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André Stauffer, and Andrés Pérez-Uribe
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Abstract Field-programmable gate arrays (FPGAs) are large, fast integrated circuits—
that can be modified, or configured, almost at any point by the end user.
Within the domain of configurable computing we distinguish between
two modes of configurability: static—where the configurable proces-
sor’s configuration string is loaded once at the outset, after which it
does not change during execution of the task at hand, and dynamic—
where the processor’s configuration may change at any moment. This
chapter describes six applications in the domain of configurable comput-
ing, considering both static and dynamic systems, including: SPYDER
(a reconfigurable processor development system), RENCO (a reconfig-
urable network computer), an FPGA-based backpropagation neural net-
work, Firefly (an evolving machine), BioWatch (a self-repairing watch),
and FAST (a neural network with a flexible, adaptable-size topology).
Moreover, we argue that the rise of configurable computing requires a
fundamental change in the engineering curriculum, toward which end we
present the LABOMAT board, developed for use by students in hard-
ware design courses. While static configurability mainly aims at attain-
ing the classical computing goal of improving performance, dynamic
configurability might bring about an entirely new breed of hardware
devices—ones that are able to adapt within dynamic environments.

∗This work was supported in part by Grant 2000-049349.96 from the Swiss National Science
Foundation and by a grant from the Werner Steiger Foundation.
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1. INTRODUCTION

When one sets about to implement a certain computational task then
obtaining the highest performance (speed) is unarguably achieved by
constructing a specialized machine, i.e., hardware. Indeed, this possi-
bility exists, e.g., in the form of application-specific integrated circuits
(ASICs) Smith, 1997; however, the price per application as well as the
turnaround time (from design to actual operation) are both quite pro-
hibitive. Except for a small number of specialized niches, the computing
industry has, by and large, converged onto the so-called general-purpose
architecture, trading off the best possible performance in favor of a much
lower cost per application and shorter delivery time. The gap between
these two paradigms has been narrowing over the past few years with
the coming of age of configurable computing.

Field-programmable gate arrays (FPGAs) are large, fast integrated
circuits—that can be modified, or configured, almost at any point by the
end user Trimberger, 1994; Villasenor and Mangione-Smith, 1997. A pri-
mary distinction that this novel technology brings about is that between
programmable processors and configurable ones. The programmable
paradigm involves a (general-purpose) processor, able to execute a lim-
ited set of operations, known as the instruction set. The user’s (pro-
grammer’s) task is that of providing a description of the algorithm to
be carried out, using only operations from this limited set. This algo-
rithm need not necessarily be written in the target language (i.e., that
of the given processor), since compilation tools may be used; however,
ultimately one must be in possession of an assembly-language program,
which can be directly executed on the processor in question. The prime
advantage of programmability is the relatively short turnaround time,
as well as the low cost per application, resulting from the fact that one
can (potentially swiftly) reprogram the processor to carry out any other
programmable task.

The configurable-computing paradigm can also be regarded as one in-
volving a processor that is able to execute but a given set of operations—
however, these are at a much lower level. One controls the actual types
of the logic devices (such as AND, OR, registers, and flip-flops), the
input signals, and the output signals (Figure 1.1). The level at which
the end user can control the system’s operation, i.e., the design level, is
perhaps the fundamental difference between programmable processors
and configurable ones.

In both a programmable and a configurable processor the algorithm
is ultimately expressed as a string of bits that is stored in memory,
with the difference being the manner in which these bits are interpreted.
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Figure 1.1 A schematic diagram of a field-programmable gate array (FPGA). An
FPGA is an array of logic cells placed in an infrastructure of interconnections, which
can be programmed at three distinct levels: (1) the function of the logic cells, (2) the
interconnections between cells, and (3) the inputs and outputs. All three levels are
configured via a configuration bit string that is loaded from an external source, either
once or several times.

A programmable processor ceaselessly iterates through a three-phase
loop, where an instruction is first fetched from memory, after which it
is decoded, then to be passed on to the final execute phase—this latter
of which may require several clock cycles; this process is then repeated
for the next instruction, and so on. A configurable processor, on the
other hand, can be regarded as having but a single, non-iterative fetch
phase: the configuration string, fetched from memory, requires no further
interpretation, and is directly used to configure the hardware. No further
phases nor iterations are needed, as the processor is now configured for
the task at hand. The ability to control the hardware in such a direct
manner, using a low-level “instruction set,” is a double-edged sword: the
user is able to access a much wider range of functionality, with the price
to be paid being that of a more arduous design task.

So as to avoid any confusion, we shall speak of a program when re-
ferring to a design (algorithm) within the programmable paradigm, and
to a configuration or configuration string (usually a simple bit sequence)
when considering the description of a configurable processor. (In analogy
to the term “programmer”—and again so as to avoid any confusion—one
might refer to the user of a configurable processor as a configurer.)

Within the domain of configurable computing one can distinguish be-
tween two types of configuration strings: static and dynamic Sanchez
et al., 1999. A static configuration string, aimed at configuring the pro-
cessor so as to perform a given function, is loaded (once) at the outset, af-
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ter which it does not change during execution of the task at hand. Static
configurability has two main objectives: (1) improving performance (i.e.,
execution speed) for a given function, which essentially results in a rapid
coprocessor for the task at hand (e.g., an MPEG coprocessor)—thus, one
can consider this an extension of the coprocessor concept; and (2) opti-
mizing the utilization of resources (gates and power consumption) so as
to use as much of the chip surface as possible, at each clock cycle. For
example, one might divide the task at hand into several sub-tasks, each
of which is implemented as a separate configuration. Task execution is
achieved by successively loading the sub-task configurations, thus ensur-
ing that at each point the processor is optimized to perform the part of
the computation in question

Dynamic configurability involves a configuration string that can change
during execution of the task at hand, with the two main objectives be-
ing: (1) to adapt to changing (dynamic) specifications (e.g., as with an
autonomous robot that is placed in a new environment) as well as to be
able to handle incomplete specifications; and (2) to eliminate human de-
sign altogether. The first objective involves partial design, namely, the
configurer designs the system to exhibit a certain general functionality,
which is not necessarily the ultimate task to be accomplished—this lat-
ter is attained when the system dynamically changes its configuration
string, during its operation (rather than at the design phase, as with
static systems). Partial design can ultimately lead to the removal of the
human configurer from the design cycle, whereupon the system’s con-
figuration is carried out dynamically, online. (We note in passing that
with the advancement of configurable-computing technology one may
eventually be able to configure the processor anew at each clock cycle,
producing, in effect, a rapid succession of new machines.)

This chapter describes six projects in the domain of configurable com-
puting, carried out in our lab over the past five years. As can be seen in
Table 1.1, we shall consider both static and dynamic systems that exhibit
the wide range of characteristics discussed above (the only class that is
not described herein is that of dynamic systems that aim at eliminat-
ing human design; the work of Thompson Thompson, 1996; Thompson,
1997; Thompson et al., 1996 provides an example belonging to this class).
We begin in Section 2. with the description of three static systems:
SPYDER (a reconfigurable processor development system), RENCO (a
reconfigurable network computer), and an FPGA-based backpropaga-
tion neural network. Section 3. presents three dynamic systems: Firefly
(an evolving machine), BioWatch (a self-repairing watch), and FAST
(a neural network with a flexible, adaptable-size topology). Each sys-
tem is described by four articles: type, functional description, hardware
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Table 1.1 Systems described in this chapter.

