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In this chapter we focus on the Wisconsin breast cancer diagnosis
(WBCD) problem, combining two methodologies—fuzzy systems and
evolutionary algorithms—to automatically produce diagnostic systems.
We present two hybrid approaches: (1) a fuzzy-genetic algorithm, and (2)
Fuzzy CoCo, a novel cooperative coevolutionary approach tofuzzy mod-
eling. Both methods produce systems exhibiting high classification per-
formance, and which are also human-interpretable. Fuzzy CoCo obtains
higher-performance systems than the standard fuzzy-genetic approach
while expending less computational effort.

1 Introduction

A major class of problems in medical science involves the diagnosis of
disease, based upon various tests performed upon the patient. When sev-
eral tests are involved, the ultimate diagnosis may be difficult to obtain,
even for a medical expert. This has given rise, over the past few decades,
to computerized diagnostic tools, intended to aid the physician in making
sense out of the welter of data.

A prime target for such computerized tools is in the domain ofcancer
diagnosis. Specifically, where breast cancer is concerned,the treating
physician is interested in ascertaining whether the patient under exam-
ination exhibits the symptoms of a benign case, or whether her case is a
malignant one.
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A good computerized diagnostic tool should possess two characteristics,
which are often in conflict. First, the tool must attain the highest pos-
sible performance, i.e., diagnose the presented cases correctly as being
either benignor malignant. Second, it would be highly beneficial for
such a diagnostic system to be human-friendly, exhibiting so-calledin-
terpretability. This means that the physician is not faced with a black box
that simply spouts answers (albeit correct) with no explanation; rather,
we would like for the system to provide some insight as tohow it derives
its outputs.

In this chapter we present the combination of two methodologies—fuzzy
systems and evolutionary algorithms—to automatically produce systems
for breast cancer diagnosis. The major advantage of fuzzy systems is
that they favor interpretability, however, finding good fuzzy systems can
be quite an arduous task. This is where evolutionary algorithms step in,
enabling the automatic production of fuzzy systems, based on a database
of training cases. There are several recent examples of the application of
fuzzy systems and evolutionary algorithms in the medical domain [28]1,
though only a few combine both methodologies in a hybrid way—as we
do in this chapter.

This chapter is organized as follows: In the next section we provide an
overview of fuzzy modeling, evolutionary computation, andevolutionary
fuzzy modeling. In Section 3 we describe the Wisconsin breast cancer
diagnosis (WBCD) problem, which is the focus of our interestherein.
Section 4 then describes a fuzzy-genetic approach to the WBCD prob-
lem. Section 5 presents Fuzzy CoCo, our cooperative coevolutionary ap-
proach to fuzzy modeling, and its application to the WBCD problem.
Finally, we present concluding remarks in Section 6.

1This article provides over one hundred references to works in the medical domain
using evolutionary computation.
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2 Background

2.1 Fuzzy modeling

Fuzzy logic is a computational paradigm that provides a mathematical
tool for representing and manipulating information in a waythat resem-
bles human communication and reasoning processes [43]. It is based on
the assumption that, in contrast to Boolean logic, a statement can bepar-
tially true (or false), and composed of imprecise concepts. For example,
the expression “I live near Geneva,” where the fuzzy value “near” applied
to the fuzzy variable “distance,” in addition to being imprecise, is subject
to interpretation. Afuzzy variable(also called alinguistic variable; see
Figure 1) is characterized by its name tag, a set offuzzy values(also
known aslinguistic valuesor labels), and the membership functions of
these labels; these latter assign a membership valueµlabel(u) to a given
real valueu ∈ ℜ, within some predefined range (known as the universe
of discourse). While the traditional definitions of Boolean-logic opera-
tions do not hold, new ones can be defined. Three basic operations,and,
or, andnot, are defined in fuzzy logic as follows:

µAandB(u) = µA(u) ∧ µB(u) = min{µA(u), µB(u)},
µAorB(u) = µA(u) ∨ µB(u) = max{µA(u), µB(u)},

µnotA(u) = ¬µA(u) = 1 − µA(u),
whereA andB are fuzzy variables. Using such fuzzy operators one can
combine fuzzy variables to form fuzzy-logic expressions, in a manner
akin to Boolean logic. For example, in the domain of control,where
fuzzy logic has been applied extensively, one can find expressions such
as: if room temperatureis Warm, then increase slightly the ventilation-
fan speed.

A fuzzy inference systemis a rule-based system that uses fuzzy logic,
rather than Boolean logic, to reason about data [43]. Its basic structure
consists of four main components, as depicted in Figure 2: (1) a fuzzi-
fier, which translates crisp (real-valued) inputs into fuzzy values; (2) an
inference engine that applies a fuzzy reasoning mechanism to obtain a
fuzzy output; (3) a defuzzifier, which translates this latter output into a
crisp value; and (4) a knowledge base, which contains both anensemble
of fuzzy rules, known as the rule base, and an ensemble of membership
functions known as the database.
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Figure 1. Example of a fuzzy variable:Triglyceride levelhas three possible
fuzzy values, labeledNormal, High, andVery High , plotted above as degree
of membership versus input value. The valuesPi, setting the trapezoid and tri-
angle apices, define the membership functions. In the figure,an example input
value 250 mg/dL is assigned the membership valuesµNormal(250) = 0.75,
µHigh(250) = 0.25, andµV eryHigh(250) = 0. Note thatµNormal(250) +
µHigh(250) + µV eryHigh(250) = 1.
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Figure 2. Basic structure of a fuzzy inference system.

The decision-making process is performed by the inference engine using
the rules contained in the rule base. These fuzzy rules definethe con-
nection between input and output fuzzy variables. A fuzzy rule has the
form:

if antecedent then consequent,
whereantecedent is a fuzzy-logic expression composed of one or more
simple fuzzy expressions connected by fuzzy operators, andconsequent

is an expression that assigns fuzzy values to the output variables. The
inference engine evaluates all the rules in the rule base andcombines the
weighted consequents of all relevant rules into a single fuzzy set using
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theaggregationoperation. This operation is the analog in fuzzy logic of
the average operator in arithmetic [42] (aggregation is usually performed
with themaxoperator).

Fuzzy modelingis the task of identifying the parameters of a fuzzy in-
ference system so that a desired behavior is attained [42]. Note that the
fuzzy-modeling process has to deal with an important trade-off between
the accuracyand theinterpretability of the model. In other words, the
model is expected to provide high numeric precision while incurring as
little a loss of linguistic descriptive power as possible. With thedirectap-
proach a fuzzy model is constructed using knowledge from a human ex-
pert. This task becomes difficult when the available knowledge is incom-
plete or when the problem space is very large, thus motivating the use of
automaticapproaches to fuzzy modeling. There are several approaches
to fuzzy modeling, based on neural networks [14, 22, 41], evolutionary
algorithms [2, 7, 26], and hybrid methods [35, 37]. Selection of relevant
variables and adequate rules is critical for obtaining a good system. One
of the major problems in fuzzy modeling is thecurse of dimensionality,
meaning that the computation requirements grow exponentially with the
number of variables.

