
International Journal of Modern Physics C, Vol. 8, No.5 (1997) 1013-1024
@ World Scientific Publishing Company

CONVERGENCE TO UND'ORMITY IN A CELLULAR
AUTOMATON VIA LOCAL COEVOLUTION

MOSHE SIPPER
Logic S~ LGbonJtOf'f/, 81IIi8B Fedetvllnltittde 0/ TechnoiO91l,

CH-I015 Lauanne, ~
E-mail: Moshe.SipperOdiepft.ch

MARCO TOMASSINI
Logic S~ LGbotueOf't/, S.,... Fedenil InBtitute 01 Tech~, and InBtitute 01

Computer Science, Universitr 01 Lausanne
E-mail: ManXI. T~iniOdi.epft.ch

Cellular programming is a coevolutionary algorithm by whidl parallel cellular systems
evolve to solve computational tub. The evolving 8y8teIn is a maMively parallel, locally
interconnected grid of cells, where each cell OpeI'at. according to a local interaction
rule. If this rule is identical for all cells, the 8y8teIn is referred to 88 unifonn, otherwiBe,
it is non-uRifonn. This paper d-=ribes an experiment that ad~ the following
question: Employing a local coevolutionary p~ to solve a hard problmn, known 88
density cl88Bificauon, can an optimal unifonn solution be found? Since our approad1
invol~ the evolution of non-uniform CAs, where cellular rul5 are initially a8igned at
random, such convergence to uniformity cannot be (1 priori expected to easily mnerge.
The question is of both theoretical and practical interest. As for the latter, one major
advantage of local evolutionary ~ is their amenability to parallel implementation,
using commercially available parallel m~hin5 or specialized hardware. Our experiment
shows that when such local evolution is applied to the density problem, the optimal
solution can be found.

KeJlWords: Non-uniform Cellular Automata; Cellular Programming; Evolutionary Com-
putation.

1. Introduction

Coevolution can be defined as reciprocal evolutionary change in interacting species.
The modern introduction of the term is probably due to Ref. 1, though Darwin
himself wrote "of the coadaptations of organic beings to each other."2

An example of a coevolutionary algorithm is cellular programming, which in-
volves the evolution of parallel cellular systems to solve computational tasks.3-S The
evolving system, known as a non-unifOrTn cellular automaton (CA), is a massively
parallel, locally interconnected grid of cells, where each cell operates according to
a local interaction rule. The unifonnity property pertains to these local rules: in a

Received 16 April 1997
Reviaed 30 May 1997

1013

Draf
t



1014 M. Sipper tJ M. Toma88ini

uniform CA all cells operate according to an identical rule, whereas in a non-uniform
CA different cells may operate according to different rules.

Cellular progrAmming is a coevolutionary algorithm that operates in a com-
pletely local manner, the goal being to evolve the local cellular interaction rules.
Essentially, each cell contains a genome that represents its rule, specifying the cell's
behavior with res~ to a small local neighborhood. Initially assigned at ran-
dom, these genomes locally coevolve, each cell having access only to the genomes
of its immediate neighbors, with no one cell in possession of a global view of the
entire grid. The process is coevolutionary due to the close interactions between the
evolving cells: Changing a cell's genome - and therefore its behavior - transfonns

the adaptive landscapes of its neighbors, which in turn can similarly transform the
landscapes of their respective neighboring cells, and so on.

The dynamical behavior of a cellular automaton may give rise to emergent com-
putation, referring to the appearance of global information processing capabilities
that are not explicitly represented in the system's elementary components or in their
local interconnections.3 As such, they offer an austere yet versatile model for study-
ing natural phenomena, as well as a powerful paradigm for attAining fine-grained,

massively parallel computation.
This paper describes an experiment that addresses the following question: Em-

ploying a local coevolutionary process to solve a hard problem, known as density
classification, can an optimal unifonn solution be found? Since our approach in-
volves the evolution of non-uniform CAs, where cellular rules are initially assigned
at random, such convergence to uniformity cannot be a priori expected to easily
emerge. This question is of both theoretical and practical interest. As for the latter,
one major advantage of local evolutionary processes is their amenability to parallel

implementation.3
We begin in Sec. 2 with a brief description of cellular automata, as well as the

so-called density problem, on which we shall focus our studies, evolving cellular
automata to solve it. Section 3 presents the cellular progrAmming algorithm. The
experiment itself, described in Sec. 4, involves two stages: We first describe a re-
cently discovered unifonn cellular automaton that can perfectly solve the density
problem, followed by a demonstration that coevolution via cellular progrAmming
can indeed find this provenly optimal solution. We also study the coevolutionary
process. Finally, we present some concluding remarks in Sec. 5.

