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Computing with cellular automata: Three cases for nonuniformity
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Recently, there has been a resurgence of interest in the use of cellular aui@Aatas computa-
tional devices. This paper demonstrates the advantages of nonuniform CAs, in which cellular rules may be
heterogeneous, over the classical, uniform model. We address three problems that require global computation:
parity, symmetry, and synchronization, showing tia):there does not exist a uniform, radius 1 CA that
effectively computes a solution, whilg2) construction of a nonuniform CA is straightforward.
[S1063-651X(98)04503-6]

PACS number(s): 89.80.+h, 02.70.Rw, 07.05.Bx

Cellular automatgCA) are discrete, dynamical systems serve as a formal definition. Rather, it aims at motivating the
that perform computations in a distributed fashion on a spaguestion of computation in CAs, addressed in this paper. Our
tially extended grid. A cellular automaton consists of an ar-intention is to investigate a number of problems that involve
ray of cells, each of which can be in one of a finite number ofglobal computation, where the CA must compute a given
possible states, updated synchronously in discrete time stepsoperty that is “distributed” over the entire grid.
according to a local, identical interaction rule. One of the attributes of the CA model is its uniformity,

Since their inception CAs have been used as a formaineaning that the cellular rule is identical for all cells. We
model for studying phenomena of interest in several scienhave recently been investigating a variation of this model,
tific fields, including physics, biology, and computer science namely, nonuniform CAs, where cellular rules need not be
to mention but a few. In recent years there has been growinglentical[1,5,6]. This research is centered on the application
interest in the utilization of CAs as actual computing de-of an evolutionary algorithm, known as cellular program-
vices. This is largely due to their “attractive” properties ming, to evolve nonuniform CAs to perform computations.
where computation is concerned, namely, massive parallePur results to date suggest that this model exhibits interest
ism, locality of cellular interactions, and simplicity of basic ing behavior in general, offering, in particular, new paths in
componentgcells). These greatly facilitate the implementa- the pursuit of novel computational architectures. Nonuniform
tion of CAs as electronic hardwaf#,2]. CAs also suggest a CAs seem to have received very little attention in the litera-
possible approach to attaining novel computational architecture (one of the few references we were able to trade@(3,
tures at the nanometer scaf|. though from a hardware point of view they offer the same

A major problem with such highly local systems is the aforementioned advantages of uniform CAs. In a recent
difficulty in designing them to exhibit a specific behavior or work, Benjamin and Johnson3] presented a one-
solve a particular problem. This results from the local dy-dimensional CA that can perform binary addition. In fact, the
namics of the system, which renders the design of local inCA in question is nonuniform, consisting of two distinct
teraction rules to perform global computational tasks ex+tules, which are supplemented by a third one in order to
tremely arduous. It is important to understand what we meaenable implementation using coupled quantum ¢8is
by this latter term “global computation.” A local computa- Increasing the problem-solving capacities of a CA can
tion involves the calculation of a property that can be ex-come about by modifying parameters other than the unifor-
pressed in purely local terms, i.e., as a function of the locaimity of rules, such as the number of states per cell or the
cellular neighborhood. Such local operators abound, for exeellular radius(or both). However, these usually entail a
ample, in the domain of low-level image processing, wheremuch higher cost where implementation is concerned since
various filters and noise-reducing operations are defined ithe resulting system exhibits denser connectivity and more
terms of the cell's nearest neighbdrs|. By global compu- complex cells. This is true of nanometer-scale machines as
tation we mean calculation of a nonlocal property, i.e., onevell as more conventional electronic hardware. It can also be
that cannot be defined in purely local terms. The differencebserved that a finite number of different rules in a nonuni-
between global and local computation is not a hard distincform CA can be transformed into one single uniform rule
tion, but a matter of degree. Some properties may be onlwith more states — again, this entails a high implementation
slightly nonlocal, requiring but a small extension beyond thecost.
cell’'s local neighborhood, while others may be highly global, The goal of this paper is to demonstrate the advantages of
in the sense that the entire grid must be considered in orderonuniformity by addressing three problems that require glo-
to compute a correct output. bal computation: parity, symmetry, and synchronization. For

