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Computing with cellular automata: Three cases for nonuniformity
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Recently, there has been a resurgence of interest in the use of cellular automata~CA! as computa-
tional devices. This paper demonstrates the advantages of nonuniform CAs, in which cellular rules may be
heterogeneous, over the classical, uniform model. We address three problems that require global computation:
parity, symmetry, and synchronization, showing that:~1! there does not exist a uniform, radiusr 51 CA that
effectively computes a solution, while~2! construction of a nonuniform CA is straightforward.
@S1063-651X~98!04503-6#
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Cellular automata~CA! are discrete, dynamical system
that perform computations in a distributed fashion on a s
tially extended grid. A cellular automaton consists of an
ray of cells, each of which can be in one of a finite number
possible states, updated synchronously in discrete time s
according to a local, identical interaction rule.

Since their inception CAs have been used as a for
model for studying phenomena of interest in several sc
tific fields, including physics, biology, and computer scien
to mention but a few. In recent years there has been grow
interest in the utilization of CAs as actual computing d
vices. This is largely due to their ‘‘attractive’’ propertie
where computation is concerned, namely, massive para
ism, locality of cellular interactions, and simplicity of bas
components~cells!. These greatly facilitate the implement
tion of CAs as electronic hardware@1,2#. CAs also suggest
possible approach to attaining novel computational archi
tures at the nanometer scale@3#.

A major problem with such highly local systems is th
difficulty in designing them to exhibit a specific behavior
solve a particular problem. This results from the local d
namics of the system, which renders the design of local
teraction rules to perform global computational tasks
tremely arduous. It is important to understand what we m
by this latter term ‘‘global computation.’’ A local computa
tion involves the calculation of a property that can be e
pressed in purely local terms, i.e., as a function of the lo
cellular neighborhood. Such local operators abound, for
ample, in the domain of low-level image processing, wh
various filters and noise-reducing operations are define
terms of the cell’s nearest neighbors@4#. By global compu-
tation we mean calculation of a nonlocal property, i.e., o
that cannot be defined in purely local terms. The differen
between global and local computation is not a hard disti
tion, but a matter of degree. Some properties may be o
slightly nonlocal, requiring but a small extension beyond
cell’s local neighborhood, while others may be highly glob
in the sense that the entire grid must be considered in o
to compute a correct output.

The distinction between global and local computati
made in the previous paragraph is by no means intende
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serve as a formal definition. Rather, it aims at motivating
question of computation in CAs, addressed in this paper.
intention is to investigate a number of problems that invo
global computation, where the CA must compute a giv
property that is ‘‘distributed’’ over the entire grid.

One of the attributes of the CA model is its uniformit
meaning that the cellular rule is identical for all cells. W
have recently been investigating a variation of this mod
namely, nonuniform CAs, where cellular rules need not
identical@1,5,6#. This research is centered on the applicat
of an evolutionary algorithm, known as cellular program
ming, to evolve nonuniform CAs to perform computation
Our results to date suggest that this model exhibits inter
ing behavior in general, offering, in particular, new paths
the pursuit of novel computational architectures. Nonunifo
CAs seem to have received very little attention in the lite
ture ~one of the few references we were able to trace is@7#!,
though from a hardware point of view they offer the sam
aforementioned advantages of uniform CAs. In a rec
work, Benjamin and Johnson@3# presented a one
dimensional CA that can perform binary addition. In fact, t
CA in question is nonuniform, consisting of two distin
rules, which are supplemented by a third one in order
enable implementation using coupled quantum dots@8#.

Increasing the problem-solving capacities of a CA c
come about by modifying parameters other than the uni
mity of rules, such as the number of states per cell or
cellular radius~or both!. However, these usually entail
much higher cost where implementation is concerned si
the resulting system exhibits denser connectivity and m
complex cells. This is true of nanometer-scale machines
well as more conventional electronic hardware. It can also
observed that a finite number of different rules in a nonu
form CA can be transformed into one single uniform ru
with more states — again, this entails a high implementat
cost.

The goal of this paper is to demonstrate the advantage
nonuniformity by addressing three problems that require g
bal computation: parity, symmetry, and synchronization. F
each of these problems we show that:~1! there does not exis
a uniform radiusr 51 CA that effectively computes a solu
tion, while ~2! construction of a nonuniform CA is straigh
forward. By CA solution we mean one that applies to a
grid sizeN. When considering CAs that perform comput

aft
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tions it is understood that the input to the computation
encoded as an initial state configuration, and the output is
configuration after a certain number of time steps.