2. Cellular Automata and the Density Problem

The ~~hine model we employ is based on the cellular automata (CA) model. CAs
are dynamical systems in which space and time are discrete. A cellular automaton
consists of an array of cells, each of which can be in one of a finite number of
possible states, updated synchronously in discrete time steps, according to a local,
identical interaction rule. The state of a cell at the next time step is determined by
the current states of a surrounding neighborhood of cells; this transition is usually



Converyence to Unifonnit1l in a Cellular Automaton tria LfK:al CfJeVOlution 1015

specified in the form of a rule table, delineating the cell's next state for each possible
neighborhood configuration.9 The cellular array (grid) is n..dimensional, where n =
1,2,3 is used in practice. In this paper we shall concentrate on one-dimensional
grids, with two possible states per cell, denoted 0 and 1. In such CAs each cell is
connected to r local neighbors (cells) on either side, as well as to itself, where r is a
parameter referred to as the radius (thus, each cell has 2r+ 1 neighbors). A common
method of examining the behavior of one-dimensional CAs is to display a two-
dimensional space-time diagram, where the horizontal axis depicts the configuration
at a certain time t and the vertical axis depicts successive time steps (Fig. 1). The
term configumtion refers to an assignment of states to cells in the grid.

CAs exhibit three notable features, namely, massive parallelism, locality of cellu-
lar interactions, and simplicity of basic componen~ (cells). The machine model we
employ is an extension of the original, uniform CA model, termed non-unifonn
cellular automata. 3 Such automata function in the same way as uniform ones, the

only difference being in the local cellular interaction rules that need not be iden-
tical for all cells. A major problem common to such local, parallel systems is the
painstaking task one is faced with in designing them to exhibit a specific behavior
or solve a particular problem. This resul~ from the local dynamics of the system,
which renders the design of local interaction rules to perform global computational
tasks extremely arduous.

An example of such global emergent computation, which we shall focus on in
this paper, is to use a CA to determine the global density of bi~ in an initial state
configuration. Known as the density problem, the one-dimensional, two-state CA
is presented with an arbitrary initial configuration, and should converge in time to
a state of all Is if the initial configuration contains a density of Is > 0.5, and to all
Os if this density < 0.5; for an initial density of 0.5, the CA's behavior is undefined.
Spatially periodic boundary conditions are used, resulting in a circular grid (for an
r = 1 CA this means that the leftmost and rightmost cells are connected). It has
been shown that for a uniform one-dimensional grid of fixed size N, and for a fixed
radius r ~ 1, there exists no two-state CA rule which correctly classifies all possible
initial configurations;10 this says nothing, however, about how well an imperfect
CA might perform, i.e. one that does not necessarily correctly classify all possible

configurations.
Recently, researchers have focused on the use of arti:ficia1 evolution techniques,

demonstrating that high-performance (though imperfect) CAs can be evolved to
solve this problem. References 11 and 12 applied a standard genetic algorithm,13
and Ref. 14 applied genetic progrAmming15 to evolve uniform CAs that exhibit high
performance on the density task. We have applied cellular progmmming, described
in the next section, to the coevolution of non-unifonn CAs, the operation of one of
which is demonstrated in Fig. 1.3

3. Cellular Programming

We study 2-state, non-uniformCAs, in which each cell may contain a different rule.



1016 M. Sippsr 8 M. Tomu.ini

Fig. 1. The dell8ity talk: Operation of a coevolved, non-uniform, r = 1 CA. Grid size is N = 149.
Top figure: the pattern of configurations is shown through time (which incre.- down the page).
White squars reprment cells in state 0, black eqUarM reprment cells in state 1. Bottom figure:
the ruls map, depicting the distribution of ruts by 888igning a unique gray level to e8cl1 distinct
rule. Note that the evolved grid is quut-uniform, meaning that the number of distinct ruls is
extremely small, distributed such that a subeet of dominant ruls oocupis mO8t of the grid (in
this evolved CA, there are three distinct ruts, one of which is dominant). The initial dell8ity of
18 in the random initial configuration is 0.53 and the CA relaxs to a fixed pattern of allIs, which

is the correct output.