The parameters of fuzzy inference systems can be classified into four
categories (Table 1) [26]: logical, structural, connective, and operational.
Generally speaking, this order also represents their relative influence on
performance, from most influential (logical) to least influential (opera-
tional).

In fuzzy modeling, logical parameters are usually predefined by the
designer based on experience and on problem characteristics. Typical
choices for the reasoning mechanism are Mamdani-type, Takagi-Sugeno-
Kang (TKS)-type, and singleton-type [42]. Common fuzzy operators are
min, max, product, probabilistic sum, and bounded sum. The most com-
mon membership functions are triangular, trapezoidal, andbell-shaped.
As for defuzzification, several methods have been proposed,with the
Center of Area (COA) and the Mean of Maxima (MOM) being the most
popular [19,42].
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Table 1. Parameter classification of fuzzy inference systems.
Class Parameters

Reasoning mechanism
Logical Fuzzy operators

Membership function types
Defuzzification method
Relevant variables

Structural Number of membership functions
Number of rules
Antecedents of rules

Connective Consequents of rules
Rule weights

Operational Membership-function values

Structural, connective, and operational parameters may beeither pre-
defined, or obtained by synthesis or search methodologies. Generally,
the search space, and thus the computational effort, grows exponen-
tially with the number of parameters. Therefore, one can either invest
more resources in the chosen search methodology, or infuse morea pri-
ori, expert knowledge into the system (thereby effectively reducing the
search space). The aforementioned trade-off between accuracy and inter-
pretability is usually expressed as a set of constraints on the parameter
values, thus complexifying the search process.

2.2 Evolutionary computation

The domain of evolutionary computation involves the study of the foun-
dations and the applications of computational techniques based on the
principles of natural evolution. Evolution in nature is responsible for the
“design” of all living beings on earth, and for the strategies they use to
interact with each other. Evolutionary algorithms employ this powerful
design philosophy to find solutions to hard problems.

Generally speaking, evolutionary techniques can be viewedeither
as search methods, or as optimization techniques. As written by
Michalewicz [21]:

Any abstract task to be accomplished can be thought of as solving
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a problem, which, in turn, can be perceived as a search through a
space of potential solutions. Since usually we are after ‘the best’
solution, we can view this task as an optimization process.

The first works on the use of evolution-inspired approaches to problem
solving date back to the late 1950s [4, 5, 8, 10, 11]. Independent and al-
most simultaneous research conducted by Rechenberg and Schwefel on
evolution strategies[34, 36], by Holland ongenetic algorithms[13], and
by Fogel onevolutionary programming[9] triggered the study and the
application of evolutionary techniques.

Three basic mechanisms drive natural evolution:reproduction, mutation,
andselection. The first two act on thechromosomescontaining the ge-
netic information of theindividual (thegenotype), rather than on the in-
dividual itself (thephenotype) while selection acts on the phenotype. Re-
production is the process whereby new individuals are introduced into
a population. During sexual reproduction,recombination(or crossover)
occurs, transmitting to the offspring chromosomes that area melange
of both parents’ genetic information. Mutation introducessmall changes
into the inherited chromosomes; it often results from copying errors dur-
ing reproduction. Selection, acting on the phenotype, is a process guided
by the Darwinian principle of survival of the fittest. The fittest individu-
als are those best adapted to their environment, which thus survive and
reproduce.

Evolutionary computation makes use of a metaphor of naturalevolution,
according to which a problem plays the role of an environmentwherein
lives a population of individuals, each representing a possible solution
to the problem. The degree of adaptation of each individual (i.e., candi-
date solution) to its environment is expressed by an adequacy measure
known as thefitness function. The phenotype of each individual, i.e.,
the candidate solution itself, is generally encoded in somemanner into
its genome(genotype). Evolutionary algorithms potentially producepro-
gressively better solutions to the problem. This is possible thanks to the
constant introduction of new “genetic” material into the population, by
applying so-called genetic operators which are the computational equiv-
alents of natural evolutionary mechanisms.
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There are several types of evolutionary algorithms, among which the best
known aregenetic algorithms, genetic programming, evolution strate-
gies, and evolutionary programming; though different in the specifics
they are all based on the same general principles. The archetypal evolu-
tionary algorithm proceeds as follows: An initial population of individ-
uals,P (0), is generated at random or heuristically. Every evolutionary
stept, known as ageneration, the individuals in the current population,
P (t), aredecodedandevaluatedaccording to some predefined quality
criterion, referred to as the fitness, or fitness function. Then, a subset of
individuals,P ′(t)—known as themating pool—is selected to reproduce,
with selection of individuals done according to their fitness. Thus, high-
fitness (“good”) individuals stand a better chance of “reproducing,” while
low-fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals into the popula-
tion, i.e., it cannot find new points in the search space. These points
are generated by altering the selected populationP ′(t) via the appli-
cation of crossover and mutation, so as to produce a new population,
P ′′(t). Crossover tends to enable the evolutionary process to moveto-
ward “promising” regions of the search space. Mutation is introduced to
prevent premature convergence to local optima, by randomlysampling
new points in the search space. Finally, the new individualsP ′′(t) are
introduced into the next-generation population,P (t + 1); usuallyP ′′(t)
simply becomesP (t + 1). The termination condition may be specified
as some fixed, maximal number of generations or as the attainment of
an acceptable fitness level. Figure 3 presents the structureof a generic
evolutionary algorithm in pseudo-code format.

As they combine elements of directed and stochastic search,evolution-
ary techniques exhibit a number of advantages over other search meth-
ods. First, they usually need a smaller amount of knowledge and fewer
assumptions about the characteristics of the search space.Second, they
can more easily avoid getting stuck in local optima. Finally, they strike
a good balance betweenexploitationof the best solutions, andexplo-
rationof the search space. The strength of evolutionary algorithms relies
on their population-based search, and on the use of the genetic mecha-
nisms described above. The existence of a population of candidate solu-
tions entails a parallel search, with the selection mechanism directing the
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begin EA
t:=0
Initialize populationP (t)
while not donedo

EvaluateP (t)
P ′(t) := Select[P (t)]
P ′′(t) := ApplyGeneticOperators[P ′(t)]
P (t + 1) := Introduce[P ′′(t),P (t)]
t:=t+1

end while
end EA

Figure 3. Pseudo-code of a standard evolutionary algorithm.

search to the most promising regions, the crossover operator encouraging
the exchange of information between these search-space regions, and the
mutation operator enabling the exploration of new directions.