The distinction between global and local computationeach of these problems we show tHaf:there does not exist
made in the previous paragraph is by no means intended ® uniform radiug =1 CA that effectively computes a solu-

tion, while (2) construction of a nonuniform CA is straight-
forward. By CA solution we mean one that applies to any
*Electronic address: Moshe.Sipper@di.epfl.ch grid sizeN. When considering CAs that perform computa-
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tions it is understood that the input to the computation isbe mapped to ® (mapping it to I would result in a change

encoded as an initial state configuration, and the output is thef class.

configuration after a certain number of time steps. Constraint 2: =0. Consider the configuration N1
The CAs studied herein are binary state, with radius where N=3 is odd. Parity preservation implie€l) r-

=1 (i.e., each cell is connected only to two other cells, those=0<r,#r4, and (2) r,=1<r;=rq Next, consider the

to its immediate left and rightA cell’s rule table is specified configurationsX11111Y andX11011Y, X,Y e {0,14*, which

by 8 bits that determine the cell's state at time dtefi asa  obviously belong to two different classes. Thus, at the next

function of its state along with those of its two neighbors attime step the CA must maintain an odamming distance

time stept: between the configurations obtained via application of the
rule, implying (1) r;=0=r3#rg=r5=0, and (2) ry
t | 111 110 101 100 011 010 001 000 =1=rz=rg=rs=0. Thus, we obtain the constrain{=0.

Constraint 3: ,=1. Consider the configuratioflO}M1,
of sizeN=2M+1, whereM is even. Since we have already
established that;=0, parity preservation requires that

t+1| r; fe fs g T3 T, I, Ig

wherer; €{0,1}, i=0,...,7. Inaccordance with Wolfram's =1.

standard notatiofi9], a rule is denoted by a decimal value  Constraint 4. r,=r,=0. Consider the configuration

between 0 and 255, equal B_,2'r; . o0N~11, N=2. Sincery,=0 andr,=1 this requires that,
The parity problemin this problem the initialinput) con- ~ =0. Similarly, considering the configuration N0 results

figuration must be classified into two classes, according tén r,=0.

whether it contains an odd number of ones or (tio¢ output Constraint 5: =rg. Consider the configuration 8120,

is thus the parity of the input — odd or evyeiThe problem whereN=4 is even. Since,;=r,=0, this implies thatr
was given a good deal of attention in Minsky and Papert's=r,

seminal work in the field of artificial neural network$0]. Constraint 6: r=1. This follows from constraint 5rg
The problem’s difficulty stems from the fact that the mOSt:rG) and the argument given for constraint € 1<r4
similar patterngthose which differ by a single bitequire  =r).

different outputs. It was proven to be a hard problem for a The above constraints narrow the possible parity classifi-
single-layer perceptrofi0], and treated several years later in ers to two rules: 132 and 204. This seems to be the best one
another seminal work, that of Rumelhart, Hinton, and Will- can do, since the values of andrg cannot be further de-
iams [11], who showed that multilayer perceptrons can bejimited — if either neighborhood occurs somewhere along
trained to solve it. The parity problem still remains an im- the grid, the other must occur as wélue to the null bound-
portant benchmark where neural networks are concernegyy conditiong. Their equality implies that parity is pre-
and our aim below is to treat it within the context of cellular served, whatever the actual value.
automata. Rule 204 is the identity rule, i.e., one that transforms the
We first proceed to show that a uniform, binary-state,state of a cell to itself, and can therefore obviously not be
r=1 CA cannot solve this problem. Our demonstrationconsidered as an effective parity classifier. Rule 132 seems to
is based upon the following observation: assume that affer only a slight improvement over rule 204, settling after a
CA must classify any input configuration into one of  few time steps to one of a large number of fixed poiitiss
distinct classes, where each configuration belongs to exactig demonstrated exhaustively for small-size grids in Wol-
one class. Then, for a configuration belonging to clas#  fram’s book[9], where several tables in the end provide a
no point during the CA'’s time evolution can the grid con- comprehensive “guide” to uniformy=1 CAs). The only
figuration consist of a pattern belonging to classj#i apparent difference from rule 204 is that it slightly reduces
(i,je{1, ... n}). This means that upon giving an input con- the number of 1's in the initial configuration. However, there
figuration belonging to clasis the CA must pass through a seems to be no succinct output specification that would indi-
state trajectory consisting solely of classonfigurations. cate the input pattern’s class, and the CA cannot therefore
The reason is apparent — if this class-preservation rule igffectively compute a solution. An interesting example of a
violated, i.e., the CA passes through a clasnfiguration  uniform CA solving a hard problem, known as density clas-
while treating a classpattern § #i), then there exist at least sification, was recently demonstrated by Capcarrere, Sipper,
two configurations, belonging to two different classes, whichand Tomassin{12]. This CA (as well as the nonuniform
will be classified incorrectly as being of the same class.  ones discussed hergiperforms effective computation in the
Thus, a necessaryhough not sufficientcondition that a sense that the complexity of the output is reduced with re-
parity classifier must meet is that it be parity preserving.spect to the input, i.e., “reading” the output is in some sense
Below, we “narrow down” the number of possible uniform, easier(e.g., with respect to Kolmogorov or computational
r=1 CAs that are candidates for solving the parity problemcomplexity — sed12]).
by looking at the constraints on the rule table imposed by the If one considers nonuniform CAs parity classification be-
parity-preservation requirement. Null boundary conditionscomes straightforward. Two possibilities would e a grid
are assumed, i.e., the extreme left and right cells are considonsisting of rule 240 in all cells, except for the rightmost
ered to have a cell with a constant state of zero as theicell with rule 60. Essentially, rule 240 implements a right
“missing” neighbor. (Note: in what follows the constraints shift, while rule 60 performs th&oR operation between its
on N may differ between cases, as indicajed. central and left bits. Initializing the rightmost cell to zero,
Constraint 1: p,=0. This results from the fact that given and the rest of the grid with the input configuration, then
a grid of sizeN, whereN is odd, the configuration®™®must  afterN—1 time steps the rightmost cell will contain the out-
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in the next time step tosr,rgr 4. Preservation of its nonsym-
metry implies the above constraint.

