cooperative
coevolutionary approach performs as good as, and
sometimes better than, single-population evolutionary
algorithms. Finally, cooperative coevolution usually
requires less computation than single-population evo-

lution as the populations involved are smaller, and
convergence—in terms of number of generations—is
faster.

3. Description of the three algorithms

This section describes the three algorithms—genetic,
cooperative coevolutionary, and greedy—used in the
next section to seek solutions to the SCS problem.

3.1. The genetic algorithm

Given a set of (binary) strings as an input to the
SCS problem, the algorithm generates an initial pop-
ulation of random candidate solutions, the fitness of
each individual depending on its length and accuracy.
As is standard, the genetic algorithm uses selection,
crossover, and mutation to evolve the next genera-
tion, each individual of which is then evaluated and
assigned a fitness value. These steps are repeated a
predefined number of times or until the solution is
satisfactory. The members (strings, orblocks) of the
input set are atomic components as far as the GA
is concerned, namely, there is no change—either via
crossover or mutation—within a block, only between
blocks (i.e., their order changes). An individual in the
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population is a candidate solution to the SCS prob-
lem, its genome represented as a sequence of blocks.
An individual may contain missing blocks or duplicate
copies of the same block. The genetic algorithm seeks
to evolve an individual that is ascloseas possible to the
shortest common superstring (theclosenessrelation is
defined below). Each individual derives a correspond-
ing superstring, by applying thesuperstringrelation
(Section 2.1) on the blocks within the genome (this
is called thederivedstring). Thefitnessof an individ-
ual is a function of two parameters: length of derived
string (shorter is better), and number of blocks it con-
tains (more is better); thus, the goal is to maximize
the number of blocks “covered” and to minimize the
length of the derived string. Other parameters such as
average (or maximal) block length might also be con-
sidered. We used standard fitness-proportionate selec-
tion, with an elitism rate of 1 (i.e., the best individual
is always copied to the next generation). Two-point
crossover was applied, wherein two crossover points
are chosen randomly (but at block boundaries), the
offspring being composed of the first parent’s flanks
with the second parent’s interior. Crossover allows
both growth and reduction in an individual genome’s
length. Mutation occurs with low probability, exchang-
ing a block with a randomly chosen block.A note
about representation: We mentioned earlier that the
shortest common superstring of a set of blocks is a per-
mutation of the set’s elements. The major deficiency
of our genomic representation is its affording a block
to appear more than once. This transforms the prob-
lem from one of finding a permutation, with a search
space of sizen!, wheren is the number of blocks, to
a problem in which the search space is much larger.
We have, nonetheless, chosen this representation due
to two reasons:

(1) Despite being a permutation on the set of blocks
(i.e., each block appears exactly once), the SCS
might have many near-optimal solutions that con-
tain repeated instances of the same block. We have
found that the GA easily filters out most solu-
tions containing repeated blocks, and yields solu-
tions that are close to permutations. In addition,
the solution’s length is flexible, allowing the pro-
gressive construction of building blocks.

(2) This representation enables the use of other GA
techniques, e.g., bit-flip mutations. When flipping

a bit in a permutation representation (meaning, in
our case, exchanging one block for another) an in-
dividual loses its permutation property, necessitat-
ing a repair mechanism. In the present representa-
tion such a problem does not occur. Moreover, co-
operative coevolution can easily be applied here,
as explained below, in contrast to a permutation
representation.

3.2. The coevolutionary algorithm

The second algorithm is based on cooperative co-
evolution, wherein two species evolve simultaneously.
The first species contains prefixes of candidate so-
lutions to the SCS problem at hand, and the second
species contains candidate suffixes. The fitness of an
individual in each of the species depends on how good
it interacts with representatives from the other species
to construct the global solution (Section 2.2). Each
species evolves separately (i.e., selection, crossover,
and mutation are performed independently) while the
only interaction is through the fitness function. Each
species nominates its fittest individual as therepresen-
tative. When computing the fitness of an individual
in the prefix (suffix) population, its genome is sim-
ply concatenated with the representative of the suffix
(prefix) population, to construct a full candidate so-
lution for the SCS problem at hand; this solution is
then evaluated in the same manner as described in
Section 3.1. Basically, all individuals of one popula-
tion are combined with the best individual of the sec-
ond population, the resulting fitness values assigned to
the first-population individuals. Crossover and muta-
tion, applied in each population, are identical to those
described inSection 3.1.