The application of an evolutionary algorithm involves a number of im-
portant considerations. The first decision to take when applying such an
algorithm is how to encode candidate solutions within the genome. The
representation must allow for the encoding of all possible solutions while
being sufficiently simple to be searched in a reasonable amount of time.
Next, an appropriate fitness function must be defined for evaluating the
individuals. The (usually scalar) fitness value must reflectthe criteria to
be optimized and their relative importance. Representation and fitness are
thus clearly problem-dependent, in contrast to selection,crossover, and
mutation, which seemprima faciemore problem-independent. Practice
has shown, however, that while standard genetic operators can be used,
one often needs to tailor these to the problem as well.

We noted above that there are several types of evolutionary algorithms.
The distinction is mainly due to historical reasons and the different types
of evolutionary algorithms are in fact quite similar. One could argue that
there is but a single general evolutionary algorithm, or just the opposite–
that “there are as many evolutionary algorithms as the researchers work-
ing in evolutionary computation” [31]. The frontiers amongthe widely
accepted classes of evolutionary algorithms have become fuzzy over the
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years as each technique has attempted to overcome its limitations, by
imbibing characteristics of the other techniques. To design an evolution-
ary algorithm one must define a number of important parameters, which
are precisely those that demarcate the different evolutionary-computation
classes. Some important parameters are: representation (genome), selec-
tion mechanism, crossover, mutation, size of populationsP ′ andP ′′, vari-
ability or fixity of population size, and variability or fixity of genome
length.

2.3 Evolutionary Fuzzy Modeling

Evolutionary algorithms are used to search large, and oftencomplex,
search spaces. They have proven worthwhile on numerous diverse prob-
lems, able to find near-optimal solutions given an adequate performance
(fitness) measure. Fuzzy modeling can be considered as an optimization
process where part or all of the parameters of a fuzzy system consti-
tute the search space. Works investigating the applicationof evolutionary
techniques in the domain of fuzzy modeling had first appearedabout a
decade ago [15, 16]. These focused mainly on the tuning of fuzzy infer-
ence systems involved in control tasks (e.g., cart-pole balancing, liquid-
level system, and spacecraft rendezvous operation). Evolutionary fuzzy
modeling has since been applied to an ever-growing number ofdomains,
branching into areas as diverse as chemistry, medicine, telecommunica-
tions, biology, and geophysics. For a detailed bibliography on evolution-
ary fuzzy modeling up to 1996, the reader is referred to [1,6].

Depending on several criteria—including the availablea priori knowl-
edge about the system, the size of the parameter set, and the availability
and completeness of input/output data—artificial evolution can be ap-
plied in different stages of the fuzzy-parameter search. Three of the four
categories of fuzzy parameters in Table 1 can be used to definetargets for
evolutionary fuzzy modeling: structural parameters, connective parame-
ters, and operational parameters [26]. As noted in Section 2.1, logical
parameters are usually predefined by the designer based on experience.

Knowledge tuning (operational parameters).The evolutionary algo-
rithm is used to tune the knowledge contained in the fuzzy system by
finding membership-function values. An initial fuzzy system is defined
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by an expert. Then, the membership-function values are encoded in a
genome, and an evolutionary algorithm is used to find systemswith
high performance. Evolution often overcomes the local-minima problem
present in gradient descent-based methods. One of the majorshortcom-
ings of knowledge tuning is its dependency on the initial setting of the
knowledge base.

Behavior learning (connective parameters).In this approach, one sup-
poses that extant knowledge is sufficient in order to define the mem-
bership functions; this determines, in fact, the maximum number of
rules [42]. The genetic algorithm is used to find either the rule conse-
quents, or an adequate subset of rules to be included in the rule base.

As the membership functions are fixed and predefined, this approach
lacks the flexibility to modify substantially the system behavior. Further-
more, as the number of variables and membership functions increases,
the curse of dimensionality becomes more pronounced and theinter-
pretability of the system decreases rapidly.

Structure learning (structural parameters). In many cases, the avail-
able information about the system is composed almost exclusively of
input/output data, and specific knowledge about the system structure is
scant. In such a case, evolution has to deal with the simultaneous design
of rules, membership functions, and structural parameters. Some meth-
ods use a fixed-length genome encoding a fixed number of fuzzy rules
along with the membership-function values. In this case thedesigner de-
fines structural constraints according to the available knowledge of the
problem characteristics. Other methods use variable-length genomes to
allow evolution to discover the optimal size of the rule base.

Both behavior and structure learning can be viewed as rule-base learning
processes with different levels of complexity. They can thus be assimi-
lated within other methods from machine learning, taking advantage of
experience gained in this latter domain. In the evolutionary-algorithm
community there are two major approaches for evolving such rule sys-
tems: the Michigan approach and the Pittsburgh approach [21]. A more
recent method has been proposed specifically for fuzzy modeling: the it-
erative rule learning approach [12]. These three approaches are briefly
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described below.

The Michigan approach. Each individual represents asinglerule. The
fuzzy inference system is represented by theentire population. Since
several rules participate in the inference process, the rules are in con-
stant competition for the best action to be proposed, and cooperate to
form an efficient fuzzy system. The cooperative-competitive nature of
this approach renders difficult the decision of which rules are ultimately
responsible for good system behavior. It necessitates an effective credit-
assignment policy to ascribe fitness values to individual rules.

The Pittsburgh approach. Here, the evolutionary algorithm maintains
a population of candidate fuzzy systems, each individual representing an
entire fuzzy system. Selection and genetic operators are used to produce
new generations of fuzzy systems. Since evaluation is applied to the en-
tire system, the credit-assignment problem is eschewed. This approach
allows to include additional optimization criteria in the fitness function,
thus affording the implementation of multi-objective optimization. The
main shortcoming of this approach is its computational cost, since a pop-
ulation of full-fledged fuzzy systems has to be evaluated each generation.

The iterative rule learning approach. As in the Michigan approach,
each individual encodes a single rule. An evolutionary algorithm is used
to find a single rule, thus providing a partial solution. The evolution-
ary algorithm is used iteratively for the discovery of new rules, until an
appropriate rule base is built. To prevent the process from finding redun-
dant rules (i.e., rules with similar antecedents), a penalization scheme
is applied each time a new rule is added. This approach combines the
speed of the Michigan approach with the simplicity of fitnessevaluation
of the Pittsburgh approach. However, as with other incremental rule-base
construction methods, it can lead to a non-optimal partitioning of the an-
tecedent space.