A cell's rule table is encoded as a bit string, known as the "genome," containing
the next-state (output) bits for all possible neighborhood configurations, listed in
lexicographic order; e.g. for CAs with r = 1, the genome consists of 8 bits, where the
bit at position 0 is the state to which neighborhood configuration 000 is mapped to
and so on until bit 7, corresponding to neighborhood configuration 111. Rather than
employ a population of evolving, uniform CAs, as with genetic algorithm approaches,
our algorithm involves a single, non-uniform CA of size N, with cell rules initialized
at random.o Initial configurations are then generated at random, and for each one
the CA is run for M time steps. Each cell's fitness is accumulated over C = 300

initial configurations, where a single run's score is 1 if the cell is in the correct state
after M time steps, and 0 otherwise. After every C configurations evolution of rules
occurs by applying crossover and mutation. This evolutionary process is performed
in a completely local manner, where genetic operators are applied only between
~y connected cells. It is driven by nfi(c), the number of fitter neighbors of cell
i after c configurations. The pseud()-code of the algorithm is delineated in Fig. 2.

Crossover between two rules is performed by selecting at random (with uniform
probability) a single crossover point and creating a new rule by combining the first
rule's bit string before the crOMOVer point with the second rule's bit string from this
point onward. Mutation is applied to the bit string of a rule with probability 0.001
per bit. Note that the fitness function ~ the initial density to determine whether

ONate that our algorithm is not n~y restricted to a single, non-uniform CA since an eD8eInble
of distinct grids can ewlve in parallel.

time
:J,



COf&1Ie'Vence to Uni/_itJ/ in /I Cellular AtAtomaton tIi4 L«Dl C~ 1011

for each cell i in CA do in parallel
initialize rule table of cell i
II = 0 { fitness value}

end parallel for
c = 0 { initial configurations counter}
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then
II = II + 1

end if
end parallel for
c=c+l
if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel
compute n!.(c) { number of fitter neighbors }
if n!I(C) = 0 then rule i is left unchanged
else if n!I(C) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
else if n!.(c) = 2 then replace rule i with the c1'(BOVer of the two fitter

neighboring rules, followed by mutation
else ifn!.(c) > 2 then replace rule i with the C1'0BS0Ver of two randomly

chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular radius, r, > 1)

end if
Ii =0

end parallel for
end if

end while

a cell is in the correct state or not at the final time step (this is also the case in the
experiments described by Ref. 12). This can be compared to supervised learning in
artificial neural networks, where the network is provided with correct input-output
pairs during the learning phase. These samples represent, however, only a small
fraction of the space of possible inputs, and the objective is for the network to
generalize, i.e. correctly classify novel patterns (that were not presented during
learning). This is similar to our evolutionary proc~, where the cellular automaton
is presented with only a minute fraction of the possible input configurations during
evolution, and is expected thereafter to correctly classify previously unseen patterns.

There are two main differences between our algorithm and the standard genetic

algorithm:13

(1) The latter involves a population of evolving, uniform CAs, with all
mnked according to fitness, and crossover occurring between any two

Fig. 2. PBeUdOoCJOde of the cellular programm.ing algorithm.

individuals
individuals



1018 M. SiPJler tJ M. Tomaaftni

in the population. Thus, while the CA nms in accordance with a local rule,
evolution proceeds in a global manner. In contrast, our algorithm proceeds
locally in the sense that each cell has access only to its locale, not only during
the run but also during the evolutionary phase, and no global fitness ranking is
performed. This characteristic is of prime import where, for example, hardware

implementation is concerned.3
The standard genetic algorithm involves a population of independent problem
solutions, meaning that the CAs in the population are assigned fitn~ values
independent of one another, and interact only through the genetic operators in
order to produce the next generation. In contrast, our CA coevolves since each
cell's fitness depends upon its evolving neighbors. This may also be considered
a form of symbiotic cooperation, which falls, as does coevolution, under the
general heading of "ecological" interactions (see Ref. 13, pages 182-183).

(2)

Much of the work on cellular progrAmming is described in the recent book by
Sip~ (see also reviews in Refs. 5 and 6, as well as the web page

http:/ /Jslwww .epft.clJ/ ,...,moshes / cp.html).