3.3. The greedy algorithm

The greedy algorithm repeatedly merges pairs of
distinct strings with maximumoverlap (Section 2.1)
until only one string remains. This algorithm finds
an approximate solution within factor 4 of the opti-
mumBlum et al. (1994). A common conjecture states
that the superstring produced by the greedy algorithm
is of length at most two times the optimalStorer
(1988), Tarhio and Ukkonen (1988), Turner (1989).
This is why we chose to implement it rather than
Sweedyk’sSweedyk (1999)factor-2.5 algorithm: the
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latter ismuchmore complex and most likely does not
entail a bona fide benefit (since the greedy algorithm
is most likely to be factor-2). Moreover, the simple
greedy algorithm is probably the most widely used
heuristic used in DNA-sequencing.

4. Results

The following section describes results for 50-block
sets, and 80-blocks sets. We first discuss an issue re-
lated to the input blocks.

4.1. The input

All experiments were performed using a binary
alphabet. The results were compared to those of the
greedy algorithm that pairs up blocks according to
their maximal overlap. The input strings used in the
experiments were generated in a manner similar to the
one used in DNA sequencing (Section 1): A random
string is generated, duplicated a predetermined num-
ber of times, and the copies are randomly divided into
blocks of a given size. The set of all these blocks is the
input to the SCS problem. The process is explained
in Fig. 2. Note that the SCS of such a set is not nec-
essarily the original string (it may be shorter), though
it is likely to be close to it due to the original string’s
randomness. We chose to generate such inputs for a
number of reasons. First, our interest in a real-world
application, namely DNA sequencing. Second, this
input domain is interesting because there are many
large overlapping blocks, thus rendering difficult the

Fig. 2. The input-generation procedure. A random string is gen-
erated (1). The string is duplicated a predetermined number of
times (three, in the above example), each copy divided into blocks
of a random size betweenminimal block size(20, in our case)
andmaximal block size(30, in our case) (2). The resulting set of
blocks (3) is the input set (4).

decision of choosing and ordering the blocks needed
to construct a short superstring. Lastly, the length of
a SCS of a set of blocks drawn from this particular
input domain is with very high probability, simply
the length of the initial string (in the input generation
process). This enables us to generate many differ-
ent problems, all with a predetermined SCS length.
We performed two experiments differing only in the
length of the initial randomized string generated. This
causes a difference in the number of blocks given as
input to the algorithm. The parameters used in the
input-generation phase are as given further.

• Size of random string: 250 bits (experiment I), 400
bits (experiment II).

• Minimal block size: 20 bits.
• Maximal block size: 30 bits.
• Number of duplicates created from random string:

5.

Note that increasing the number of blocks (through
whatever parameter change) results in exponential
growth of the problem’s complexity. The evolutionary
parameters used are as given further.

• Population size: 500.
• Number of generations: 5000.
• Crossover rate: 1 (i.e., crossover always performed

between a selected pair).
• Mutation rate: 0.03.
• Problem instances per experiment: 50.

Let l denote the length of thederived string in the
genetic-algorithm case (Section 3.1), or the combined
derived string (individual + representative) in the
cooperative-coevolutionary case (Section 3.2). Letm

denote the number of blocksnot covered by the de-
rived string, and letb denote the maximal block size
(30, in our case). The fitness value,f , of an individual
is computed as follows:

f = 1

(l + mb)α

α was set empirically toα = 2 after preliminary test
runs, for both the genetic and coevolutionary algo-
rithms. This fitness function drives evolution towards
shorter superstrings covering as many blocks as pos-
sible. The experiments described in the next two sub-
sections each applied the three algorithms described
in Section 3to a given problem size. On each problem
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Fig. 3. Experiment I: 50 blocks. Best superstring as a function of time (generations). Each point in the figure represents the average of 50
runs on 50 different randomly generated problem instances. For each such instance, two runs were performed (i.e., a total of 100), the better
of which was considered for statistical purposes. Shown are results for all three algorithms: cooperative coevolution (COOPERATIVE),
genetic algorithm (GENETIC), greedy algorithm (GREEDY).

instance each type of genetic algorithm was executed
twice and the better run of the two was used for statis-
tical purposes. (As argued bySipper (2000)what ulti-
mately counts in problem solving by an evolutionary
algorithm is thebestresult.)