Configuration Objective System Section

Improve performance SPYDER 2.1
Static RENCO 2.2

Optimize resource usage Backpropagation Neural Network 2.3
Both of the above LABOMAT 4.

Adapt to changing or Firefly 3.1
Dynamic partial specifications BioWatch 3.2

FAST 3.3
(Eliminate human design) (Thompson’s work)

description, and performance gains (and—where relevant—a software
description as well). In Section 4. we discuss the issue of codesign—
basically, the decision of which parts of the application are to be designed
as software and which shall be designed directly as hardware. We argue
that this requires a fundamental change in the engineering curriculum,
and present the LABOMAT board, developed for use by students in
hardware design courses. Finally, we present our concluding remarks in
Section 5..

2. STATIC SYSTEMS

2.1 SPYDER: A RECONFIGURABLE
PROCESSOR DEVELOPMENT SYSTEM

Type (Objective). Static (Improve performance).

Functional description. The main advantage of specialized copro-
cessors is also one of their weaknesses: they can execute only their in-
tended application. SPYDER (an anagram of the letters of REconfig-
urable Processor Development SYstem) is a reconfigurable coprocessor
that self-adapts to a given application, in a manner which is transparent
to the user: the application is written in a high-level language (rather
than an assembly program), and the compiler generates the best-adapted
hardware description Iseli and Sanchez, 1995.

A processor consists of two parts: a control unit—a finite state ma-
chine that handles the sequencing of operations of the algorithm being
executed, and a processing unit or data path—the set of memory ele-
ments and operators needed to store and process the variables of the
algorithm.
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The control unit has little influence on the degree of adaptation of
the processor to a given algorithm. Indeed, if it is implemented as a
microprogrammed machine, its structure is almost fixed: a micromemory
(to store the microinstructions) linked to a sequencer (to generate the
address of the next microinstruction to be executed) Habib, 1988. On the
other hand, the processing unit’s architecture is of vital import where
the performance of the processor is concerned: the number and the
size of the memory elements, the type of available operators, and their
interconnection with the memory elements, determine the number of
clock cycles needed to realize a certain operation.

Most reconfigurable processors enable the implementation of the two
parts of the processor—indeed, they are organized as an array of FPGA
circuits, possibly connected to other resources (memories, for example);
the configurer (or a compiler) generates the full processor configuration
for a given application Arnold et al., 1992; Bertin et al., 1989; DeHon,
1996. Given the minor influence on performance of the control unit’s
architecture, we took a simpler approach with SPYDER, using a fixed
control unit, equivalent to a microprogrammed control unit composed of
a sequencer and a very large memory. The microprogram, however, does
not interpret a given assembly language, rather, it is the program to be
executed (SPYDER can thus be considered a VLIW processor Rau and
Fisher, 1993).

The reconfiguration of SPYDER thus takes place in the processing
unit, which consists of three FPGA circuits connected to two banks of
registers. Each FPGA maintains an independent access to the registers
in order to permit parallel processing of the data, and hence the imple-
mentation of superscalar architectures. This reconfigurability presents
two major limitations: the size of the FPGAs and the number of regis-
ters.

The initial objective of the project was to provide transparent hard-
ware reconfiguration: the user would write his program in a high-level
language and the compiler would generate both the code to be executed
(the contents of the memory of the control unit) and the configuration
of the three FPGAs. Given a certain application, the compiler had to
automatically determine the optimal set of operators, and their possible
concurrent utilization.

Given the complexity of such a compiler, we implemented an inter-
mediate solution: the user determines the operators, and describes them
in a high-level language (C++). The compiler then generates the cor-
responding configuration of the FPGAs (an example program is shown
in Figure 1.2). Finally, the user writes the application using the pre-
determined set of operators. The compiler generates the corresponding
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#include "x4000.h"

void

count6a(bitvector &out(3))

{
static bitvector state(3, 0);

state++;

if (state == 6)

state = 0;

out = state;

}

Figure 1.2 Example of a SPYDER operator described in C++: A modulo-6 counter.

code and schedules the operations so as to attain a maximal degree of
parallelism.

As with standard coprocessors, SPYDER is connected to a host com-
puter, which handles input/output and runs the development software.

Hardware description. SPYDER was implemented to function as a
SPARCstation coprocessor, using a double-Europe board, connected to
a SPARC processor by means of a VME bus (Figure 1.3).

The sequencer of the control unit is implemented by means of a Xilinx
XC4003 circuit. Its configuration is fixed: 16 different sequences divided
into four categories (jump, call subroutine, return of subroutine, and
return) are possible. The execution of each instruction takes four clock
cycles, but a four-phase pipeline permits the sequencer to generate a
new instruction address every clock cycle.

The program memory is separated from the data memory as in Har-
vard architectures: the instruction memory is 128 bits wide, while the
data memory is 16 bits wide. To fully exploit the parallel-processing
capabilities, the 128 bits of an instruction directly control all resources
of the processor without any intermediate decoding.

The three processing units are implemented using the Xilinx XC4008
circuits. They are fully configurable and are organized in a load/store

fashion: the data is loaded from the registers and the data memory
is accessed only by means of load and store operations. At every
clock cycle, each of the processing units can read two 16-bit data words,
and generate two 16-bit results, one per register block. They can also
generate one condition bit, which is used by the sequencer, and up to
4-bit addresses to the registers. Finally, the four processing units are
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Figure 1.3 The SPYDER architecture.

connected as a ring by means of two 16-bit buses, in order to facilitate
pipeline operations.

The operations of the processing units are completely configurable
and controlled by 21 bits of the instruction word. The distribution and
function of these 21 bits are defined by the user and depend on the
configuration of the units.

To facilitate a change of context, the system uses a register window
mechanism, similar to that of the SPARC processors Weaver and Ger-
mond, 1994. The number of registers per window is also configurable:
windows of 4, 8, or 16 registers are possible.

Performance gains. SPYDER runs at only 8 MHz, due to the tech-
nology used when the project began, and due to economical reasons.
However, the resulting performance of SPYDER on three different applications—
a simulation of the Game of Life, and two different image processing
algorithms (skeletonization and edge detection)—surpasses several clas-
sical architectures.

A SPYDER implementation of Conway’s Game of Life Berlekamp
et al., 1982 was compared with xlife, the most popular software ver-
sion of this well-known cellular automaton. This application involves
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a grid of cells, each one of which can be in a given state at a given
moment, which are updated simultaneously in discrete time steps (for
details see Berlekamp et al., 1982). Our interest here was to study how
fast the grid could be modified, i.e., how many cell states could be up-
dated per second. For a 608x608 matrix of cells, SPYDER—running at
8 MHz—computes the future state of 115 million cells per second, while
a microSPARC machine—running at 85 MHz—is only capable of com-
puting the future state of 6.5 million cells per second. The results of the
other two applications are delineated in Iseli, 1996; Iseli and Sanchez,
1997.

The performance of SPYDER can be improved by using current-day
devices. The communication with the host computer can also be im-
proved: the VME bus was chosen due to its simple implementation and
disregarding its low access speed. Nevertheless, the most important en-
hancements must be done in the software, using new developments in
compilation techniques. We hope to see one day a compiler sufficiently
powerful to accomplish our initial specifications: a system that automat-
ically determines the optimal hardware implementation and maximal
degree of parallelism.