4. Convergence to Uniformity via Cellular Progr~~ming

The cellular progr~mming algorithm involv~ the coevolution of a non-uniform CA.
Thus, it embodi~ a process by which an initially random cellular system, where each
cell behaves according to a randomly chosen rule, coevolv~ to solve a given task.
In our previous work we noted that quasi-uniform CAs had thus emerged, where
the number of distinct rul~ is extremely small, distributed such that a subset of
dominant rul~ occupi~ most of the grid.3 This is demonstrated in Fig. 1 via the
rul~ map, depicting the distribution of rul~ by assigning a unique gray level to

each distinct rule.
The central question addr~ in the experiment described below is the fol-

lowing: Can a local coevolutionary process, that starts out with a random cellular
system (which is therefore completely non-uniform), find a globally optimal solu-
tion, which involves a completely uniform system (i.e. with an identical rule p~t
in each cell)? To study this problem we proceed in two stag~: First, we describe a
recently discovered uniform CA that can perfectly solve the density problem; then,
we show that coevolution via cellular progrAmming can indeed find this provenly

optimal solution.

4.1. A CA Uaat solves Uae denBif1i problem

As explained in Sec. 2, the density problem specifies that the one-dimensional, two-
state CA, upon presentation of an arbitrary initial configuration, should converge
in time to a state of all Is if the initial configuration contains a density of Is > 0.5,
and to all Os if this density < 0.5; for an initial density of 0.5, the CA's behavior is
undefined. Spatially periodic boundary conditions are used, resulting in a circular
grid. As noted, it has been shown that for a uniform one-dimensional grid of fixed



size N, aod for a fixed radius r ~ 1, there exists DO two-state CA role which co~y
c1assifi~ all possible initial configurations.1O

The density problem studied to date specifi~ convergence to one of two fixed-
point configurations, which are considere:! as the output of the computation. Re-
cently, Ref. 16 showed that a perfect CA density c~~er exists, upon d~~ a
different output specification. CoD8ider the uniform, two-state, r = 1 rule-184 CA,b

defined as follows:
(t+ 1) - { ai-l(t) if a,(t) = 0,

a, - ai+l (t) if ai(t) = 1

where a,(t) is the state of cell i at time t. Upon presentation of an arbitrary
initial configuration, the grid reIaX8I to a limit-cycle, within rN/21 time steps, that
provids a clagjfi~~tion of the initial configuration's density of Is: if this density
> 0.5 (respectively, < 0.5), then the final configuration consists of one or more blocks
of at least two COD8«utive Is (Os), interspersed by an alternation of Os and Is; for
an initial density of exactly 0.5, the final configuration consists of an alternation of
~ and Is. The computation's output is given by the state of the co~tive block
(or blocks) of sam&-state cells (Fig. 3). Reference 16 proved the following theorem
concerning rule 184: For a finite-size CA of size N, let S(t) = {ao(t),... ,aN-l(t)}
be the grid configuration at time step t, let D({ai(t),... ,a'+.-l(t)}) be the density
of Is at time t over a block of k cells at ~tjoos {i,... ,i+k-1}, and let T = rN/21
(cellular indi~ are computed modulus the grid size N since the grid is circular).
Then:

1. If D(S(O» > 0.5 then; (a) there exists a pair of ~ cells i, i + 1 8ud1 that
8i(T) = 1 aIKi 8i+l(T) = 1, and (b) for all i, ai(T) = 0 => 8i+l(T) = 1.

2. H D(S(O» < 0.5 then: (a) there exists a pair of adjacent cells i,i + 1 such that
8i(T) = 0 and a'+l(T) = 0, and (b) for all i, 8i(T) = 1 => ai+l(T) = O.

3. H D(S(O» = 0.5 then for all i, ai(T) :F a'+l(T).

Th18, rule 184 perfomIS perfect density classification (including the density = 0.5

properti5 of rule 184.
As the input configuration is random, this entails a high Kolmogorov complexity.