4.2. Experiment I: 50 blocks

The results presented inFig. 3 show the average
length of the superstrings found when the input set
contained 50 blocks (generated as explained inFig. 2).
Both genetic algorithms dramatically outperformed
the greedy approach. The cooperative coevolutionary
algorithm converges much faster than the simple GA,
leveling off in less than 1000 generations (approxi-
mately 15 min on a 667 MHz PC).

4.3. Experiment II: 80 blocks

The results presented inFig. 4 show the average
length of the superstrings found when the input set
contained 80 blocks. The cooperative coevolutionary

algorithm again wins top marks, whereas the simple
GA comes last. The cooperative coevolutionary algo-
rithm converges more slowly this time, and contin-
ues to improve right up to the last generation (set at
5000). Note that although the complexity of the search
space here is much larger than in experiment I, we
set the maximal computational effort at the same level
(namely, 5000 generations); a decrease in the quality
of solutions was therefore anticipated. And yet, our
cooperative approach still comes out on top.

5. Coevolution, parallelism, and greed

Reflecting upon the results we designed an im-
proved coevolutionary algorithm, which incorporates
both parallelism and greed. The algorithm consists of
three stages:

(1) The first stage consists of three parallel runs of the
cooperative coevolutionary algorithm—executed
independently—withnumber of generationsset
to 2000 (instead of 5000), andpopulation size
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Fig. 4. Experiment II: 80 blocks. Best superstring as a function of time (generations). Each point in the figure represents the average of
50 runs on 50 different randomly generated problem instances. For each such instance, two runs were performed, the better of which was
considered for statistical purposes. Shown are results for all three algorithms: cooperative coevolution (COOPERATIVE), genetic algorithm
(GENETIC), greedy algorithm (GREEDY).

set to 300 (instead of 500); all other parameters
remain unchanged. In addition, the greedy algo-
rithm is run (ending deterministically as per the
algorithm). At the end of this stage there are three
evolved prefix populations, three evolved suffix
populations, and a greedy solution.

(2) Two new populations are constructed: (a) a pre-
fix population consisting of one third of the indi-
viduals of each evolved prefix population (stage
1), chosen fitness-proportionately (in their respec-
tive populations); (b) an analogously created suf-
fix population. The greedy solution is split in the
middle, each half added to the appropriate popu-
lation.

(3) The cooperative coevolutionary algorithm is run
with the two populations created in stage 2 serv-
ing as initial populations (again, withnumber of
generationsset to 2000).

We tested the combined algorithm on the 25 80-block
problem instances that were hardest for the greedy al-
gorithm (i.e., on which its performance was the worst).
Table 1shows that the results obtained by our com-
bined approach are best.

Table 1
Best average results

Problem size Greedy Genetic Cooperative Parallel

(a)
50 381 280 275
80 596 685 547

(b)
80 625 683 542 510

(a) Obtained by the three algorithms (Section 4): greedy, genetic,
and cooperative coevolution. For each of the 50 randomly gener-
ated problem instances each algorithm was run twice, the worse
of the two discarded; average is, thus, over 50 runs. (b) Best av-
erage results obtained by the four algorithms (previous three+
parallel combined coevolution) on the 25 hardest problems for the
greedy algorithm (Section 5). Again, two runs were performed per
problem instance, and the worse of the two runs discarded. Note
that in this case the cooperative coevolutionary algorithm and the
parallel one surpass the greedy and genetic algorithms by a much
more impressive margin than in (a). As can be seen, the parallel
combined algorithm is the best.

6. Concluding remarks and future work

We applied four algorithms to the shortest common
superstring problem. The results are summarized in
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Table 1. As can be seen, cooperative coevolution has
revealed itself as a powerful tool, surpassing both the
genetic algorithm and the greedy algorithm. Com-
bining the latter with coevolution yields even better
results. These results, although preliminary, have en-
couraged us to consider two major lines of further
research.

• Tackling larger problem instances using an im-
proved version of the coevolutionary algorithm
(and, possibly, of the combined algorithm).

• Another possible improvement would be to con-
struct new species on the fly as convergence is
encountered (as suggested byPotter and De Jong
(2000)).
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