Constraint 4: y#rg or ry # r3. Consider theN=4 con-
figuration 0011, transformed in the next time step to
rof 1r3fe. Preservation of its nonsymmetry implies the above
constraint.

Constraint 5: L, #rg or rs#r5. Consider thedN=4 con-
figuration 1011, transformed in the next time step to
rorsrafg. Preservation of its nonsymmetry implies the above
constraint.

Constraint 6: p#r, or r{#rs or rz#rg. Consider the
N=6 configuration 001101, transformed in the next time
step torgrqrargrsto. Preservation of its nonsymmetry im-
plies the above constraint.

Constraint 7: L #rg Or rg#r; Or ro#r3 Ofr r4#r4. Con-
sider theN=28 configuration 10100111, transformed in the
next time step taorsror4r1rsr;rg. Preservation of its non-
symmetry implies the above constraint.

(&) The above constraints narrow the possible symmetry clas-
sifiers to four rules: 51, 90, 165, and 204. Of these rules 204

FIG. 1. Demonstration of nonuniform,=1 CAs discussed in  (igentity) and 51(inverse identity can immediately be ruled
text. White squares represent cells in state 0, black squares reprgyt g5 possible effective symmetry classifiers. Rules 90 and
sent cells in state 1. The pattern of configurations is shown through g belong to Wolfram’s class 3, consisting of rules that
time, which increases down the page. Null boundary conditions are hibit chaotic aperiodic behavignote that these two rules
used for() and (b), and periodic boundary conditions f). Grid are equivalent’under the conjugation transformation, i.e., in-
sizes areN=75 for (a), (b), andN= 149 for(c). (a) Parity classifier terchange of the roles of 0 andl[B]. We maintain that ’th'eé’e
consisting of rule 240 in all cells, except for the rightmost cell with cannot perform effective classificz;ltion as there seems to be
rule 60. Initial configuration has odd paritih) Symmetry classifier . . N
consisting of a grid with rule 13gentral cel), rule 240(all cells to ir|1’1(21i\g:t¥a E[(f)\gie;:)ﬁ 2;5;(22(:2'22?”'{ specification that would

the left), and rule 17Qall cells to the right Initial configuration is h : L
symmetric.(c) A nonuniform CA that solves the synchronization ~ Constructing a nonuniform CA symmetry classifier is

problem, evolved via the cellular programming evolutionary algo-Straightforward. A grid of size 1+ 1, consisting of a cen-
rithm. tral cell with rule 132M left cells with rule 24Q(right shift),

and M right cells with rule 170(left shift) can solve the

put: a state of 1 for odd parity and O otherwiség. 1(@].  problem. The central cell, initialized to 1, will remain in this
(2) A grid of size 2M +1, consisting of a central cell with state as long as its left and right neighbors match. Upon the
rule 150(which performs a sum modulo 2 of its three neigh-arrival of a nonmatching pair, the central cell changes its
boring stateg M left cells with rule 24Q(right shift), andM state to zero, and remains so, signifying a nonsymmetric pat-
right cells with rule 170(left shift). The central cell, initial-  tern. If no such pair arrives during time steps the central-
ized to zero, will contain the output aftdf time steps. cell state remains 1, signifying a symmetric pattg¢Fig.