2.2 RENCO: A RECONFIGURABLE
NETWORK COMPUTER

Type (Objective). Static (Improve performance).

Functional description. The ability to store an application in vari-
ous (physical) locations, recently highlighted by the introduction of the
network computer Slater, 1996, presents many advantages: the vital re-
sources of the computer (mass memories, applications, software libraries,
etc.) are exclusively accessible through the network, thus reducing main-
tenance costs while adding flexibility to the system.

RENCO (REconfigurable Network COmputer) adds the power of re-
configuration to the network computer Villasenor and Mangione-Smith,
1997: a reconfigurable surface is associated with a standard network
computer, in such a manner that the user can download from the net-
work not only his or her application, but also the processor configuration
able to optimally execute it.

Although for the moment no software manufacturer offers hardware
configurations along with the software, we are quite certain of the viabil-
ity of this approach. As mentioned above, there will soon be compilers
able to generate a hardware description given a standard program, and
one processor manufacturer (Motorola Report, 1998) has already an-
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nounced a processor with a reconfigurable on-chip surface. Currently,
RENCO is used for testing new codesign methodologies along with their
associated CAD tools, and as a prototyping platform for dedicated pro-
cessors.

Hardware description. RENCO is composed of two parts (Figure
1.4): a conventional network computer, based on a Motorola MC68EN360
processor Motorola, 1993, and a reconfigurable surface (a cluster of FP-
GAs connected to their own memories and to the processor bus). The
user can design dedicated coprocessors for the 68360, or select them
from a specialized library, and dynamically download them through the
network when necessary.
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Figure 1.4 RENCO block diagram.

The network computer we have implemented is quite conventional: a
microprocessor connected to three types of memory (256k×16b of boot
EPROM, 512k×32b of Flash RAM, and up to 16M×32b of DRAM).
The 68360 has been chosen for its communication capabilities, for its
integrated memory controller, and for the availability of many software
tools.

The computer is connected to the network through an Ethernet 10Base-
T interface. This communication interface is used at boot time for down-
loading the operating system, the applications, and the hardware con-
figurations. An RS-232 interface is also available and is used to connect
a console to the computer. Several extension connectors allow the user
to expand the board features by adding specific extension boards.

The reconfigurable part contains four Altera Flex 10K FPGAs (10K130
or 10K250) Altera, 1997; these large FPGAs contain up to one million
programmable logic gates. Since they are connected together, it is pos-
sible to split very large designs into up to four parts. The processor bus
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is connected to the four FPGAs, which can therefore be accessed as pe-
ripherals by the processor and act, e.g., as coprocessors. Each FPGA is
connected to its own memories: 512k×8b of SRAM and up to 8M×32b
of DRAM. The processor can also access these memories. RENCO is
implemented on a 14-layer PCB (Figure 1.5).
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Figure 1.5 RENCO printed circuit board.

Software description. The two parts of RENCO (network computer
and reconfigurable area) each require a specific software:

The network computer requires an operating system, with com-
plete management of the network operations. After examining
many possibilities, we chose RTEMS1 (Real-Time Executive for
Multiprocessor Systems). It is a preemptive multi-tasking oper-
ating system with rather modest memory requirements. It also
contains the drivers for Ethernet and RS-232 and has already been
adapted for the 68360 processor. Furthermore, its source code is
free and a TCP/IP stack is available.

1http://lancelot.gcs.redstone.army.mil/rtems.html
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Many software tools are necessary for the reconfigurable part: a
synthesizer, a monitor allowing access to the resources and the
configuration loading, a debugger, a user interface, etc. The im-
plementation of all these tools is beyond our reach and we decided
to use commercial tools when available (the synthesizer for exam-
ple) and to concentrate only on the tools specific to our system.

The basic idea is to use Java to develop some of these tools, a choice
emanating from our desire to access RENCO from many different plat-
forms through the network. The first step was to implement a Java
virtual machine: we chose Kaffe2 as the source code, since it is freely
available and because it has already been ported to the 68000 processor,
therefore reducing our development work. In addition to the standard
Java application programming interface (API), the user has at his or her
disposal a board-specific API that provides classes and methods for ac-
cessing the board resources (Figure 1.6). Finally, board-specific code has
been written and collected into the Custom Hardware Library (CHL),
which includes utility functions for accessing the board resources. As
with most reconfigurable systems, the complexity of RENCO’s software
is much higher than that of the hardware—it is still work in progress.

Java applications

CHL API

Java Virtual Machine (Kaffe)

Std. native Console Loader

System API

TCP/IP Custom Hardware

Library

(CHL)

RTEMS executive

Hardware intf. Drivers

Hardware

Figure 1.6 RENCO software layers.

2http://www.kaffe.org
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Performance gains. Our first goal is to test a novel but—in our
opinion—very promising idea: considering the hardware architecture as
a downloadable resource (in addition to the software). As hardware
architecture libraries are currently unavailable, we could not make full-
blown evaluations to date and we have not yet proceeded further than the
concept validation. Meanwhile, RENCO can also be used for complex
logic design prototyping Salcic and Smailagic, 1997. In this context, its
large amount of reconfigurable logic and the large memories attached to
it represent an important advantage.

2.3 AN FPGA-BASED BACKPROPAGATION
NEURAL NETWORK

Type (Objective). Static (Optimize resource usage).

Functional description. Artificial neural networks have been widely
used over the past decade for designing adaptive, robust systems, their
major advantage stemming from their ability to learn to solve problems
from examples (rather than being pre-programmed). These networks
are massively parallel, and are composed of non-linear computational
elements, often referred to as units or neurons. A so-called activation
value is associated with each neuron, and a so-called weight (or synaptic
weight) is associated with each connection between two neurons. A
neuron’s activation depends on the activations of the neurons connected
to it and on the interconnection weights. Neurons are often arranged in
layers, with input-layer neurons having their activations externally set
(i.e., they receive the input, e.g., the image to be recognized).

It is very difficult to precisely define learning; nevertheless, in the
artificial neural-network context it is closely related to the adjustment
of interconnection weights and topology adaptation Pérez-Uribe, 1998.
A learning algorithm refers to a procedure in which learning rules are
used for adjusting the weights of an artificial neural network, and pos-
sibly its topology. Such learning algorithms come in three main flavors:
supervised, reinforcement, and unsupervised Rojas, 1996.

Artificial neural networks can solve complex problems such as hand-
written pattern recognition and time series prediction. Though software
simulations are essential when one sets about to study a new algorithm,
they cannot always satisfy real-time demands required by many real-
word applications. In order to exploit the inherent parallelism of artifi-
cial neural networks, hardware implementation is essential.

Among the many neuroprocessors described in the literature, one can
distinguish between two main design philosophies. The first approach
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involves the design of a highly parallel computer and a programming
language dedicated to neural networks. Many algorithms can be imple-
mented on the same system. Nevertheless, programming such a machine
is often arduous Ienne, 1997. The second approach involves the design
of a specialized chip for a given algorithm Köllmann et al., 1996, thus
avoiding the tedious programming step. The main drawback lies in the
need for a different chip for each algorithm.

FPGA circuits offer new paths for implementing neuroprocessors. A
learning algorithm can be split into several sequentially executed steps,
which are associated with particular FPGA configurations. Such an
approach leads to an optimal use of hardware resources. The reconfigu-
ration paradigm also allows the implementation of multiple algorithms
on the same hardware. In this subsection, we present the design of a re-
configurable neuroprocessor implementing multilayer perceptrons Hertz
et al., 1991 with on-chip training and pruning.

