International Journal of Modern Physics C, Vol. 8, No. 5 (1997) 1013-1024
(© World Scientific Publishing Company

CONVERGENCE TO UNIFORMITY IN A CELLULAR
AUTOMATON VIA LOCAL COEVOLUTION

MOSHE SIPPER
Logic Systems Laboratory, Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland
E-mail: Moshe.Sipper@di.epfl.ch

MARCO TOMASSINI
Logic Systems Laboratory, Swiss Federal Institute of Technology, and Institute of
Computer Science, University of Lausanne
E-mail: Marco. Tomassini@di.epfl.ch

Received 16 April 1997
Revised 30 May 1997

Cellular programming is a coevolutionary algorithm by which parallel cellular systems
evolve to solve computational tasks. The evolving system is a massively parallel, locally
interconnected grid of cells, where each cell operates according to a local interaction
rule. If this rule is identical for all cells, the system is referred to as uniform, otherwise,
it is non-uniform. This paper describes an experiment that addresses the following
question: Employing a local coevolutionary process to solve a hard problem, known as
density classification, can an optimal uniform solution be found? Since our approach
involves the evolution of non-uniform CAs, where cellular rules are initially assigned at
random, such convergence to uniformity cannot be a priori expected to easily emerge.
The question is of both theoretical and practical interest. As for the latter, one major
advantage of local evolutionary processes is their amenability to parallel implementation,
using commercially available parallel machines or specialized hardware. Our experiment
shows that when such local evolution is applied to the density problem, the optimal
solution can be found.

Keywords: Non-uniform Cellular Automata; Cellular Programming; Evolutionary Com-
putation.

1. Introduction

Coevolution can be defined as reciprocal evolutionary change in interacting species.
The modern introduction of the term is probably due to Ref. 1, though Darwin
himself wrote “of the coadaptations of organic beings to each other.”2

An example of a coevolutionary algorithm is cellular programming, which in-
volves the evolution of parallel cellular systems to solve computational tasks.3~8 The
evolving system, known as a non-uniform cellular automaton (CA), is a massively
parallel, locally interconnected grid of cells, where each cell operates according to
a local interaction rule. The uniformity property pertains to these local rules: in a

1013

1014 M. Sipper €& M. Tomassini

uniform CA all cells operate according to an identical rule, whereas in a non-uniform
CA different cells may operate according to different rules.

Cellular programming is a coevolutionary algorithm that operates in a com-
pletely local manner, the goal being to evolve the local cellular interaction rules.
Essentially, each cell contains a genome that represents its rule, specifying the cell’s
bebavior with respect to a small local neighborhood. Initially assigned at ran-
dom, these genomes locally coevolve, each cell having access only to the genomes
of its immediate neighbors, with no one cell in possession of a global view of the
entire grid. The process is coevolutionary due to the close interactions between the
evolving cells: Changing a cell’s genome — and therefore its behavior — transforms
the adaptive landscapes of its neighbors, which in turn can similarly transform the
landscapes of their respective neighboring cells, and so on.

The dynamical behavior of a cellular automaton may give rise to emergent com-
putation, referring to the appearance of global information processing capabilities
that are not explicitly represented in the system’s elementary components or in their
local interconnections.? As such, they offer an austere yet versatile model for study-
ing natural phenomena, as well as a powerful paradigm for attaining fine-grained,
massively parallel computation.

This paper describes an experiment that addresses the following question: Em-
ploying a local coevolutionary process to solve a hard problem, known as density
classification, can an optimal uniform solution be found? Since our approach in-
volves the evolution of non-uniform CAs, where cellular rules are initially assigned
at random, such convergence to uniformity cannot be a priori expected to easily
emerge. This question is of both theoretical and practical interest. As for the latter,
one major advantage of local evolutionary processes is their amenability to parallel
implementation.3

We begin in Sec. 2 with a brief description of cellular automata, as well as the
so-called density problem, on which we shall focus our studies, evolving cellular
automata to solve it. Section 3 presents the cellular programming algorithm. The
experiment itself, described in Sec. 4, involves two stages: We first describe a re-
cently discovered uniform cellular automaton that can perfectly solve the density
problem, followed by a demonstration that coevolution via cellular programining
can indeed find this provenly optimal solution. We also study the coevolutionary
process. Finally, we present some concluding remarks in Sec. 5.