The CAs studied herein are binary state, with radiur
51 ~i.e., each cell is connected only to two other cells, tho
to its immediate left and right!. A cell’s rule table is specified
by 8 bits that determine the cell’s state at time stept11 as a
function of its state along with those of its two neighbors
time stept:

t u 111 110 101 100 011 010 001 00

t11u r 7 r 6 r 5 r 4 r 3 r 2 r 1 r 0

wherer iP$0,1%, i 50, . . . ,7. Inaccordance with Wolfram’s
standard notation@9#, a rule is denoted by a decimal valu
between 0 and 255, equal to( i 50

7 2i r i .
The parity problem.In this problem the initial~input! con-

figuration must be classified into two classes, according
whether it contains an odd number of ones or not~the output
is thus the parity of the input — odd or even!. The problem
was given a good deal of attention in Minsky and Pape
seminal work in the field of artificial neural networks@10#.
The problem’s difficulty stems from the fact that the mo
similar patterns~those which differ by a single bit! require
different outputs. It was proven to be a hard problem fo
single-layer perceptron@10#, and treated several years later
another seminal work, that of Rumelhart, Hinton, and W
iams @11#, who showed that multilayer perceptrons can
trained to solve it. The parity problem still remains an im
portant benchmark where neural networks are concer
and our aim below is to treat it within the context of cellul
automata.

We first proceed to show that a uniform, binary-sta
r 51 CA cannot solve this problem. Our demonstrati
is based upon the following observation: assume tha
CA must classify any input configuration into one ofn
distinct classes, where each configuration belongs to exa
one class. Then, for a configuration belonging to classi , at
no point during the CA’s time evolution can the grid co
figuration consist of a pattern belonging to classj , j Þ i
( i , j P$1, . . . ,n%). This means that upon giving an input co
figuration belonging to classi , the CA must pass through
state trajectory consisting solely of class-i configurations.
The reason is apparent — if this class-preservation rul
violated, i.e., the CA passes through a class-j configuration
while treating a class-i pattern (j Þ i ), then there exist at leas
two configurations, belonging to two different classes, wh
will be classified incorrectly as being of the same class.

Thus, a necessary~though not sufficient! condition that a
parity classifier must meet is that it be parity preservin
Below, we ‘‘narrow down’’ the number of possible uniform
r 51 CAs that are candidates for solving the parity probl
by looking at the constraints on the rule table imposed by
parity-preservation requirement. Null boundary conditio
are assumed, i.e., the extreme left and right cells are con
ered to have a cell with a constant state of zero as t
‘‘missing’’ neighbor. ~Note: in what follows the constraint
on N may differ between cases, as indicated.!

Constraint 1: r050. This results from the fact that give
a grid of sizeN, whereN is odd, the configuration 0N must
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be mapped to 0N ~mapping it to 1N would result in a change
of class!.

Constraint 2: r550. Consider the configuration 1N,
where N>3 is odd. Parity preservation implies~1! r 7
50⇔r 3Þr 6, and ~2! r 751⇔r 35r 6. Next, consider the
configurationsX11111Y andX11011Y, X,YP$0,1%* , which
obviously belong to two different classes. Thus, at the n
time step the CA must maintain an odd~Hamming! distance
between the configurations obtained via application of
rule, implying ~1! r 750⇒r 3Þr 6⇒r 550, and ~2! r 7
51⇒r 35r 6⇒r 550. Thus, we obtain the constraintr 550.

Constraint 3: r251. Consider the configuration$10%M1,
of sizeN52M11, whereM is even. Since we have alread
established thatr 550, parity preservation requires thatr 2
51.

Constraint 4: r15r 450. Consider the configuration
0N211, N>2. Sincer 050 and r 251 this requires thatr 1
50. Similarly, considering the configuration 10N21 results
in r 450.

Constraint 5: r35r 6. Consider the configuration 01N220,
whereN>4 is even. Sincer 15r 450, this implies thatr 3
5r 6.

Constraint 6: r751. This follows from constraint 5 (r 3
5r 6) and the argument given for constraint 2 (r 751⇔r 3
5r 6).

The above constraints narrow the possible parity clas
ers to two rules: 132 and 204. This seems to be the best
can do, since the values ofr 3 and r 6 cannot be further de-
limited — if either neighborhood occurs somewhere alo
the grid, the other must occur as well~due to the null bound-
ary conditions!. Their equality implies that parity is pre
served, whatever the actual value.