As mentioned before, the accuracy-interpretability trade-off faced by
fuzzy modelers implies the assumption of constraints acting on the pa-
rameter values, mainly on the membership-function shapes.The follow-
ing semantic criteria represent conditions driving fuzzy modeling toward
human-interpretable systems [26,30]:
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• Distinguishability.Each linguistic label should have semantic mean-
ing and the fuzzy set should clearly define a range in the universe of
discourse. In the example of Figure 1, to describe variableTriglyc-
eride levelwe used three meaningful labels:Normal, High, andVery
High. Their membership functions are defined using parametersP1,
P2, andP3.

• Justifiable number of elements.The number of membership functions
of a variable should be compatible with the number of conceptual
entities a human being can handle. This number should not exceed
the limit of 7 ± 2 distinct terms. The same criterion is applied to the
number of variables in the rule antecedent.

• Coverage.Any element from the universe of discourse should belong
to at least one of the fuzzy sets. That is, its membership value must be
different than zero for at least one of the linguistic labels. Referring
to Figure 1, we see that any value along the x-axis belongs to at least
one fuzzy set; no value lies outside the range of all sets.

• Normalization.Since all labels have semantic meaning, then, for each
label, at least one element of the universe of discourse should have a
membership value equal to one. In Figure 1, we observe that all three
setsNormal, High, andVery High have elements with membership
value equal to 1.

• Orthogonality.For each element of the universe of discourse, the sum
of all its membership values should be equal to one (as in the example
in Figure 1).

3 Fuzzy Systems for Breast Cancer Diagno-
sis

In this section we present the medical-diagnosis problem which is the
object of our study, and the fuzzy system we propose to solve it with.
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3.1 The WBCD problem

Breast cancer is the most common cancer among women, excluding skin
cancer. The presence of a breast mass2 is an alert sign, but it does not
always indicate a malignant cancer. Fine needle aspiration(FNA)3 of
breast masses is a cost-effective, non-traumatic, and mostly non-invasive
diagnostic test that obtains information needed to evaluate malignancy.

The Wisconsin breast cancer diagnosis (WBCD) database [20]is the re-
sult of the efforts made at the University of Wisconsin Hospital for accu-
rately diagnosing breast masses based solely on an FNA test [17]. Nine
visually assessed characteristics of an FNA sample considered relevant
for diagnosis were identified, and assigned an integer valuebetween 1
and 10. The measured variables are as follows:

1. Clump Thickness (v1);

2. Uniformity of Cell Size (v2);

3. Uniformity of Cell Shape (v3);

4. Marginal Adhesion (v4);

5. Single Epithelial Cell Size (v5);

6. Bare Nuclei (v6);

7. Bland Chromatin (v7);

8. Normal Nucleoli (v8);

9. Mitosis (v9).

The diagnostics in the WBCD database were furnished by specialists
in the field. The database itself consists of 683 cases, with each entry
representing the classification for a certain ensemble of measured values:

2Most breast cancers are detected as a lump or mass on the breast, by self-examination,
by mammography, or by both [18].
3Fine needle aspiration is an outpatient procedure that involves using a small-gauge
needle to extract fluid directly from a breast mass [18].
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case v1 v2 v3 · · · v9 diagnostic

1 5 1 1 · · · 1 benign

2 5 4 4 · · · 1 benign
...

...
...

...
. . .

...
...

683 4 8 8 · · · 1 malignant

Note that the diagnostics do not provide any information about the degree
of benignity or malignancy.

There are several studies based on this database. Bennet andMangasar-
ian [3] used linear programming techniques, obtaining a 99.6% classi-
fication rate on 487 cases (the reduced database available atthe time).
However, their solution exhibits little understandability, i.e., diagnostic
decisions are essentially black boxes, with no explanationas to how they
were attained. With increased interpretability in mind as aprior objective,
a number of researchers have applied the method of extracting Boolean
rules from neural networks [38, 39]. Their results are encouraging, ex-
hibiting both good performance and a reduced number of rulesand rele-
vant input variables. Nevertheless, these systems use Boolean rules and
are not capable of furnishing the user with a measure of confidence for
the decision made. Our own work on the evolution of fuzzy rules for
the WBCD problem has shown that it is possible to obtain diagnostic
systems exhibiting high performance, coupled with interpretability and a
confidence measure [24–27].

3.2 Fuzzy-system setup

The solution scheme we propose for the WBCD problem is depicted in
Figure 4. It consists of a fuzzy system and a threshold unit. The fuzzy
system computes a continuous appraisal value of the malignancy of a
case, based on the input values. The threshold unit then outputs abenign
or malignantdiagnostic according to the fuzzy system’s output.

Our previous knowledge about the WBCD problem represents valuable
information to be used for our choice of fuzzy parameters (Table 1).
When defining our setup we took into consideration the following three
results concerning the composition of potential high-performance sys-
tems: (1) small number of rules; (2) small number of variables; and (3)
monotonicity of the input variables [26]. Some fuzzy modelsforgo in-
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Fuzzy Subsystem

Input DiagnosticAppraisal

Threshold Subsystem

Figure 4. Proposed diagnosis system. Note that the fuzzy subsystem displayed
to the left is in fact the entire fuzzy inference system of Figure 2.

terpretability in the interest of improved performance. Where medical
diagnosis is concerned, interpretability is the major advantage of fuzzy
systems. This motivated us to take into account the five semantic criteria
presented in Section 2.3, defining constraints on the fuzzy parameters:
(1) distinguishability, (2) justifiable number of elements, (3) coverage,
(4) normalization, and (5) orthogonality.

Referring to Table 1, and taking into account these five criteria, we de-
lineate below the fuzzy-system setup:

• Logical parameters: singleton-type fuzzy systems; min-max fuzzy op-
erators; orthogonal, trapezoidal input membership functions (see Fig-
ure 5); weighted-average defuzzification.

• Structural parameters: two input membership functions (Low and
High; see Figure 5); two output singletons (benignandmalignant);
a user-configurable number of rules. The relevant variablesare one of
the evolutionary objectives.

• Connective parameters: the antecedents and the consequentof the
rules are searched by the evolutionary algorithm. The algorithm also
searches for the consequent of the default rule which plays the role
of anelse condition (note that for the fuzzy-genetic approach pre-
sented in Section 4, the consequents are predefined instead of evolved,
thus reducing the search space). All rules have unitary weight.