2. Cellular Automata and the Density Problem

The machine model we employ is based on the cellular automata (CA) model. CAs
are dynamical systems in which space and time are discrete. A cellular automaton
consists of an array of cells, each of which can be in one of a finite number of
possible states, updated synchronously in discrete time steps, according to a local,
identical interaction rule. The state of a cell at the next time step is determined by
the current states of a surrounding neighborhood of cells; this transition is usually

Convergence to Uniformity in a Cellular Automaton via Local Coevolution 1015

specified in the form of a rule table, delineating the cell’s next state for each possible
neighborhood configuration.® The cellular array (grid) is n-dimensional, where n =
1,2,3 is used in practice. In this paper we shall concentrate on one-dimensional
grids, with two possible states per cell, denoted 0 and 1. In such CAs each cell is
connected to r local neighbors (cells) on either side, as well as to itself, where r is a
parameter referred to as the radius (thus, each cell has 2r+1 neighbors). A common
method of examining the behavior of one-dimensional CAs is to display a two-
dimensional space-time diagram, where the horizontal axis depicts the configuration
at a certain time ¢t and the vertical axis depicts successive time steps (Fig. 1). The
term configuration refers to an assignment of states to cells in the grid.

CAs exhibit three notable features, namely, massive parallelism, locality of cellu-
lar interactions, and simplicity of basic components (cells). The machine model we
employ is an extension of the original, uniform CA model, termed non-uniform
cellular automata.® Such automata function in the same way as uniform ones, the
only difference being in the local cellular interaction rules that need not be iden-
tical for all cells. A major problem common to such local, parallel systems is the
painstaking task one is faced with in designing them to exhibit a specific behavior
or solve a particular problem. This results from the local dynamics of the system,
which renders the design of local interaction rules to perform global computational
tasks extremely arduous.

An example of such global emergent computation, which we shall focus on in
this paper, is to use a CA to determine the global density of bits in an initial state
configuration. Known as the density problem, the one-dimensional, two-state CA
is presented with an arbitrary initial configuration, and should converge in time to
a state of all 1s if the initial configuration contains a density of 1s > 0.5, and to all
0Os if this density < 0.5; for an initial density of 0.5, the CA’s behavior is undefined.
Spatially periodic boundary conditions are used, resulting in a circular grid (for an
r = 1 CA this means that the leftmost and rightmost cells are connected). It has
been shown that for a uniform one-dimensional grid of fixed size IV, and for a fixed
radius r > 1, there exists no two-state CA rule which correctly classifies all possible
initial configurations;!® this says nothing, however, about how well an imperfect
CA might perform, i.e. one that does not necessarily correctly classify all possible
configurations.

Recently, researchers have focused on the use of artificial evolution techniques,
demonstrating that high-performance (though imperfect) CAs can be evolved to
solve this problem. References 11 and 12 applied a standard genetic algorithm,!3
and Ref. 14 applied genetic programming® to evolve uniform CAs that exhibit high
performance on the density task. We have applied cellular programming, described
in the next section, to the coevolution of non-uniform CAs, the operation of one of
which is demonstrated in Fig. 1.3

3. Cellular Programming
We study 2-state, non-uniform CAs, in which each cell may contain a different rule.

1016 M. Sipper & M. Tomassini

time

Fig. 1. The density task: Operation of a coevolved, non-uniform, r =1 CA. Grid size is N = 149.
Top figure: the pattern of configurations is shown through time (which increases down the page).
White squares represent cells in state 0, black squares represent cells in state 1. Bottom figure:
the rules map, depicting the distribution of rules by assigning a unique gray level to each distinct
rule. Note that the evolved grid is guasi-uniform, meaning that the number of distinct rules is
extremely small, distributed such that a subset of dominant rules occupies most of the grid (in
this evolved CA, there are three distinct rules, one of which is dominant). The initial density of
18 in the random initial configuration is 0.53 and the CA relaxes to a fixed pattern of all 1s, which
is the correct output.