Rule 204 is the identity rule, i.e., one that transforms
state of a cell to itself, and can therefore obviously not
considered as an effective parity classifier. Rule 132 seem
offer only a slight improvement over rule 204, settling afte
few time steps to one of a large number of fixed points~this
is demonstrated exhaustively for small-size grids in W
fram’s book @9#, where several tables in the end provide
comprehensive ‘‘guide’’ to uniform,r 51 CAs!. The only
apparent difference from rule 204 is that it slightly reduc
the number of 1’s in the initial configuration. However, the
seems to be no succinct output specification that would in
cate the input pattern’s class, and the CA cannot there
effectively compute a solution. An interesting example o
uniform CA solving a hard problem, known as density cla
sification, was recently demonstrated by Capcarrere, Sip
and Tomassini@12#. This CA ~as well as the nonuniform
ones discussed herein! performs effective computation in th
sense that the complexity of the output is reduced with
spect to the input, i.e., ‘‘reading’’ the output is in some sen
easier~e.g., with respect to Kolmogorov or computation
complexity — see@12#!.

If one considers nonuniform CAs parity classification b
comes straightforward. Two possibilities would be~1! a grid
consisting of rule 240 in all cells, except for the rightmo
cell with rule 60. Essentially, rule 240 implements a rig
shift, while rule 60 performs theXOR operation between its
central and left bits. Initializing the rightmost cell to zer
and the rest of the grid with the input configuration, th
afterN21 time steps the rightmost cell will contain the ou
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57 3591COMPUTING WITH CELLULAR AUTOMATA: THREE . . .
put: a state of 1 for odd parity and 0 otherwise@Fig. 1~a!#.
~2! A grid of size 2M11, consisting of a central cell with
rule 150~which performs a sum modulo 2 of its three neig
boring states!, M left cells with rule 240~right shift!, andM
right cells with rule 170~left shift!. The central cell, initial-
ized to zero, will contain the output afterM time steps.

The symmetry problem.In this problem the even-size in
put configuration must be classified into two classes, acc
ing to whether it is symmetric about its center or not. T
problem was discussed by Minsky and Papert@10# within a
neural network context, with backpropagation being appl
to its solution several years later@11#.

Below, we narrow down the number of possible unifor
r 51 CAs that are candidates for solving the symmetry pr
lem by looking at the constraints on the rule table impos
by the symmetry-preservation requirement~by this we mean
the preservation of a pattern’s symmetry or nonsymme
characteristic, as may be the case!. Null boundary conditions
are assumed.~Symmetry considerations in CA design we
also discussed in@13#.!

Constraint 1: r15r 4, r 35r 6. This results from the fac
that a symmetric pattern at time stept must remain so at time
stept11, entailing the above symmetries in the rule tabl

Constraint 2: r1Þr 2. Consider theN52 grid configura-
tion 01, transformed in the next time step tor 1r 2. Preserva-
tion of its nonsymmetry implies the above constraint.

Constraint 3: r3Þr 4 or r 7Þr 6, whereor is the logicalOR

function. Consider theN54 configuration 1110, transforme

FIG. 1. Demonstration of nonuniform,r 51 CAs discussed in
text. White squares represent cells in state 0, black squares r
sent cells in state 1. The pattern of configurations is shown thro
time, which increases down the page. Null boundary conditions
used for~a! and~b!, and periodic boundary conditions for~c!. Grid
sizes areN575 for ~a!, ~b!, andN5149 for ~c!. ~a! Parity classifier
consisting of rule 240 in all cells, except for the rightmost cell w
rule 60. Initial configuration has odd parity.~b! Symmetry classifier
consisting of a grid with rule 132~central cell!, rule 240~all cells to
the left!, and rule 170~all cells to the right!. Initial configuration is
symmetric.~c! A nonuniform CA that solves the synchronizatio
problem, evolved via the cellular programming evolutionary alg
rithm.
d-

d

,
-
d

y

in the next time step tor 3r 7r 6r 4. Preservation of its nonsym
metry implies the above constraint.

Constraint 4: r0Þr 6 or r 1 Þ r 3. Consider theN54 con-
figuration 0011, transformed in the next time step
r 0r 1r 3r 6. Preservation of its nonsymmetry implies the abo
constraint.

Constraint 5: r2Þr 6 or r 5Þr 3. Consider theN54 con-
figuration 1011, transformed in the next time step
r 2r 5r 3r 6. Preservation of its nonsymmetry implies the abo
constraint.