Intuitively, for a given finite string, this measure concerns the size of the shortest
program that comput&l the string.18 Both the fixOO-point output of the original
problem, 88 well . the novel "blocks" output, involve a notable reduction with
respect to this complexity measure. It bas been noted in Ref. 12 that the compu-
tational complexity of the input is that of a non-regular languagel9 since a counter
register is needed, whose size is proportional to log(N), whereas the fixed-point out-
put of the origiDal problem invol~ a simple regular language (aU 08 or aUla); we
note that the novel output specification aJao invol~ a regular language (a block of

bRule numbers are sI~ in accordance with Wolfram'. convention,1" rep~ting the decimal
equival8lt of the bi-r DUmbeI' ~~ the rule table. For ~pIe, rule 184, or 10111(XX) in
its binary form, ma.- t.be local nei&bb«booda 1110-+ 1, 1100-+ 0,..., (XX) 0-+ O.

..(t + 1) = { Ii-l(t)

Bi+l(t)





Con~ to Uniformity in G Cellul4r A~ .. Lcal C~ 1021

< 0.5 and si(M) = o and Si-l(M -1) = 0,
< 0.5 and S(i-l,i,i+l)(M) = (0,1,0) and S(i-2,i-l,i)(M-l) = (0,1,0),
> 0.5 and si(M) = 1 and Si+l(M -1) = 1,
> 0.5 and S(i-l,i,i+l)(M) = (1,0,1) and S(i.i+l,i+2)(M - 1) = (1,0,1),

1. D(O)
2. D(O)
3. D(O)
4. D(O)

where 8(i.;.k)(t) are the states of cells i,j,k at time t. For example, the first case
implies that when there is a majority of Os in the initial configuration, a state of
0 "propagates" to the right (e.g. Fig. 3(a». If none of the above four cases holds
true after M time steps, then the cell's fitness score for this initial configuration is

0, i.e. its fitness value Ii is not incremented.
Our experiment consisted of 100 evolutionary runs of the cellular progr~rnrning

algorithm, each run for a given !I18-~al number of initial configurations (the evolu-
tionary run was terminated when this maximum was ~.ached, or upon convergence
to rule 184). Six such experiments were conducted, results of which are presented in
Table 1. The most notable feature is that convergence to a uniform grid, in which
all cells contain rule 184, occurs in a majority of the runs. Not surprisingly, con-
vergence rate increases 88 the !I18-~mal number of configurations is increased. Both
odd- and even-sized grids were employed, with no observable differences between
them. Note that given the grid sizes used and the small number of possible rules
(256), it is quite possible that rule 184 be found in the initial grid (or at least a
rule that is off by only a I-bit mutation). However, it is not obvious a priori that
the selection forces at work can cause this rule to diffuse throughout the grid. As
noted, the process is coevolutionary, with the cells interacting and thus influencing
each other's fitness. While rule 184 may find its way into the grid quite quickly,
it is far from evident what the optimal population of rules is, and how to find it.
Nonetheless, through the local evolutionary process described herein, the optimal,

uniform grid emerges.
While a majority of the evolutionary runs "found" the optimal uniform CA, oth-

ers resulted in non-uniform ones which are not optimal. An ~ing regularity in

Table 1. Results of experiments. Shown below are the CA parameters
(grid size N and number of time steps M), the number of evolutionary
runs, the m!!o-~1!!aI number of initial configuratioos per run, and the
number of tinJM the final evolved grid was a uniform one, in which all

cells contain rule 184.

N (Grid M ~ No. evd. Max. coofip. No. ~.
8i8e) ..) rUI8 per run to rule 184

101 51 100 100,000 «
101 51 100 250,000 65
12) m 100 ~,OOO 45
12) m 100 400,000 58
149 15 100 250,000 66
149 15 100 500,000 13





Confle'Y~ to Uniformity in a Cellular Automaton via LoI»l Coevolution 1023

the evolutionary pr~ was revealm when exAmining the ensemble of rul~ pr~t
in the evolved grids. Our ~ults are presented in Fig. 4 in the form of histograms,
showing the number of occurrenc~ of each of the possible 256 rul~ within the final

evolved grids. The manifest similarity between the six experiments suggests that

the coevolutionary fitness landscape is independent of the CA parameters (N, M),
the pr~ce of some rul~ proving advantageous, the presence of others proving

detrimental.
The r = 1 roles discussed herein can be expressed in roJniTrul.l disjunctive nor-

mal form, using boolean multiplication and addition (corresponding to the AND
and OR operations), and bar to denote complementation.17 O~erving the his-
togralns in Fig. 4, we find that the most widespread roles are (in decreasing order

of appearance):

We note that the top-rAnlcing evolved rul5 are similar to rule 184. It was also
observed that rule 184's reflection-symmetric rule, 226, appeared quite sparsely. As
noted above, this rule holds the same properti5 as rule 184, however, the "signals"
are "reversed." Its sparse occurrence is evidence of the fitness function's precision,
"targeting" exactly th~ signals manif5t by rule 184 (Fig. 3).