A cell's rule table is encoded as a bit string, known as the “genome,” containing
the next-state (output) bits for all possible neighborhood configurations, listed in
lexicographic order; e.g. for CAs with r = 1, the genome consists of 8 bits, where the
bit at position 0 is the state to which neighborhood configuration 000 is mapped to
and so on until bit 7, corresponding to neighborhood configuration 111. Rather than
employ a population of evolving, uniform CAs, as with genetic algorithm approaches,
our algorithm involves a single, non-uniform CA of size N, with cell rules initialized
at random.® Initial configurations are then generated at random, and for each one
the CA is run for M time steps. Each cell’s fitness is accumulated over C' = 300
initial configurations, where a single run’s score is 1 if the cell is in the correct state
after M time steps, and 0 otherwise. After every C configurations evolution of rules
occurs by applying crossover and mutation. This evolutionary process is performed
in a completely local manner, where genetic operators are applied only between
directly connected cells. It is driven by nfi(c), the number of fitter neighbors of cell
i after ¢ configurations. The pseudo-code of the algorithm is delineated in Fig. 2.
Crossover between two rules is performed by selecting at random (with uniform
probability) a single crossover point and creating a new rule by combining the first
rule’s bit string before the crossover point with the second rule’s bit string from this
point onward. Mutation is applied to the bit string of a rule with probability 0.001
per bit. Note that the fitness function uses the initial density to determine whether

aNote that our algorithm is not necessarily restricted to a single, non-uniform CA since an ensemble
of distinct grids can evolve in parallel.

Convergence to Uniformity in a Cellular Automaton via Local Coevolution 1017

for each cell ¢ in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
if cell i is in the correct final state then
fi=fi+1
end if
end parallel for
c=c+1
if c mod C = 0 then { evolve every C configurations}
for each cell i do in parallel
compute nf;(c) { number of fitter neighbors }
if nfi(c) = 0 then rule 7 is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,
followed by mutation
else if nf;(c) = 2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf:(c) > 2 then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular radius, =, > 1)

end parallel for
end if
end while

Fig. 2. Pseudo-code of the cellular programming algorithm.

a cell is in the correct state or not at the final time step (this is also the case in the
experiments described by Ref. 12). This can be compared to supervised learning in
artificial neural networks, where the network is provided with correct input-output
pairs during the learning phase. These samples represent, however, only a small
fraction of the space of possible inputs, and the objective is for the network to
generalize, i.e. correctly classify novel patterns (that were not presented during
learning). This is similar to our evolutionary process, where the cellular automaton
is presented with only a minute fraction of the possible input configurations during
evolution, and is expected thereafter to correctly classify previously unseen patterns.

There are two main differences between our algorithm and the standard genetic
algorithm:13

(1) The latter involves a population of evolving, uniform CAs, with all individuals
ranked according to fitness, and crossover occurring between any two individuals

1018 M. Sipper & M. Tomassini

in the population. Thus, while the CA runs in accordance with a local rule,
evolution proceeds in a global manner. In contrast, our algorithm proceeds
locally in the sense that each cell has access only to its locale, not only during
the run but also during the evolutionary phase, and no global fitness ranking is
performed. This characteristic is of prime import where, for example, hardware
implementation is concerned.®

(2) The standard genetic algorithm involves a population of independent problem
solutions, meaning that the CAs in the population are assigned fitness values
independent of one another, and interact only through the genetic operators in
order to produce the next generation. In contrast, our CA coevolves since each
cell’s fitness depends upon its evolving neighbors. This may also be considered
a form of symbiotic cooperation, which falls, as does coevolution, under the
general heading of “ecological” interactions (see Ref. 13, pages 182-183).

Much of the work on cellular programming is described in the recent book by
Sipper® (see also reviews in Refs. 5 and 6, as well as the web page
http://lslwww.epfl.ch/~moshes/cp.html).

4. Convergence to Uniformity via Cellular Programming

The cellular programming algorithm involves the coevolution of a non-uniform CA.
Thus, it embodies a process by which an initially random cellular system, where each
cell behaves according to a randomly chosen rule, coevolves to solve a given task.
In our previous work we noted that guasi-uniform CAs had thus emerged, where
the number of distinct rules is extremely small, distributed such that a subset of
dominant rules occupies most of the grid.® This is demonstrated in Fig. 1 via the
rules map, depicting the distribution of rules by assigning a unique gray level to
each distinct rule.