Figure 1.7 depicts a system designed for handwritten digit recognition.
We shall use this example to demonstrate some principles of supervised
learning algorithms. The network is trained with a set of characters
written by different people. After a pre-processing phase (including,
e.g., normalization and smoothing) we obtain a gray-level image (M x N
pixels) of each character. The M x N gray-level values are stored in an
input vector ξρ to which a class attribute is associated. ξρ is presented to
the neural network which thereupon determines an output. This latter
is then compared with the class attribute in order to determine an error
signal, which is used by the learning algorithm to adapt the network
parameters. This error measure, embodying the difference between the
desired (correct) output and the actual output computed by the network,
is at the heart of supervised learning techniques. The goal is to minimize
this error.
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Figure 1.7 Supervised learning principles.
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When we train a system by providing examples, it is usually impossi-
ble to present it with every possible input pattern (due to the huge size
of the pattern space). Therefore, an important issue of training is the
capability of the network to generalize, that is, to cope with previously
unseen patterns. It has been found that generalization is quite depen-
dent on the network topology. A rule of thumb for obtaining a good
generalization is to use the smallest network able to learn the training
data Reed, 1993. Training successively smaller networks is, however, a
time-consuming approach. Among the efficient processes to determine
a good topology, one can cite genetic algorithms, growing methods, and
pruning algorithms, the latter of which are used herein.

The pruning algorithms approach consists of training a network that
is larger than necessary and deleting superfluous elements (units or con-
nections). These algorithms can be classified into two general categories:
sensitivity estimation and penalty-term methods. Algorithms within the
first category measure the sensibility of the error to the removal of a con-
nection or a unit, after which elements with the lowest sensibilities are
pruned. Methods belonging to the second category suggest new error
functions that drive weights to zero during training.

Pruning connections leads sometimes to the situation depicted in Fig-
ure 1.8, where some neurons have no more inputs or outputs; such neu-
rons, called dead units, can be deleted.

Dead units

(a) (b)

Figure 1.8 Networks with dead units.

Before discussing the hardware architecture, we introduce some nota-
tions:

wnimj
is the weight between neuron i in layer n and neuron j in

layer m.

The net input for neuron j in layer m is denoted by h
ρ
m,j .

aρmj
= ϕ(hρm,j) is the activity (or activation value) of neuron j in

layer m; ϕ denotes the activation function.
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Hardware description. A learning algorithm consists of several steps,
including: network initialization, forward propagation, error computa-
tion, backward propagation, weight update, and pruning. Each step
requires specific hardware resources, e.g., network initialization makes
use of a random number generator, which is unused in the following
steps.

FPGA circuits offer new possibilities for designing hardware neural
networks. The learning algorithm is divided into several sequentially
executed stages, each of which is associated with an FPGA configuration.
A possible decomposition scheme is depicted in Figure 1.9. Note that
reconfiguration time is of crucial import—if this process needs more
time than computation, such an approach is not appropriate. In order
to realize an efficient system one must carefully choose the FPGA family.

Weight update
and pruning

Forward propagation Backward propagation

Network initialization

Error computation

Reconfiguration

Figure 1.9 A possible decomposition of the backpropagation algorithm.

When designing the hardware architecture of our neural network we
first observed that a time-multiplexed interconnection scheme provides
a good trade-off between speed and scalability (Figure 1.10). The main
idea is to connect all outputs of hidden layer m and all inputs of hidden
(or output) layerm+1 to a common bus; the same hardware is reused for
all layers of the network. The multiplexor allows to provide the network
with an input signal or an activation value of a hidden unit. All synaptic
weights are stored in a memory associated with the FPGA(s). We will
focus herein on forward propagation of a signal (backward propagation
obeys the same principles). The first neuron in layerm places its activity
a
ρ
m,1 on the bus. All neurons in layer m + 1 read and multiply it by

the appropriate synaptic weight wm1m+1j and finally store the result.
Simultaneously, we load the weights from the next layer-m neuron to
layer m + 1. This process is sequentially repeated for every neuron in
layer m. Each processing element in layer m+1 accumulates the results
of the successive multiplications.

Thanks to this interconnection scheme, each neuron is a very simple
processing element. Figure 1.11a depicts the architecture used during
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Figure 1.10 The time-multiplexed interconnection scheme.

the forward propagation step. A register stores the weight value involved
in the next multiplication. We have associated with each weight a spe-
cial bit, called Pruning, which indicates whether a connection has been
pruned (in which case, this bit is set to 0) or not. Combined with a load
signal, it enables the accumulation of a multiplication result.

h
ρ
m,j

Adder

Multiplierwm−1imj wm−1imj

(b)

D
Q

ClrLoad

(a)

a
ρ
m−1,i

Bias

Load

Pruning

Figure 1.11 (a) Architecture of a neuron. (b) Dead unit detection mechanism.

We now have to provide our neuroprocessor with a means for detecting
dead units. The mechanism illustrated in Figure 1.11b solves this prob-
lem. Assume that a neuron j in layerm has no more inputs (Figure 1.8a).
All wm−1imj

coefficients are loaded when a signal is forward-propagated

through the network. As the Pruning bits associated with the wm−1imj

are set to zero, the flip-flop output remains zero as well. Consider a
neuron with no outputs (Figure 1.8b). The backward-propagation pro-
cess involves all weights wmjm+1k whose Pruning bits are equal to zero.
Consequently, the detection of such dead units occurs during this step.
Once a dead unit has been detected, a signal is sent to a global con-
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troller that manages the network topology. As the activities of neurons
are sequentially placed on the bus, the deletion of dead units increases
the learning speed.

Since FPGAs are not well suited for floating-point computation Vil-
lasenor and Mangione-Smith, 1997, we use fixed-point numbers (two’s
complement) to carry out additions, subtractions, and multiplications.
We use a piecewise linear function, whose coefficients are stored in a
look-up table, in order to implement the activation function ϕ(x). Re-
lations between ϕ(x) and its derivative permit an easy computation of
ϕ′(x) (for example, tanh′(x) = 1− (tanh(x))2).

Performance gains. We have performed a series of experiments to
evaluate the efficiency of our limited-precision system. Four learning
rules (Backpropagation Widrow and Lehr, 1990, Non-Linear Backprop-
agation Hertz et al., 1997, Resilient Backpropagation Riedmiller, 1994,
and Weighted Error Function Sakaue et al., 1993) and two pruning
algorithms (Autoprune Prechelt, 1995 and a penalty-term method by
Ishikawa Ishikawa, 1996) have been implemented using the SNNS neural
network simulator Zell et al., 1995. A first version of these algorithms
executes all arithmetic operations with floating-point numbers, while a
second one uses fixed-point numbers.

The training and pruning algorithms were applied to eight problems
from the Proben1 data set Prechelt, 1994 and the generalization capa-
bilities were studied. Our experiments have demonstrated that limited-
precision algorithms (usually, 3 bits for the integral part and 12 bits
for the fractional part) have the same performance as floating-point
algorithms.3

We now have to complete the hardware implementation on RENCO
(Section 2.2) and to evaluate the performance of our neuroprocessor.
However, RENCO only allows for the design of a first prototype—in
order to attain further improvements specialized hardware will be re-
quired. One possible enhancement lies with the partial reconfiguration
paradigm: some successive configurations are quite similar—thus, in-
creasing the system’s speed might be accomplished by modifying only
small parts of the FPGA.