5. Concluding Remarks

We set out to investigate whether the local coevolutionary cellular programming
algorithm can find a provenly optimal uniform CA that solves the density problem.
Since our approach involves the evolution of non-uniform CAs, where cellular rules
are initially assigned at random, such convergence to uniformity cannot be a priori
expected to easily emerge. Our experiment shows that in the case of the density
problem the optimal solution can be found. Although this result does not necessarily
apply to local coevolution in general, it is nonetheless an encouraging step. It
should be mentioned that no evolutionary algorithm is guaranteed to produce an
optimal solution (or even a good one) for a general search problem.13 As noted, one
motivation for such studies is the observation that local evolutionary processes are
more amenable to parallel implementation, using commercially available parallel
machines or specialized hardware.

C. J. Mode, Evolution 12, 158 (1958).1.

rule minitnal di8'uDCtjw ~ tc.1niJ
184 -.(t + 1) = -.-1 (t)i"i(t) + ..(t~.+l(t)
176 ..(t + 1) = ..-l(&) (t) + ..-l(t>,-,+l(t)

186 -,(t + 1) = ---l(t~(t)+ -'+1 (t)

48 ..(t + 1)= "-l(t~(t)

187 ..(t+1)-Tt(t)+~



1024 M. Sipper b' M. TomGSIini

2. C. Darwin, The Origin 01 Speciu (John Murray, London, 1859).
3. M. Sipper, Evolution 01 Parallel CelltUar Machines: The CelltUar Programming Ap-

proat:h (Springer-Verlag, Heidelberg, 1997).
4. M. Sipper, Physica D92, 193 (1996).
5. M. Sipper, "Evolving uniform and non-uniform cellular automata networks," in An-

n1UJl Retliews 01 Com~tational Physics, Volume V, ed. D. Stauffer (World Scientific,
Singapore, 1997), pp. 243-285.

6. M. Sipper, BioSystems, 42, 29 (1997).
7. M. Sipper and E. Ruppin, Physica D99, 428 (1997).
8. M. Sipper and M. TomA.-ini, Int. J. Mod. Phys. 07(2), 181 (1996).
9. T. Toffoli and N. Margolus, CelltUar Automata Machines (MIT P~, Cambridge,

1987).
10. M. Land and R. K. Belew, Phys. Rev. Letts. '14(25), 5148 (1995).
11. N. H. Packard, "Adaptation toward the edge of chaos," in Dynamic Pattem6 in Com-

plex Systems, Ms. J. A. S. Kelso, A. J. Mandell, and M. F. S~ (World Scientific,
1988), pp. 293-301.

12. M. Mitchell, J. P. Crutchfield, and P. T. Hraber, Physica D'I5, 361 (1994).
13. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA,

1996).
14. D. Andre, F. H Bennett ill, and J. R. Koza, "Discovery by genetic progrAmming of a

cellular automata rule that is better than any known rule for the majority clasaification
problem," in Ms. J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Genetic
Pf'ogrUmming 1996: Proc. First Ann. Conf. (MIT Press, Cambridge, MA, 1996), pp. 3-
11.

15. J. R. Koza, Genetic Programming (MIT P~, Cambridge MA, 1992).
16. M. S. Capcarrere, M. Sipper, and M. Tomassini, Phys. Rev. Lett. 77(24), 4969 (1996).
17. S. Wolfram, Cellular Automata and Comple:r,ity (Addison-Wesley, &&ding, MA, 1994).
18. M. Li and P. Vit&nyi, An Introduction to Kolmogoro1J Complexity and its Applimtions

(Springer-Verlag, New York, 1993).
19. J. E. Hopcroft and J. D. Ullman, Intfvduction to Automata TheDf'7/ Languages and

Computation (Addison-Wesley, Redwood City, CA, 1979).
20. J. P. Crutchfield and M. Mitchell, "The evolution of emergent computation," Proc. 01

~e Nat. Acad. 01 Sa. USA, 92(23), 10742 (1995).

..