• Operational parameters: the input membership-function values are to
be found by the evolutionary algorithm. For the output singletons we
used the values 2 and 4, forbenignandmalignant, respectively.
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P d

1
Low High

0 Variable

Membership

Figure 5. Input fuzzy variables for the WBCD problem. Each fuzzy variable
has two possible fuzzy values labeledLow and High, and orthogonal mem-
bership functions, plotted above as degree of membership versus input value.
P and d define the start point and the length of membership function edges,
respectively. The orthogonality condition means that the sum of all member-
ship functions at any point is one. In the figure, an example value u is assigned
the membership valuesµLow(u) = 0.8 andµHigh(u) = 0.2 (as can be seen
µLow(u) + µHigh(u) = 1).

4 A Fuzzy-Genetic Approach

The problem, at this stage, consists of searching for three fuzzy-system
parameters: input membership functions, antecedents of rules, and rele-
vant variables (consequents of rules are predefined; see Section 3.2). We
applied a Pittsburgh-like approach, using a simple geneticalgorithm [40]
to search for individuals whose genomes encode these three parame-
ters. The next subsection describes the setup of the geneticalgorithm,
after which subsection 4.2 presents the results obtained applying this ap-
proach.

4.1 The evolutionary setup

The genome encodes three sets of parameters: input membership func-
tions, antecedents of rules, and relevant variables. It is defined as follows:

• Membership-function parameters. There are nine variables(v1 – v9),
each with two parametersP and d, defining the start point and the
length of the membership-function edges, respectively (Figure 5).

• Antecedents. Thei-th rule has the form:
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Table 2. Parameter encoding of an individual’s genome. Total genome length is
54 + 18Nr, whereNr denotes the number of rules (Nr is seta priori to a value
between 1–5, and is fixed during the genetic-algorithm run).

Parameter Values Bits Qty Total bits
P {1,2,. . . ,8} 3 9 27
d {1,2,. . . ,8} 3 9 27
A {0,1,2,3} 2 9 × Nr 18 × Nr

if (v1 is Ai
1
) and . . . and(v9 is Ai

9
) then (output is benign),

whereAi
j represents the membership function applicable to variable

vj . Ai
j can take on the values: 1 (Low), 2 (High), or 0 or 3 (Other).

• Relevant variables are searched for implicitly by letting the algorithm
choose non-existent membership functions as valid antecedents; in
such a case the respective variable is considered irrelevant. For ex-
ample, the rule

if (v1 is High) and (v2 is Other) and (v3 is Other) and (v4 is
Low) and (v5 is Other) and (v6 is Other) and (v7 is Other)
and (v8 is Low) and (v9 is Other) then (output is benign),

is interpreted as:

if (v1 is High) and (v4 is Low) and (v8 is Low) then (output is
benign).

Table 2 delineates the parameter encoding, which together form a single
individual’s genome.

To evolve the fuzzy inference system, we used a genetic algorithm with
a fixed population size of 200 individuals, and fitness-proportionate se-
lection (Subsection 2.2). The algorithm terminates when the maximum
number of generations,Gmax, is reached (we setGmax = 2000 + 500 ×
Nr, i.e., dependent on the number of rules used in the run), or when the
increase in fitness of the best individual over five successive generations
falls below a certain threshold (in our experiments we used threshold
values between2 × 10−7 and4 × 10−6).
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Our fitness function combines three criteria: (1)Fc: classification per-
formance, computed as the percentage of cases correctly classified; (2)
Fe: the quadratic difference between the continuous appraisal value (in
the range [2, 4]) and the correct discrete diagnosis given by the WBCD
database (either2 or 4); and (3)Fv: the average number of variables per
active rule. The fitness function is given byF = Fc −αFv − βFe, where
α = 0.05 andβ = 0.01 (these latter values were derived empirically).Fc,
the ratio of correctly diagnosed cases, is the most important measure of
performance.Fv measures the linguistic integrity (interpretability), pe-
nalizing systems with a large number of variables per rule (on average).
Fe adds selection pressure towards systems with low quadraticerror.

4.2 Results

This section describes the results obtained when applying the method-
ology described in Section 4.1. We first delineate the success statistics
relating to the evolutionary algorithm. Then, we describe in full a three-
rule evolved fuzzy system that exemplifies our approach.

A total of 120 evolutionary runs were performed, all of whichfound
systems whose classification performance exceeds 94.5%. Inparticular,
considering the best individual per run (i.e., the evolved system with the
highest classification success rate), 78 runs led to a fuzzy system whose
performance exceeds 96.5%, and of these, 8 runs found systems whose
performance exceeds 97.5%; these results are summarized inFigure 6.

Table 3 shows the results of the best systems obtained with the fuzzy-
genetic approach. The number of rules per system was fixed at the outset
to be between one and five, i.e., evolution seeks a system withana pri-
ori given number of rules. A comparison of these systems with other
approaches is presented in Section 5.4 (see also [26]).

We next describe our top-performance system, which serves to exem-
plify the solutions found by our evolutionary approach. Thesystem, de-
lineated in Figure 7, consists of three rules (note that theelse condition
is not counted as an active rule). Taking into account all three criteria of
performance—classification rate, number of rules per system, and aver-
age number of variables per rule— this system can be considered the top
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Figure 6. Summary of results of 120 evolutionary runs. The histogram depicts
the number of systems exhibiting a given performance level at the end of the
evolutionary run. The performance considered is that of thebest individual of
the run, measured as the overall percentage of correctly classified cases over the
entire database.

Table 3. Results of the best systems evolved by the fuzzy-genetic approach.
Shown below are the classification performance values of thetop systems ob-
tained by these approaches, along with the average number ofvariables-per-rule.
Results are divided into five classes, in accordance with thenumber of rules-per-
system, going from one-rule systems to five-rule ones.

Rules-per-system Performance variables-per-rule
1 97.07% 4
2 97.36% 3
3 97.80% 4.7
4 97.80% 4.8
5 97.51% 3.4

one over all 120 evolutionary runs. It obtains an overall classification rate
(i.e., over the entire database) of 97.8%.

A thorough test of this three-rule system revealed that the second rule
(Figure 7) is never actually used; in the fuzzy literature this is known as
a rule that neverfires, i.e., is triggered by none of the input cases. Thus,
it can be eliminated altogether from the rule base, resulting in a two-rule
system (also reducing the average number of variables-per-rule from 4.7
to 4).
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Database
v1 v2 v3 v4 v5 v6 v7 v8 v9

P 3 5 2 2 8 1 4 5 4
d 5 2 1 2 4 7 3 5 2

Rule base
Rule 1 if (v3 is Low) and (v7 is Low) and (v8 is Low) and (v9 is

Low) then (output is benign)
Rule 2 if (v1 is Low) and (v2 is Low) and (v3 is High) and (v4

is Low) and (v5 is High) and (v9 is Low) then (output is
benign)

Rule 3 if (v1 is Low) and (v4 is Low) and (v6 is Low) and (v8 is
Low) then (output is benign)

Default else(output is malignant)

Figure 7. The best evolved, fuzzy diagnostic system with three rules. It exhibits
an overall classification rate of 97.8%, and an average of 4.7variables per rule.
Thorough testing revealed that Rule 2 can be dropped.