The central question addressed in the experiment described below is the fol-
lowing: Can a local coevolutionary process, that starts out with a random cellular
system (which is therefore completely non-uniform), find a globally optimal solu-
tion, which involves a completely uniform system (i.e. with an identical rule present
in each cell)? To study this problem we proceed in two stages: First, we describe a
recently discovered uniform CA that can perfectly solve the density problem; then,
we show that coevolution via cellular programming can indeed find this provenly
optimal solution.

4.1. A CA that solves the density problem

As explained in Sec. 2, the density problem specifies that the one-dimensional, two-
state CA, upon presentation of an arbitrary initial configuration, should converge
in time to a state of all 1s if the initial configuration contains a density of 1s > 0.5,
and to all Os if this density < 0.5; for an initial density of 0.5, the CA’s behavior is
undefined. Spatially periodic boundary conditions are used, resulting in a circular
grid. As noted, it has been shown that for a uniform one-dimensional grid of fixed

Convergence to Uniformity in a Cellular Automaton via Local Coevolution 1019

size N, and for a fixed radius r > 1, there exists no two-state CA rule which correctly
classifies all possible initial configurations.®

The density problem studied to date specifies convergence to one of two fixed-
point configurations, which are considered as the output of the computation. Re-
cently, Ref. 16 showed that a perfect CA density classifier exists, upon defining a
different output specification. Consider the uniform, two-state, r = 1 rule-184 CA.’

defined as follows: @ a8
s;—1(t) if s;(t) =0,
si(t+1) = {3e+i(t) if si(t) = 1

where s;(t) is the state of cell i at time t. Upon presentation of an arbitrary
initial configuration, the grid relaxes to a limit-cycle, within [/N/2] time steps, that
provides a classification of the initial configuration’s density of 1s: if this density
> 0.5 (respectively, < 0.5), then the final configuration consists of one or more blocks
of at least two consecutive 1s (0s), interspersed by an alternation of Os and 1s; for
an initial density of exactly 0.5, the final configuration consists of an alternation of
0s and 1s. The computation’s output is given by the state of the consecutive block
(or blocks) of same-state cells (Fig. 3). Reference 16 proved the following theorem
concerning rule 184: For a finite-size CA of size N, let S(t) = {so(t),...,sn_1(t)}
be the grid configuration at time step t, let D({s;(t),..., 8i+k—1(t)}) be the density
of 1s at time ¢ over a block of k cells at positions {i,...,i+k—1}, and let T = [N/2]
(cellular indices are computed modulus the grid size N since the grid is circular).
Then:

1. If D(S(0)) > 0.5 then: (a) there exists a pair of adjacent cells ¢,i + 1 such that
$i(T) =1 and s;41(T") = 1, and (b) for all i, 8;(T) = 0= 8;41(T) = 1.

2. If D(5(0)) < 0.5 then: (a) there exists a pair of adjacent cells ¢,i + 1 such that
8i(T) = 0 and s;41(T") =0, and (b) for all i, 8;(T) = 1 = 8;41(T) = 0.

3. If D(S(0)) = 0.5 then for all 7, 5;(T") # si+1(T).

Thus, rule 184 performs perfect density classification (including the density = 0.5
case). We note in passing that the reflection-symmetric rule 226 holds the same
properties of rule 184.

As the input configuration is random, this entails a high Kolmogorov complexity.
Intuitively, for a given finite string, this measure concerns the size of the shortest
program that computes the string.'® Both the fixed-point output of the original
problem, as well as the novel “blocks” output, involve a notable reduction with
respect to this complexity measure. It has been noted in Ref. 12 that the compu-
tational complexity of the input is that of a non-regular language'® since a counter
register is needed, whose size is proportional to log(V), whereas the fixed-point out-
put of the original problem involves a simple regular language (all Os or all 1s); we
note that the novel output specification also involves a regular language (a block of
bRule numbers are given in accordance with Wolfram’s convention,'” representing the decimal

equivalent of the binary number encoding the rule table. For example, rule 184, or 10111000 in
its binary form, maps the local neighborhoods 111 + 1, 110 — 0,. .., 000 ~ 0.

