Constructing Counters through Evolution

Moshe Sipper

In the one-dimensional synchronisation task, discussed in [147], the final pattern consists of an oscillation between all 0 s and all 1 s . From an engineering point of view, this period-2 cycle may be considered a 1-bit counter. Building upon such an evolved CA, using a small number of different cellular clock rates, 2- and 3-bit counters can be constructed.

Constructing a 2-bit counter from a non-uniform, radius $r=1 \mathrm{CA}$, evolved to solve the synchronisation task, is carried out by "interlacing" two $r=1$ CAs, in the following manner: each cell in the evolved $r=1 \mathrm{CA}$ is transformed into an $r=2$ cell, two duplicates of which are juxtaposed (the resulting grid's size is thus doubled). This transformation is carried out by "blowing up" the $r=1$ rule table into an $r=2$ one, creating from each of the (eight) $r=1$ table entries four $r=2$ table entries, resulting in the 32 -bit $r=2$ rule table. For example, entry $110 \rightarrow 1$ specifies a next-state bit of 1 for an $r=1$ neighbourhood of 110 (left cell is in state 1 , central cell is in state 1 , right cell is in state 0). Transforming it into an $r=2$ table entry is carried out by "moving" the adjacent, distance- 1 cells to a distance of 2, i.e., $110 \rightarrow 1$ becomes $1 X 1 Y 0 \rightarrow 1$; filling in the four permutations of (X, Y), namely, $(0,0),(0,1),(1,0)$, and $(1,1)$, results in the four $r=2$ table entries. The clocks of the odd-numbered cells function twice as fast as those of the even-numbered cells, meaning that the latter update their states every second time step with respect to the former. The resulting CA converges to a period- 4 cycle upon presentation of a random initial configuration, a behaviour that may be considered a 2-bit counter.

Constructing a 3-bit counter from a non-uniform, $r=1 \mathrm{CA}$ is carried out in a similar manner, by "interlacing" three radius $r=1$ CAs (the resulting grid's size is thus tripled). The clocks of cells $0,3,6, \ldots$ function normally, those of cells $1,4,7, \ldots$ are divided by two (i.e., these cells change state every second time step with respect to the "fast" cells), and the clocks of cells $2,5,8, \ldots$ are divided by four (i.e., these cells change state every fourth time step with respect to the fast cells). The resulting CA converges to a period- 8 cycle upon presentation of a random initial configuration, a behaviour that may be considered a 3-bit counter. We have thus demonstrated how one can build upon an evolved behaviour in order to construct devices of interest.

[^0]

2-bit counter (c) 2015 Moshe Sipper.
The one-dimensional synchronisation task: A 2-bit counter. Operation of a non-uniform, 2-state CA, with connectivity radius $r=2$. Grid size is $N=298$. The CA converges to a period- 4 cycle upon presentation of a random initial configuration, a behaviour that may be considered a 2-bit counter. [147].

3-bit counter (c) 2015 Moshe Sipper.
The one-dimensional synchronisation task: A 3-bit counter. Operation of a non-uniform, 2-state CA, with connectivity radius $r=3$. Grid size is $N=447$. The CA converges to a period- 8 cycle upon presentation of a random initial configuration, a behaviour that may be considered a 3-bit counter [147].

[^0]: M. Sipper

 Ben-Gurion University, Beer Sheva, Israel
 e-mail: sipper@cs.bgu.ac.il