5 A Fuzzy Coevolutionary Approach: Fuzzy
CoCo

The fuzzy-genetic approach, even though it obtained good diagnostic
systems, plateaued at a certain performance level. In this section we
present Fuzzy CoCo, a cooperative coevolutionary approachto fuzzy
modeling, capable of obtaining higher-performance systems while re-
quiring less computation than the fuzzy-genetic approach.The next sub-
section briefly explains cooperative coevolution; after which Section 5.2
presents Fuzzy CoCo; Section 5.3 then describes the setup ofFuzzy
CoCo when applied to the WBCD probem, and, finally, Section 5.4
presents the results obtained.

5.1 Cooperative coevolution

Coevolutionrefers to the simultaneous evolution of two or more species
with coupled fitness. Such coupled evolution favors the discovery of
complex solutions whenever complex solutions are required[23]. Sim-
plistically speaking, one can say that coevolving species can either com-
pete (e.g., to obtain exclusivity on a limited resource) or cooperate (e.g.,
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to gain access to some hard-to-attain resource). Cooperative (also called
symbiotic) coevolutionary algorithms involve a number of independently
evolving species which together form complex structures, well-suited to
solve a problem. The fitness of an individual depends on its ability to
collaborate with individuals from other species. In this way, the evolu-
tionary pressure stemming from the difficulty of the problemfavors the
development of cooperative strategies and individuals. Single-population
evolutionary algorithms often perform poorly—manifesting stagnation,
convergence to local optima, and computational costliness—when con-
fronted with problems presenting one or more of the following features:
(1) the sought-after solution is complex, (2) the problem orits solution
is clearly decomposable, (3) the genome encodes different types of val-
ues, (4) strong interdependencies among the components of the solution,
(5) component-ordering drastically affects fitness. Cooperative coevolu-
tion effectively addresses these issues, consequently widening the range
of applications of evolutionary computation. Potter [32, 33] developed
a model in which a number of populations explore different decompo-
sitions of the problem. Below we detail this framework as it forms the
basis of our own approach.

In Potter’s system, each species represents a subcomponentof a potential
solution. Complete solutions are obtained by assemblingrepresentative
members of each of the species (populations). The fitness of each in-
dividual depends on the quality of (some of) the complete solutions it
participated in, thus measuring how well it cooperates to solve the prob-
lem. The evolution of each species is controlled by a separate, indepen-
dent evolutionary algorithm. Figure 8 shows the general architecture of
Potter’s cooperative coevolutionary framework, and the way each evo-
lutionary algorithm computes the fitness of its individualsby combining
them with selected representatives from the other species.A greedy strat-
egy for the choice of representatives of a species is to use one or more of
the fittest individuals from the last generation.

5.2 The coevolutionary algorithm

Fuzzy CoCo is a cooperative coevolutionary approach to fuzzy model-
ing wherein two coevolving species are defined: database (membership
functions) and rule base [27]. This approach is based primarily on the
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Figure 8. Potter’s cooperative coevolutionary system. Thefigure shows the evo-
lutionary process from the perspective of Species 1. The individual being eval-
uated is combined with one or morerepresentativesof the other species so as
to construct several solutions which are tested on the problem. The individual’s
fitness depends on the quality of these solutions.

framework defined by Potter [32,33].

A fuzzy modeling process has usually to deal with the simultaneous
search for operational and connective parameters (Table 1). These pa-
rameters provide an almost complete definition of the linguistic knowl-
edge describing the behavior of a system, and the values mapping this
symbolic description into a real-valued world (a complete definition also
requires logical and structural parameters whose definition is best suited
for human skills). Thus, fuzzy modeling can be thought of as two sepa-
rate but intertwined search processes: (1) the search for the membership
functions (i.e., operational parameters) that define the fuzzy variables,
and (2) the search for the rules (i.e., connective parameters) used to per-
form the inference.

Fuzzy modeling presents several features discussed earlier which jus-
tify the application of a cooperative-coevolutionary approach: (1) The
required solutions can be very complex, since fuzzy systemswith a few
dozen variables may call for hundreds of parameters to be defined. (2)
The proposed solution—a fuzzy inference system—can be decomposed
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into two distinct components: rules and membership functions. (3) Mem-
bership functions are continuous and real-valued, while rules are discrete
and symbolic. (4) These two components are interdependent because the
membership functions defined by the first group of values are indexed by
the second group (rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling problem is solved by
two coevolving, cooperating species. Individuals of the first species en-
code values which define completely all the membership functions for
all the variables of the system. For example, with respect tothe variable
Triglyceridelevel shown in Figure 1, this problem is equivalent to find-
ing the values ofP1, P2, andP3.

Individuals of the second species define a set of rules of the form:

if (v1 is A1) and . . . and(vn is An) then (output is C),

where the termAv indicates which of the linguistic labels of fuzzy vari-
ablev is used by the rule. For example, a valid rule could contain the
expression:

if . . . and (Triglyceridelevel is High) and . . . then . . .

which includes the membership functionHigh whose defining parame-
ters are contained in the first species (population).

The two evolutionary algorithms used to control the evolution of the
two populations are instances of a simple genetic algorithm[40]. Fig-
ure 9 presents the Fuzzy CoCo algorithm in pseudo-code format. The
genetic algorithms apply fitness-proportionate selectionto choose the
mating pool, and apply an elitist strategy with an elitism rateEr to allow
some of the best individuals to survive into the next generation. Standard
crossover and mutation operators are applied with probabilities Pc and
Pm, respectively.