Finally, reconfigurable systems offer some other interesting prospects.
The architecture depicted in Figure 1.10 is well suited for the learning
process. It would be interesting, though, to increase the degree of paral-
lelism when training is over. Therefore, we plan to design special FPGA

3Note that weights sometimes become huge when the network is trained with Resilient Back-
propagation Riedmiller, 1994. More bits are then needed for the integral part of numbers.
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configurations for the recall process (when training is over, i.e., synaptic
weights no longer change, and the network is used to perform its task,
e.g., recognizing handwritten characters).

3. DYNAMIC SYSTEMS

3.1 THE FIREFLY MACHINE

Type (Objective). Dynamic (Handle changing and/or incomplete
specifications).

Functional description. The idea of applying the biological princi-
ple of natural evolution to artificial systems, introduced more than four
decades ago, has seen impressive growth in the past few years. Usually
grouped under the term evolutionary algorithms or evolutionary compu-

tation, we find the domains of genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming Fogel, 1995; Koza,
1992; Michalewicz, 1996. As a generic example of artificial evolution, we
consider genetic algorithms.

A genetic algorithm is an iterative procedure that involves a constant-
size population of individuals, each one represented by a finite string of
symbols, known as the genome, encoding a possible solution in a given
problem space. This space, referred to as the search space, comprises
all possible solutions to the problem at hand. The algorithm sets out
with an initial population of individuals that is generated at random or
heuristically. Every evolutionary step, known as a generation, the indi-
viduals in the current population are decoded and evaluated according
to some predefined quality criterion, referred to as the fitness, or fitness
function. To form a new population (the next generation), individuals
are selected according to their fitness, and then transformed via genet-
ically inspired operators, of which the most well known are crossover

(“mixing” two or more genomes to form novel offspring) and mutation

(randomly flipping bits in the genomes). Iterating this procedure, the
genetic algorithm may eventually find an acceptable solution, i.e., one
with high fitness.

Evolutionary algorithms are common nowadays, having been success-
fully applied to numerous problems from different domains, including
optimization, automatic programming, circuit design, machine learning,
economics, immune systems, ecology, and population genetics, to men-
tion but a few.

One of the recent uses of evolutionary algorithms is in the burgeoning
field of evolvable hardware Sanchez and Tomassini, 1996; Sipper et al.,
1998; Sipper et al., 1997b, which involves, among others, the use of FP-
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GAs as a platform on which evolution takes place. The Firefly machine
is one such example; our goal in constructing it was to demonstrate a
system in which all evolutionary operations (selection, crossover, muta-
tion, and fitness evaluation), are carried out online, that is, in hardware
Sipper et al., 1997a; Sipper et al., 1997b.

Firefly is based on the cellular automata model (which we briefly en-
countered in Section 2.1 when describing the Game of Life application)—
a discrete dynamical system that performs computations in a distributed
fashion on a spatially extended grid. A cellular automaton consists of
an array of cells, each of which can be in one of a finite number of pos-
sible states, updated synchronously in discrete time steps according to
a local, identical interaction rule Sipper, 1997a; Wolfram, 1994. The
state of a cell at the next time step is determined by the current states
of a surrounding neighborhood of cells. This transition is usually spec-
ified in the form of a rule table, delineating the cell’s next state for
each possible neighborhood configuration. The cellular array (grid) is
n-dimensional, where n = 1, 2, 3 is used in practice. Herein, we consider
one-dimensional grids, where each cell can be in one of two states (0 or
1), and has three neighbors (itself, and the cells to its immediate left and
right); the rule table thus comprises eight bits since there are eight pos-
sible neighborhood configurations. Non-uniform cellular automata have
also been considered, where the local update rule need not be identical
for all grid cells Sipper, 1997a.

Based on the cellular programming evolutionary algorithm of Sip-
per Sipper, 1997a we implemented an evolving, one-dimensional, non-
uniform cellular automaton. Each of the system’s 56 binary-state cells
contains a genome that represents its rule table. These genomes are
initialized at random, thereupon to be subjected to evolution. The sys-
tem must evolve to resolve a global synchronization task: upon presen-
tation of a random initial configuration of cellular states, the cellular
automaton must reach, after a bounded number of time steps, a config-
uration whereupon the states of the cells oscillate between all 0s and all
1s on successive time steps (this may be compared to a swarm of fireflies
that evolves over time to flash on and off in unison). Due to the local
connectivity of the system, this global behavior—involving the entire
grid—comprises a difficult task. Nonetheless, applying the evolutionary
process of Sipper, 1997a, the system evolves (i.e., the genomes change)
such that the task is solved Goeke et al., 1997; Sipper et al., 1997a. The
machine is depicted in Figure 1.12.

Hardware description. Firefly comprises 56 cells, the architecture
of which is shown in Figure 1.13. The binary state of a cell is stored
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Figure 1.12 The Firefly evolware board. The system is an evolving, one-dimensional,
non-uniform cellular automaton. Each of the 56 cells contains a genome that repre-
sents its rule table; these genomes are randomly initialized, thereupon to be subjected
to evolution. The board contains the following components: (1) LED indicators of
cell states (top), (2) switches for manually setting the initial states of cells (top, below
LEDs), (3) Xilinx FPGA chips (below switches), (4) display and knobs for control-
ling two parameters (‘time steps’ and ‘configurations’) of the cellular programming
algorithm (bottom left), (5) a synchronization indicator (middle left), (6) a clock
pulse generator with a manually adjustable frequency from 0.1 Hz to 1 MHz (bottom
middle), (7) an LCD display of evolved rule tables and fitness values obtained during
evolution (bottom right), and (8) a power-supply cable (extreme left). (Note that
this latter is the system’s sole external connection.)

in a D-type flip-flop whose next state is determined either randomly,
enabling the presentation of random initial configurations, or by the cell’s
rule table, in accordance with the current neighborhood of states. Each
bit of the rule’s bit string is stored in a D-type flip-flop whose inputs
are channeled through a set of multiplexors according to the current
operational phase of the system:

1. During the initialization phase of the evolutionary algorithm, the
(eight) rule bits are loaded with random values; this is carried out
once per evolutionary run.
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2. During the execution phase of the cellular automaton, the rule bits
remain unchanged. In this phase several random configurations are
run by the system so as to be able to calculate a fitness value.

3. During the evolutionary phase, the cell’s genome (which represents
its rule table) may evolve via the application of genetic operators.
This is done in a completely local manner—only the genomes of
the neighboring cells may be consulted.
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Figure 1.13 Circuit design of a Firefly cell.

Performance gains. The Firefly machine exhibits complete online
evolution, all operations being carried out in hardware with no refer-
ence to an external computer. This demonstrates that evolving ware,
evolware, can be constructed Sipper, 1997b; Sipper et al., 1997a. Such
evolware systems enable enormous gains in execution speed to be had.
The cellular programming algorithm, when run on a high-performance
workstation, executes 60 initial configurations per second (as noted, ran-
dom configurations are constantly presented to the cellular automaton
during evolution—these are used to compute the fitness value). In com-
parison, the Firefly machine executes 13, 000 initial configurations per
second (this is achieved when the machine operates at the current max-
imal frequency of 1 MHz; in fact, this can easily be increased to 6 MHz,
thereby attaining 78, 000 configurations per second).