Constraint 6: r0Þr 2 or r 1Þr 5 or r 3Þr 6. Consider the
N56 configuration 001101, transformed in the next tim
step tor 0r 1r 3r 6r 5r 2. Preservation of its nonsymmetry im
plies the above constraint.

Constraint 7: r2Þr 6 or r 5Þr 7 or r 2Þr 3 or r 4Þr 1. Con-
sider theN58 configuration 10100111, transformed in th
next time step tor 2r 5r 2r 4r 1r 3r 7r 6. Preservation of its non-
symmetry implies the above constraint.

The above constraints narrow the possible symmetry c
sifiers to four rules: 51, 90, 165, and 204. Of these rules
~identity! and 51~inverse identity! can immediately be ruled
out as possible effective symmetry classifiers. Rules 90
165 belong to Wolfram’s class 3, consisting of rules th
exhibit chaotic, aperiodic behavior~note that these two rule
are equivalent under the conjugation transformation, i.e.,
terchange of the roles of 0 and 1! @9#. We maintain that these
cannot perform effective classification, as there seems to
no way to define a succinct output specification that wo
indicate the input pattern’s class.

Constructing a nonuniform CA symmetry classifier
straightforward. A grid of size 2M11, consisting of a cen-
tral cell with rule 132,M left cells with rule 240~right shift!,
and M right cells with rule 170~left shift! can solve the
problem. The central cell, initialized to 1, will remain in th
state as long as its left and right neighbors match. Upon
arrival of a nonmatching pair, the central cell changes
state to zero, and remains so, signifying a nonsymmetric
tern. If no such pair arrives duringM time steps the central
cell state remains 1, signifying a symmetric pattern@Fig.
1~b!#.

The synchronization problem.In this problem the CA,
given any initial configuration, must reach a final configur
tion, within a fixed number of time steps, that oscillates b
tween all 0’s and all 1’s on successive time steps. Spati
periodic boundary conditions are used, resulting in a circu
grid. The problem was introduced by Daset al. @14# who
applied a genetic algorithm to evolve uniform CAs to sol
it. They noted that the task is nontrivial since synchrono
oscillation is a global property of a configuration, wherea
small-radius CA employs only local interactions. Thus, wh
local regions of synchrony can be directly attained, it is mo
difficult to design CAs in which spatially distant regions a
in phase. Since out-of-phase regions can be distribu
throughout the grid, transfer of information must occur ov
large distances@i.e., O(N)] to remove these phase defec
and produce a globally synchronous configuration.

The synchronization problem is different from the prev
ous two in that the CA’s ultimate behavior is specified~a
period-2 cycle! rather than a classification criterion on th
input patterns. Thus, one can easily show by empirical me
that no uniformr 51 CA exists that can solve this problem
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3592 57MOSHE SIPPER
Wolfram @9# provides a complete listing of all cycles fo
CAs of sizesN59,10,11~these are small enough to yield
exhaustive testing of all possible input configurations! —
examination of these tables reveals that nor 51 CA exhibits
precisely one or two cycles of period two. We have p
formed tests on larger grids~statistical rather than exhaus
tive!, confirming this result@1#. Clearly, the synchronization
problem cannot be solved by a uniformr 51 CA ~at least not
for all grid sizesN).

Constructing a nonuniform CA to solve the synchroniz
tion problem is again straightforward. A grid consisting o
left cell with rule 51, with all other cells containing rule 1
can solve the problem. Essentially, rule 51 simply flips
state at each time step, with rule 15 entering the oppo
state of its left neighbor. Synchronization will be attain
after N time steps. Another solution, exhibiting more ‘‘intr
cate’’ dynamical behavior, was evolved by the cellular p
gramming evolutionary algorithm@1#, and is demonstrated in
-
,

.

-

-

te

-

Fig. 1~c! ~a formal framework addressing the meaning
‘‘intricateness’’ of a CA’s dynamical behavior is outlined i
@15#!.

An interesting observation concerning the nonunifo
systems presented herein is their high degree of ‘‘regulari
— while a nonuniform CA can possibly contain a plethora
different rules we have found that only a small number m
be needed in practice. Such CAs, dubbed quasiuniform, w
also observed to emerge via cellular programming@1#.

Continued increase in computing power will somed
~perhaps soon! require novel computational architecture
One emerging approach seems to be that of CA-like syste
We have endeavored to demonstrate above that depa
from the classical model, changing, as it were, the rules
the game, offers promising future prospects.

The author is grateful to Marco Tomassini for his helpf
comments.
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