We introduced elitism to avoid the divergent behavior of Fuzzy CoCo,
observed in preliminary trial runs. Non-elitist versions of Fuzzy CoCo
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begin Fuzzy CoCo
g:=0
for each species S

Initialize populationsPS(0)
Evaluate populationPS(0)

end for
while not donedo

for each species S
g:=g+1
ES(g) = elite-selectPS(g − 1)
P ′

S(g) = selectPS(g − 1)
P ′′

S (g) = crossoverP ′

S(g)
P ′′′

S (g) = mutateP ′′

S (g)
PS(g) = P ′′′

s (g) + ES(g)
Evaluate populationPS(g)

end for
end while

end Fuzzy CoCo
Figure 9. Pseudo-code of Fuzzy CoCo. Two species coevolve inFuzzy CoCo:
membership functions and rules. The elitism strategy extractsES individuals to
be reinserted into the population after evolutionary operators have been applied
(i.e., selection, crossover, and mutation). Selection results in a reduced popu-
lation P ′

S(g) (usually, the size ofP ′

S(g) is ‖P ′

S‖ = ‖PS‖ − ‖ES‖). The line
“Evaluate populationPS(g)” is elaborated in Figure 10.

tended to lose the genetic information of good individuals found during
evolution, consequently producing populations with mediocre individu-
als scattered throughout the search space. This is probablydue to the rela-
tively small size of the population which renders difficult the preservation
of good solutions while exploring the search space. The introduction of
simple elitism produces an undesirable effect on Fuzzy CoCo’s perfor-
mance: populations converge prematurely even with reducedvalues of
the elitism rateEr. To offset this effect without losing the advantages of
elitism, it was necessary to increase the mutation probability Pm by an
order of magnitude so as to improve the exploration capabilities of the al-
gorithm. (Increased mutation rates were also reported by Potter [32, 33]
in his coevolutionary experiments.)
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Figure 10. Fitness evaluation in Fuzzy CoCo. (a) Several individuals from gen-
erationg − 1 of each species are selected according to their fitness to be the
representatives of their species during generationg; these representatives are
called “cooperators.” (b) During the evaluation stage of generationg (after se-
lection, crossover, and mutation—see Figure 9), individuals are combined with
the selected cooperators of the other species to construct fuzzy systems. These
systems are then evaluated on the problem domain and serve asa basis for as-
signing the final fitness to the individual being evaluated.

A more detailed view of the fitness evaluation process is depicted in Fig-
ure 10. An individual undergoing fitness evaluation establishes coopera-
tions with one or more representatives of the other species,i.e., it is com-
bined with individuals from the other species to construct fuzzy systems.
The fitness value assigned to the individual depends on the performance
of the fuzzy systems it participated in (specifically, either the average or
the maximal value).

Representatives, called herecooperators, are selected both fitness-
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proportionally and randomly from the previous generation since they
have already been assigned a fitness value (see Figure 9). In Fuzzy CoCo,
Ncf cooperators are selected according to their fitness, usually the fittest
individuals, thus favoring the exploitation of known good solutions. The
otherNcr cooperators are selected randomly from the population to rep-
resent the diversity of the species, maintaining in this wayexploration of
the search space.

5.3 The evolutionary setup

Fuzzy CoCo was set to search for four parameters: input membership-
function values, relevant input variables, and antecedents and conse-
quents of rules. These search goals are more ambitious than those de-
fined for the fuzzy-genetic approach (Section 4) as the consequents of
rules are added to the search space. The genomes of the two species are
constructed as follows:

• Species 1: Membership functions. There are nine variables (v1 – v9),
each with two parameters,P andd, defining the start point and the
length of the membership-function edges, respectively (Figure 5).

• Species 2: Rules. Thei-th rule has the form:

if (v1 is Ai
1
) and . . . and(v9 is Ai

9
) then (output is Ci),

Ai
j can take on the values: 1 (Low), 2 (High), or 0 or 3 (Other). C i

bit can take on the values: 0 (Benign) or 1 (Malignant). Relevant vari-
ables are searched for implicitly by letting the algorithm choose non-
existent membership functions (0 or 3) as valid antecedents; in such a
case the respective variable is considered irrelevant.

Table 4 delineates the parameter encoding for both species’genomes,
which together describe an entire fuzzy system. Note that inthe fuzzy-
genetic approach (Section 4) both membership functions andrules were
encoded in the same genome, i.e., there was only one species.

To evolve the fuzzy inference system, we applied Fuzzy CoCo with the
same evolutionary parameters for both species. Values and ranges of val-
ues used for these parameters were defined according to preliminary tests
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Table 4. Genome encoding of parameters for both species. Genome length for
membership functions is 54 bits. Genome length for rules is19×Nr +1, where
Nr denotes the number of rules.

Species 1: Membership functions
Parameter Values Bits Qty Total bits

P {1,2,. . . ,8} 3 9 27
d {1,2,. . . ,8} 3 9 27

Total 54

Species 2: Rules
Parameter Values Bits Qty Total bits

A {0,1,2,3} 2 9 × Nr 18 × Nr

C {1,2} 1 Nr + 1 Nr + 1
Total 19 × Nr + 1

Table 5. Fuzzy CoCo set-up for the WBCD problem.
Parameter Values

Population size‖Ps‖ [30-90]
Maximum generationsGmax 1000 + 100Nr

Crossover probabilityPc 1
Mutation probabilityPm [0.02-0.3]
Elitism rateEr [0.1-0.6]
“Fit” cooperatorsNcf 1
Random cooperatorsNcr {1,2,3,4}

performed on benchmark problems (mostly function-optimization prob-
lems found in Potter [32]); Table 5 delineates these values.The algorithm
terminates when the maximum number of generations,Gmax, is reached
(we setGmax = 1000+100×Nr, i.e., dependent on the number of rules
used in the run), or when the increase in fitness of the best individual
over five successive generations falls below a certain threshold (10−4 in
our experiments).

Our fitness function combines two criteria: 1)Fc—classification perfor-
mance, computed as the percentage of cases correctly classified, and 2)
Fv—the maximum number of variables in the longest rule. The fitness
function is given byF = Fc − αFv, whereα = 0.0015. Fc, the per-
centage of correctly diagnosed cases, is the most importantmeasure of
performance.Fv measures the linguistic integrity (interpretability), pe-
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nalizing systems with a large number of variables in their rules. The value
α was calculated to allowFv to occasion a fitness difference only among
systems exhibiting similar classification performance. (We did not apply
Fe as it proved of little use.)

We stated earlier that cooperative coevolution reduces thecomputational
cost of the search process. In order to measure this cost we calculated
the number of fuzzy-system evaluations performed by a single run of
Fuzzy CoCo. Each generation, the‖Ps‖ individuals of each population
are evaluatedNc times (whereNc = Ncf + Ncr). The total number of
fuzzy-system evaluations per run is thus2 × Gmax × ‖Ps‖ × Nc. This
value ranged from5.28×105 evaluations for a one-rule system search, up
to 8.16×105 evaluations for a seven-rule system (using typical parameter
values:‖Ps‖ = 80, Ncf = 1, andNcr = 2). The number of fuzzy-
system evaluations required by our single-population approach was, on
the average,5 × 105 for a one-rule system and11 × 105 for a seven-rule
system [26].