While the synchronization task is not a real-world application, and
was selected to act as a benchmark problem for our evolware demon-
stration, Firefly does open up interesting avenues for future research.
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Evolware machines that operate in an autonomous manner can be used
in the field of autonomous mobile robots, as well as for the construction,
in general, of controllers for noisy, changing environments Sipper et al.,
1997b.

3.2 THE BIOWATCH

Type (Objective). Dynamic (Handle changing and/or incomplete
specifications).

Functional description. The BioWatch is one of the applications de-
signed as part of the Embryonics (embryonic electronics) project, whose
final objective is the development of very large scale integrated circuits,
capable of self-repair and self-replication Mange et al., 1998; Mange and
Tomassini, 1998. These two bio-inspired properties, characteristic of
the living world, are achieved by transposing certain features of cellular
organization onto the two-dimensional world of integrated circuits on
silicon.

The BioWatch is an artificial “organism” designed to count minutes
(from 00 to 59) and seconds (from 00 to 59); it is thus a modulo-3600
counter. This organism is one-dimensional and comprises four cells with
identical physical connections and an identical set of resources. The or-
ganization is multicellular (as with living beings), with each cell realizing
a unique function, described by a sub-program called the gene of the cell
(Figure 1.14).
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Count
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Figure 1.14 Multicellular organization of the BioWatch.

The genome is the set of all the genes of the BioWatch, where each
gene is a sub-program, characterized by a set of instructions and by its
horizontal coordinate X (Figure 1.14). Storing the whole genome in
each cell renders the cell universal, i.e., capable of realizing any gene of
the genome. This is another bio-inspired property: each of our (human)
cells also contains the entire genome, though only part of it is used (e.g.,
liver cells do not use the same genes as muscle cells). Depending on its
position in the organism, each cell interprets the genome and extracts
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and executes the gene which configures it. The BioWatch thus performs
what is known in biology as cellular differentiation (Figure 1.15).
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Figure 1.15 Cellular differentiation of the BioWatch.

In the BioWatch, each cell performs one of two specific tasks: a
modulo-6 or a modulo-10 count (Figure 1.14). We shall show below
that a dynamic reconfiguration of the task executed by some of the cells
occurs during the self-repair process of this artificial organism.

Hardware description. The BioWatch is a four-cell, one-dimensional
application of the two-dimensional cellular automaton defined in the Em-
bryonics project Mange et al., 1998; Mange and Tomassini, 1998. Each
cell of the automaton is a binary decision machine whose microprogram
represents the genome, and each part of the microprogram is a gene
whose execution depends on the physical position of the cell in the array,
i.e., on its coordinates. Ultimately, we plan to implement the automa-
ton using a novel kind of coarse-grained, field-programmable gate array,
where each basic cell, called MICTREE (for tree of micro-instructions)
has four neighbors (to the south, west, north, and east). The MIC-
TREE cell holds a 4-bit state register REG3 : 0 (Figure 1.16a). Four
4-bit busses enter the cell from its neighbors (SI3 : 0 from the south,
WI3 : 0 from the west, NI3 : 0 from the north, and EI3 : 0 from the
east), and, correspondingly, four output busses go out in the four cardi-
nal directions (SO3 : 0 to the south, WO3 : 0 to the west, NO3 : 0 to
the north, and EO3 : 0 to the east).

Each MICTREE cell thus has 16 outputs SO3...EO0. Each of these
outputs can be programmed to take on a value from four possible sources
(Figure 1.16b). For example, output NO3 can take on one of 16 values
from the following sources: the four bits REG3 : 0 of register REG, the
four bits SI3 : 0 of the south input bus SI, the four bits WI3 : 0 of the
west input bus WI, and the four bits EI3 : 0 of the east input bus EI.

The binary decision machine of the MICTREE cell executes micropro-
grams written using a set of six instructions: (1) if V AR else LABEL,
(2) goto LABEL, (3) do REG = DATA, (4) do X = DATA, (5)
do Y = DATA, and (6) do V AROUT = V ARIN . The first three
instructions are used to compute the modulo-6 and modulo-10 counts of
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Figure 1.16 MICTREE cell. (a) Diagram of connections to the four neighboring
cells. (b) Programmable output connections.

the BioWatch application. The next two are used when computing the
X3 : 0 and Y 3 : 0 coordinates of the cell. The last instruction is used to
program the input/output connections.

While our long-term objective is the design of very large scale inte-
grated circuits, each MICTREE cell is currently implemented in an Actel
1020 FPGA circuit and embedded within a small plastic box intended
as a demonstration module.

Performance gains. Self-repair of an artificial organism allows par-
tial reconstruction of the original device in case of a minor fault. In
order to implement a self-repair process in the BioWatch, as many spare
cells are required to the right of the array as there are faulty cells to
repair (four spare cells in the example of Figure 1.17). This process is
achieved by bypassing the faulty cell and shifting to the right all or part
of the original cellular array. The new coordinates, thus defined, lead to
the dynamic reconfiguration of the task performed by the cell (modulo-6
or modulo-10 count) .

Self-replication of an artificial organism allows for the complete recon-
struction of the original device in case of a major fault. In the BioWatch,
the self-replication process rests on two assumptions: (1) there exists a
sufficient number of spare cells to the right of the array (four in our
example), and (2) the calculation of the coordinates produces a cycle
(X = 1 → 2 → 3 → 4 → 1 in Figure 1.18). As the same pattern of
coordinates produces the same pattern of genes, self-replication can be
easily accomplished if the microprogram of the genome, associated with
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Figure 1.17 Self-repair of the BioWatch. Old coordinates are shown in parentheses.

the homogeneous network of cells, produces several instances of the basic
pattern of coordinates.
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Figure 1.18 Self-replication of the BioWatch.

With a larger number of cells it becomes possible to add the extensions
needed for a practical use of the BioWatch: preserving the current time
while self-repair is being effected, and setting and resetting the time.
It is also quite easy to introduce additional functions other than the
counting of seconds, minutes, and hours; for example, computing the
date, keeping track of the day of the week, or handling leap years.

3.3 THE FAST NEURAL NETWORK

Type (Objective). Dynamic (Handle changing and/or incomplete
specifications).

Functional description. As seen in Section 2.3, an artificial neural
network is specified by its topology, the neuron characteristics, and the
training or learning algorithm. Most neural network models base their
ability to adapt to problems on changing the strengths of their intercon-
nections, according to a given learning algorithm. However, the difficulty
in determining the appropriate topology, including the number of layers,
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the number of neurons per layer, and the interconnection scheme, often
sets an a-priori limit on performance.

FPGAs enable the implementation of neural networks with dynamic
struc-tures—the system is able to learn, online, as well as to adapt its
topology. While artificial neural networks have been implemented using
field programmable devices Bade and Hutchings, 1994; Eldredge and
Hutchings, 1994, reconfigurability has not been exploited for dynamic
structure optimization.

Herein, we describe a “hardware-friendly” artificial neural network ar-
chitecture, dubbed FAST (Flexible, Adaptable-Size Topology), that im-
plements an unsupervised clustering algorithm. The network incremen-
tally activates neurons, dynamically adapts their weights, and proba-
bilistically deletes neurons Pérez-Uribe and Sanchez, 1996a; Pérez-Uribe
and Sanchez, 1996b.