The symmetry problentn this problem the even-size in- 1(b)].
put configuration must be classified into two classes, accord- The synchronization problenin this problem the CA,
ing to whether it is symmetric about its center or not. Thegiven any initial configuration, must reach a final configura-
problem was discussed by Minsky and Pagpéfi] within a  tion, within a fixed number of time steps, that oscillates be-
neural network context, with backpropagation being appliedween all 0's and all 1's on successive time steps. Spatially
to its solution several years latgt1]. periodic boundary conditions are used, resulting in a circular

Below, we narrow down the number of possible uniform, grid. The problem was introduced by Dasal. [14] who
r=1 CAs that are candidates for solving the symmetry prob-applied a genetic algorithm to evolve uniform CAs to solve
lem by looking at the constraints on the rule table imposedt. They noted that the task is nontrivial since synchronous
by the symmetry-preservation requiremeény this we mean oscillation is a global property of a configuration, whereas a
the preservation of a pattern’s symmetry or nonsymmetngsmall-radius CA employs only local interactions. Thus, while
characteristic, as may be the cagéull boundary conditions local regions of synchrony can be directly attained, it is more
are assumed Symmetry considerations in CA design were difficult to design CAs in which spatially distant regions are
also discussed if13].) in phase. Since out-of-phase regions can be distributed

Constraint 1: rn=r4, rz=rg. This results from the fact throughout the grid, transfer of information must occur over
that a symmetric pattern at time stepust remain so at time large distancesgi.e., O(N)] to remove these phase defects
stept+ 1, entailing the above symmetries in the rule table. and produce a globally synchronous configuration.

Constraint 2: r,#r,. Consider theN=2 grid configura- The synchronization problem is different from the previ-
tion 01, transformed in the next time steprtg,. Preserva- ous two in that the CA’s ultimate behavior is specifigd
tion of its nonsymmetry implies the above constraint. period-2 cycle rather than a classification criterion on the

Constraint 3: #r4 Or r;#rg, whereor is the logicalor  input patterns. Thus, one can easily show by empirical means
function. Consider th&l=4 configuration 1110, transformed that no uniformr=1 CA exists that can solve this problem.
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Wolfram [9] provides a complete listing of all cycles for Fig. 1(c) (a formal framework addressing the meaning of
CAs of sizesN=9,10,11(these are small enough to yield to “intricateness” of a CA’s dynamical behavior is outlined in
exhaustive testing of all possible input configuratiors  [15]).
examination of these tables reveals thatrral CA exhibits An interesting observation concerning the nonuniform
precisely one or two cycles of period two. We have per-systems presented herein is their high degree of “regularity”
formed tests on larger gridstatistical rather than exhaus- — while a nonuniform CA can possibly contain a plethora of
tive), confirming this resulf1]. Clearly, the synchronization gitferent rules we have found that only a small number may
problem cannot be solved by a unifoms 1 CA (atleast not  pe needed in practice. Such CAs, dubbed quasiuniform, were
for all grid sizesN). _ _also observed to emerge via cellular programniibly
Constructing a nonuniform CA to solve the synchroniza-  continued increase in computing power will someday
tion problem is again straightforward. A grid consisting of a(perhaps soonrequire novel computational architectures.
left cell with rule 51, with all other cells containing rule 15 gpe emerging approach seems to be that of CA-like systems.
can solve the problem. Essentially, rule 51 simply flips itSyye have endeavored to demonstrate above that departing

state at each time step, with rule 15 entering the oppositgom the classical model, changing, as it were, the rules of
state of its left neighbor. Synchronization will be attainedye game, offers promising future prospects.

afterN time steps. Another solution, exhibiting more “intri-
cate” dynamical behavior, was evolved by the cellular pro- The author is grateful to Marco Tomassini for his helpful
gramming evolutionary algorithifrl], and is demonstrated in comments.
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