5.4 Results

A total of 495 evolutionary runs were performed, all of whichfound
systems whose classification performance exceeds 96.7%. Inparticular,
considering the best individual per run (i.e., the evolved system with the
highest classification success rate), 241 runs led to a fuzzysystem whose
performance exceeds 98.0%, and of these, 81 runs found systems whose
performance exceeds 98.5%.

Table 6 compares our best systems with the top systems obtained by the
fuzzy-genetic approach (Section 4) [26] and with the systems obtained
by Setiono’s NeuroRule approach [38]. The evolved fuzzy systems de-
scribed in this paper can be seen to surpass those obtained byother ap-
proaches in terms of performance, while still containing simple, inter-
pretable rules. As shown in Table 6, we obtained higher-performance
systems for all rule-base sizes but one, i.e., from two-rulesystems to
seven-rule ones, while all our one-rule systems perform as well as the
best system reported by Setiono.

We next describe two of our top-performance systems, which serve to ex-
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Table 6. Comparison of the best systems evolved by Fuzzy CoCowith the top
systems obtained using single-population evolution [26] and with those obtained
by Setiono’s NeuroRule approach [38]. Shown below are the classification per-
formance values of the top systems obtained by these approaches, along with the
number of variables of the longest rule in parentheses. Results are divided into
seven classes, in accordance with the number of rules per system, going from
one-rule systems to seven-rule ones.

Rules
per
system

Neuro-
Rule [38]

Single
population
GA [26]

Fuzzy CoCo

best best average best
1 97.36% (4) 97.07% (4) 97.36% (4) 97.36% (4)
2 – 97.36% (4) 97.73% (3.9) 98.54% (5)
3 98.10% (4) 97.80% (6) 97.91% (4.4) 98.54% (4)
4 – 97.80% (-) 98.12% (4.2) 98.68% (5)
5 98.24% (5) 97.51% (-) 98.18% (4.6) 98.83% (5)
6 – – 98.18% (4.3) 98.83% (5)
7 – – 98.25% (4.7) 98.98% (5)

emplify the solutions found by Fuzzy CoCo. The first system, delineated
in Figure 11, presents the highest classification performance evolved
to date. It consists of seven rules (note that theelse condition is not
counted as an active rule) with the longest rule including 5 variables. This
system obtains an overall classification rate (i.e., over the entire database)
of 98.98%.

In addition to the above seven-rule system, evolution foundsystems with
between 2 and 6 rules exhibiting excellent classification performance,
i.e., higher than 98.5% (Table 6). Among these systems, we consider as
the most interesting the system with the smallest number of conditions
(i.e., total number of variables in the rules). Figure 12 presents one such
two-rule system, containing a total of 8 conditions, and which obtains an
overall classification rate of 98.54%; its longest rule has 5variables.

The improvement attained by Fuzzy CoCo, while seemingly slight (0.5-
1%) is in fact quite significant. A 1% improvement implies 7 additional
cases which are classified correctly. At the performance rates in ques-
tion (above 98%) every additional case is hard-won. Indeed,try as we
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Database
v1 v2 v3 v4 v5 v6 v7 v8 v9

P 2 1 1 1 6 1 3 5 2
d 7 8 4 8 1 4 8 4 1

Rule base
Rule 1 if (v1 is Low) and (v3 is Low) then (output is benign)
Rule 2 if (v4 is Low) and (v6 is Low) and (v8 is Low) and (v9 is

Low) then (output is benign)
Rule 3 if (v1 is Low) and (v3 is High) and (v5 is High) and (v8 is

Low) and (v9 is Low) then (output is benign)
Rule 4 if (v1 is Low) and (v2 is High) and (v4 is Low) and (v5 is

Low) and (v8 is High) then (output is benign)
Rule 5 if (v2 is High) and (v4 is High) then (output is malignant)
Rule 6 if (v1 is High) and (v3 is High) and (v6 is High) and (v7 is

High) then (output is malignant)
Rule 7 if (v2 is High) and (v3 is High) and (v4 is Low) and (v5 is

Low) and (v7 is High) then (output is malignant)
Default else(output is malignant)

Figure 11. The best evolved, fuzzy diagnostic system with seven rules. It ex-
hibits an overall classification rate of 98.98%, and its longest rule includes 5
variables.

did with the fuzzy-genetic approach—tuning parameters andtweaking
the setup—we arrived at a performance impasse. Fuzzy CoCo, however,
readily churned out better-performance systems, which were able to clas-
sify a significant number of additional cases; moreover, these systems
were evolved in less time.

6 Concluding remarks

We presented our recent work which combines the search powerof evolu-
tionary algorithms with the expressive power of fuzzy systems to design
high-performance, human-interpretable medical diagnostic systems. In
particular, we described two approaches for automaticallydesigning sys-
tems for breast-cancer diagnosis: (1) a fuzzy-genetic approach and (2)
Fuzzy CoCo, our novel cooperative coevolutionary approachto fuzzy
modeling.
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Database
v1 v2 v3 v4 v5 v6 v7 v8 v9

P 3 1 3 4 5 7 2
d 8 3 1 2 2 4 1

Rule base
Rule 1 if (v1 is Low) and (v3 is Low) and (v5 is Low) then (output

is benign)
Rule 2 if (v1 is Low) and (v4 is Low) and (v6 is Low) and (v8 is

Low) and (v9 is Low) then (output is benign)
Default else(output is malignant)

Figure 12. The best evolved, fuzzy diagnostic system with two rules. It exhibits
an overall classification rate of 98.54%, and a maximum of 5 variables in the
longest rule.

We applied the two aforementioned algorithms to the Wisconsin breast
cancer diagnosis problem. Our evolved systems exhibit bothcharacter-
istics outlined in Section 1: first, they attain high classificationperfor-
mance(the best shown to date); second, the resulting systems involve a
few simple rules, and are thereforeinterpretable.

We are currently investigating the expansion of Fuzzy CoCo,with two
short-term goals in mind: 1) Study the tuning of the genetic-algorithm
parameters according to each species characteristics (e.g., encoding
schemes, elitism rates, or mutation probabilities). 2) Explore the applica-
tion of different evolutionary algorithms for each species(e.g., evolution
strategies for the evolution of membership functions). In the long term
we plan to test some novel ideas that could improve Fuzzy CoCo: 1)
Coevolution ofNr + 1 species, one species for each of theNr rules in
addition to the membership-function species. 2) Coexistence of several
Fuzzy CoCo instances (each one set to evolve systems with a different
number of rules), permitting migration of individuals among them so as
to increase the exploration and the diversity of the search process. 3) Ap-
ply the strategy of rising and death of species proposed by Potter and
DeJong [33] in order to evolve systems with variable numbersof rules
and membership functions.
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