The aim of unsupervised neural networks is to cluster, code, or cate-
gorize the input data. Similar inputs are classified as being in the same
category, and should activate the same output unit, which corresponds
to a prototype of the category. Clusters are determined by the net-
work itself, based on correlations in the input Hertz et al., 1991. A
special class of unsupervised learning networks called ontogenic neural
networks offers the possibility of dynamically modifying the network’s
topology Fiesler, 1994; Fritzke, 1997. Among the few hardware imple-
mentations of this latter approach, one can cite Moreno’s work on VLSI
architectures for evolutive neural networks Moreno, 1994, and our own
FPGA-implemented FAST network. This latter combines three neural
network algorithms: the ART neural network Carpenter and Grossberg,
1988, Alpaydin’s extension of ART Alpaydin, 1990, and Fritzke’s Grow-
ing Cell Structures Fritzke, 1994.

The size of the FAST network increases by adding a new neuron to
the network when a sufficiently distinct input vector is encountered, and
decreases by deleting an operational neuron through the application of
probabilistic deactivation. Each neuron j maintains an n-dimensional
reference vector, Wj , and a threshold, Tj , both of which determine its
sensitivity region, i.e., the input vectors to which it is “sensitive.” At the
outset, the network consists of a maximum number of neurons, but none
of them is active. Input patterns are then presented and the network
adapts through application of the FAST algorithm (see Pérez-Uribe,
1998; Pérez-Uribe and Sanchez, 1996b), which is driven by three pro-
cesses: learning, incremental growth, and pruning.

The learning mechanism adapts the neuronal reference vectors (Wj

and Tj), as each input vector P is presented to the network. Incremen-
tal growth dynamically activates new neurons when an input vector P
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lies outside the sensitivity regions of all currently operational neurons.
Finally, the pruning mechanism probabilistically decreases the size of
the network. The probability of an operational neuron being deleted,
Prj , increases in direct proportion to the overlap between its sensitivity
region and the regions of its neighbors. The overlap between the sensi-
tivity regions of several neurons is estimated by computing the frequency
of activation of the overlapping neurons with the same input vector.
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Figure 1.19 Architecture of a FAST neuron. Each neuron contains a distance calcu-
lation block (Manhattan distance), a reference vector and threshold adaptation block
(learning), a deletion block (pruning), and an activation register.

Hardware description. The FAST neural network architecture was
implemented on a custom machine called LOPIOM, which was designed
in our laboratory, and is based on programmable logic Mosanya et al.,
1996. It is composed of a 68331 microcontroller, four Xilinx XC4013-6
FPGA chips (each with approximately 13,000 equivalent gates Xilinx,
1991), and four field-programmable interconnection devices (FPIDs, in
our case Crossbar switches I-Cube 320, each with 320 programmable
pads I-CUBE, 1994). We used two of the Xilinx XC4013 FPGAs and
two of the I-Cube 320 FPIDs to implement four FAST neurons. The
sequencer of the network is implemented in one of the Xilinx XC4013
chips along with two of the FAST neurons. The other two FAST neurons
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are implemented in the second XC4013 chip along with a bank of I/O
mapping registers.

To date, two such FAST networks have been implemented: one for
two-dimensional input vectors and another for three-dimensional input
vectors. In both implementations we used 96% to 98% of the Config-
urable Logic Blocks (CLBs) of the chip. However, only 66% to 79% of
the CLBs were actually used to implement logic circuits, while the rest
were used for routing. In the 2D-input network we used 30% of the flip-
flops, while the 3D-input network required up to 35% of the memory
elements.

The sequencer, the FAST neuron architecture, and the I/O mapping
register bank are briefly described below.

The FAST neuron. A FAST neuron is composed of three blocks:
Manhattan distance computation, learning (i.e., modification of
reference vectors and thresholds), and pruning (see Figure 1.19).
The system currently supports 8-bit computation. Each neuron
includes nine 8-bit adders in the 2D case and twelve 8-bit adders
in the 3D case, and a single 8-bit shift-add multiplier, so that ad-
ditions occur in parallel but the multiplications involved in the
learning phase are executed sequentially. The maximal number of
multiplications during the learning phase is five for the 2D case and
six for the 3D case, and each requires 8 clock cycles. To implement
the pruning process, each neuron includes a random number gener-
ator, consisting of an 8-cell heterogeneous, one-dimensional cellular
automaton Hortensius et al., 1989a; Hortensius et al., 1989b. It
has a period of 255 and is implemented using a small number of
components: 8 D flip-flops, 5 two-input XOR gates, and 3 three-
input XOR gates. Finally, each neuron maintains an activation
register that indicates whether it is active or inactive.

The sequencer. The sequencer is a finite state machine that han-
dles the addition and deletion of neuronal units in the network
(by writing in the activation register). In addition it synchronizes
the neuron’s operation during the Manhattan distance calculation,
weight and threshold updating (learning), and probabilistic unit
deactivation (pruning).

I/O mapping register bank. The hardware device is connected to
a host computer that is used to generate input vectors for the sys-
tem and to display its outputs. The host computer communicates
serially with the 68331 microcontroller that reads and writes sig-
nals from and to the I/O mapping registers. The I/O mapping
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registers bank consists of ten 8-bit registers used to map every in-
put and output of the neural network. A polling subroutine runs
on the 68331 microcontroller in order to generate the read/write
control signals and to receive or send data when the host computer
requests it. A VME bus connection is also available on the board,
but it has not been tested to date.

Performance gains. To evaluate FAST we chose a color image seg-
mentation problem. Given a digital image from a real scene, the problem
is to cluster image pixels by chromatic similarity properties. Pixels of
similar colors belong to a so-called chromatic class. By identifying chro-
matic classes in an image, and assigning a code to each class, we can
do color image segmentation and recognition. For example, an orange
sphere with small bumps on its surface can be quickly recognized as an
orange fruit. In our experiments we consider the RGB (red, green, blue)
components of a color image. Thus, at the outset every pixel is repre-
sented in a 3D space. Then, a color-space transformation is applied so
as to represent the pixels in a 2D space called I2-I3 Diaz and Quesada,
1995; Ohta, 1985.

These two-dimensional pixel coordinates (I2,I3) are randomly pre-
sented to the FAST neural network, which determines clusters in the
I2-I3 space, corresponding to color clusters in the RGB space. Then,
the resulting color clusters can be used to construct a segmented image
that is used in subsequent image analysis phases. In Pérez-Uribe and
Sanchez, 1996c we compared the resulting color clusters using FAST with
a neural network learning algorithm that combines histogram threshold-
ing techniques Ohta et al., 1990 and fuzzy Kohonen clustering Diaz and
Quesada, 1995. This latter network ends up with eight ellipsoidal chro-
matic clusters in I2-I3 space. Our algorithm dynamically derived eight
diamond-shaped (due to the Manhattan distance calculation) chromatic
clusters that corresponded to a good estimation of those obtained by the
non-dynamic model.

The maximal XC4013-6’s pin-to-pin delay of the 2D-input FAST net-
work is 120.2 ns, and the I-CUBE’s pin-to-pin delay is 12ns. The pro-
cessing time per input vector is up to 57 clock cycles, depending on the
number of multiplications during learning, thus enabling the introduc-
tion of a new input vector approximately every 7.5µs. For the 3D-input
case, the maximal XC4013-6’s pin-to-pin delay is 172.7ns and a maxi-
mum of 66 clock cycles is needed for a learning step, thus enabling the
introduction of a new input vector approximately every 8.2µs.

In Littmann and Ritter, 1997, neural and statistical methods for adap-
tive color segmentation were compared. In these tests, a set of 400x400
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pixel images were used, and a maximum of 30 classes were allowed. The
processing of one such image running on an IBM RISC 350 worksta-
tion took 30 seconds. If an extension of our 3D-input system were used
(for clustering directly in RGB space) with these images, it would take
2x(8.2µsx400x400) = 2.62 seconds (one phase is needed for clustering
and a second phase to generate the segmented image); thus, our system
is about 11 times faster. One possible extension is to use denser Xilinx
devices, such as the new XC4036, rather than the older XC4013 devices
we have been using until now.

4. CODESIGN AND THE NEED FOR A
CHANGE IN THE ENGINEERING
CURRICULUM

Before concluding we would like to discuss in this section an issue
which usually remains outside the spotlight—teaching—but which is
nonetheless highly important, and, what’s more, it bears directly on the
use of configurable systems. In the classical university curriculum there
is a hard distinction between programmable computing and configurable
computing; the former, considered as a software practice, is under the
responsibility of the computer science department, whereas the latter is
regarded as a hardware practice, thereby to be taught at the electrical
engineering (or computer engineering) department. However, we believe
that this clear-cut frontier is dissolving, with these dichotomous domains
slowly merging into a continuum. One prominent aspect of this fusion is
the increasing importance attached to the codesign issue—basically, the
decision of which parts of the application are to be designed as software
and which shall be designed directly as hardware de Micheli and Gupta,
1997.

As our laboratory is responsible for teaching several hardware courses,
both at the elementary and advanced levels, we have become acutely
aware of the codesign issue in the past few years. For the advanced
courses we make use of the RENCO processor (Section 2.2), whereas
for the elementary-level courses we have developed a special teaching
platform—the LABOMAT board—described below.

Type (Objective). Static (Improve performance + Optimize resource
usage).

Functional description. LABOMAT is a “lightweight” platform aimed
at studying digital design, microcontroller programming, and—above
all—the interface between the two: codesign. We followed the “small
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is beautiful” approach in order to obtain a low-cost system that could
be installed by the dozens, furnishing each student (or small team of
students) with their own setup. It has been used with success in our
courses and has become a highly regarded prototyping tool that is used
not only by students but for our own research as well.

Hardware description. The LABOMAT board (Figure 1.20) con-
sists of a Motorola MC68331 microcontroller, a X4010 Xilinx FPGA,
128KB of ROM, 256KB of Flash memory, and 256KB of RAM. It com-
municates with a workstation (the host) through a RS-232 interface.

Microcontroller

MC68331@16Mhz

Flash

128Kx16

SRAM

128Kx16

Address
Arbiter

EPROM

64Kx16

Address
Arbiter

FPGA

XC4010

PLD

External bus I/O

RS-232

Figure 1.20 The LABOMAT block diagram.

All the microcontroller pins are connected to the FPGA, leaving some
FPGA pins free to be used as a general extension port. The memory is
shared between the CPU and the FPGA through a shared bus (a simple
arbitration scheme prevents access conflicts). All the components are
set on a double-sided PCB.

Software description. The board is controlled by a monitor stored
in the ROM. The monitor initializes the CPU and communicates with
the host station through an interactive, character-based interface which
allows the user to execute basic commands, including: uploading a pro-
gram into the processor, executing it, reading from and writing to the
RAM and Flash memories. The monitor is also used to easily configure
the FPGA using a binary file generated by the placement and routing
tools. This configuration file can be stored in the host system or in the
board memory (i.e., in the ROM, the RAM, or the Flash memory).
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The ROM also contains a library of low-level functions that simpli-
fies the access to all board resources, namely, those handling the com-
munications with the RS-232 port, the transfer of memory blocks, the
programming of the Flash memory, the configuration of the FPGA, and
the conversion between different data formats. This library can be used
by the monitor and by user application programs.

A user developing an application can test the executable file using
the RAM, and—after debugging—transfer it to the Flash memory. The
same process can be used by the configurer for the FPGA configuration
data. The LABOMAT board is then able to run stand-alone without
requiring the presence of a host.

Applications. From the early design stages it was recognized that
LABOMAT could become a very useful platform for reconfiguration and
codesign research. In fact, with its microcontroller, its programmable
logic, and the complete interconnection between the two, the board pro-
vides a system that can be used to experiment with the design of ded-
icated systems comprising both hardware and software, as well as to
explore different interfaces between the two parts.

LABOMAT can be used to develop and validate automatic codesign
tools, and—since its architecture is conceptually simple—the designer
can concentrate his or her effort on the partitioning and synthesis with-
out having to deal with the complexity of the target platform.

The board has been successfully used for student exercises. It has
proven itself to be a very simple and flexible tool for teaching basic dig-
ital design and microprocessor interfacing. Due to the reconfigurability
of the FPGA, it is possible for students to go beyond simulation, testing
their designs with real hardware, thus allowing them to confront prob-
lems that do not often appear in a simulation. Furthermore, they are
able to experience the satisfaction of obtaining a bona fide hardware
system.

The flexibility and the ease of programming and configuration allow
projects to be completed faster and enable students to focus their at-
tention on the design. For example, the design and test of a simplified
floating point unit was achieved by a three-student team in five three-
hour sessions.

Based on our experience with RENCO (Section 2.2), a new board—
LABO-MAT II—is currently under development. The microprocessor
part is identical to RENCO, thus adding with respect to LABOMAT
I an Ethernet interface and the high-level software (real-time operat-
ing system and Java interface). The reconfigurable part, on the other
hand, is simpler and cheaper, comprising but two FPGA circuits, one
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Xilinx XC4000, and one Xilinx XC6200 (this latter allowing for dynamic
reconfiguration).

5. CONCLUDING REMARKS

Our aim herein has been to demonstrate a number of FPGA applica-
tions that cover a wide range of characteristics, exemplifying the use of
configurable circuits in general, and within the domain of bio-inspired
systems in particular. First and foremost we made a distinction—which
we believe to be of prime import—between static and dynamic config-
uration strings. The former, aimed at configuring the processor so as
to perform a given function, is loaded once at the outset, after which
it does not change during execution of the task at hand. A dynamic
configuration string, on the other hand, can continually change.

Static FPGA applications, such as SPYDER, RENCO, and the back-
propagation neural network are mainly aimed at attaining the classical
goal in computing: that of improving performance—be it in terms of
speed, resource utilization, or area usage. With configurable processors
slowly but surely inching their way toward the mainstream of the com-
puting industry, we will probably be seeing more such static applications
in the near future. Thus, the future may see a merging of the classical
processor industry with the configurable computing industry.

Dynamic devices, such as Firefly, BioWatch, and FAST represent
a less conventional approach that may in fact be quite revolutionary
(though perhaps not in the immediate future). With the rise of bio-
inspired computing, we expect to see more hardware devices imbued
with properties usually associated up until now only with living beings:
learning, evolution, self-repair, self-replication, and so forth. In gen-
eral, this will result in systems that are more adaptive—able to undergo
modifications according to changing circumstances, thus continuing to
function within their dynamic environments. The applications of such
systems are bounded only by our imagination.
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