1020 M. Sipper & M. Tomassini

(a) (b)

Fig. 3. Density classification: Demonstration of the uniform rule-184 CA on two random initial
configurations. Grid size is N = 149. The pattern of configurations is shown for the first 200 time
steps. (a) Initial density is 0.47. The final configuration consists of an alternation of Os and 1s with
several blocks of two or more cells in state 0. (b) Initial density is 0.53. The final configuration
consists of an alternation of Os and 1s with several blocks of two or more cells in state 1. In both
cases the CA correctly classifies the initial configuration.

two state-0 or state-1 cells). Reference 16 thus concluded that their newly proposed
density classifier is as viable as the original one with respect to these complexity
measures, while surpassing the latter in terms of performance.

4.2. The experiment and its results

Having proven that there exists a CA that perfectly solves the density problem, we
now ask whether this CA can evolve via cellular programming. This means that,
setting out with a completely non-uniform CA, the evolutionary process must con-
verge to a completely uniform one, where all cells contain the same rule. As with
any other artificial evolution technique, a critical factor is the fitness function. The
one used by us for the rule-184 experiment was obtained by observing the “signals”
in Fig. 3, i.e. the propagation of cellular states through time (for a more formal
definition of signals in CAs see Ref. 20). Note that in a typical application of an
evolutionary algorithm (or any search methodology for that matter) a viable solu-
tion is not available in advance for examination. However, our experiment is not
meant to discover a novel solution, but rather to seek whether local evolution can
converge towards a known optimal one. Let D(t) denote the density of 1s over the
entire grid at time step ¢. Referring to Fig. 2, cell i is considered to be in the cor-
rect final state, after being run for M time steps on a random initial configuration
(thereby having its fitness value, f;, incremented), if one of the following four cases
holds true:

Convergence to Uniformity in a Cellular Automaton via Local Coevolution 1021

1. D(O) < 0.5 and Si(M) =0 and S;_l(M - 1) =0,
2. D(O) < 0.5 and 8("_1,."‘-+1)(M) = (0, 1,0) and 3(1‘—2,1’—1,;‘)(M - 1) = (0, 1,0),
3. D(O) > 0.5 and Sg(M) =1 and 3¢+1(M — 1) =1,
4. D(0) > 0.5 and s(;_154+1)(M) = (1,0,1) and 8,441,542 (M — 1) = (1,0,1),

where s; ; x)(t) are the states of cells 7,7,k at time t. For example, the first case
implies that when there is a majority of 0s in the initial configuration, a state of
0 “propagates” to the right (e.g. Fig. 3(a)). If none of the above four cases holds
true after M time steps, then the cell’s fitness score for this initial configuration is
0, i.e. its fitness value f; is not incremented.

Our experiment consisted of 100 evolutionary runs of the cellular programming
algorithm, each run for a given maximal number of initial configurations (the evolu-
tionary run was terminated when this maximum was reached, or upon convergence
to rule 184). Six such experiments were conducted, results of which are presented in
Table 1. The most notable feature is that convergence to a uniform grid, in which
all cells contain rule 184, occurs in a majority of the runs. Not surprisingly, con-
vergence rate increases as the maximal number of configurations is increased. Both
odd- and even-sized grids were employed, with no observable differences between
them. Note that given the grid sizes used and the small number of possible rules
(256), it is quite possible that rule 184 be found in the initial grid (or at least a
rule that is off by only a 1-bit mutation). However, it is not obvious a priori that
the selection forces at work can cause this rule to diffuse throughout the grid. As
noted, the process is coevolutionary, with the cells interacting and thus influencing
each other’s fitness. While rule 184 may find its way into the grid quite quickly,
it is far from evident what the optimal population of rules is, and how to find it.
Nonetheless, through the local evolutionary process described herein, the optimal,
uniform grid emerges.

While a majority of the evolutionary runs “found” the optimal uniform CA, oth-
ers resulted in non-uniform ones which are not optimal. An interesting regularity in

Table 1. Results of experiments. Shown below are the CA parameters
(grid size N and number of time steps M), the number of evolutionary
runs, the maximal number of initial configurations per run, and the
number of times the final evolved grid was a uniform one, in which all
cells contain rule 184.

N (Grid M (Time No. evol. Max. configs. ~ No. converg.

size) steps) runs per run to rule 184
101 51 100 100,000 44
101 51 100 250,000 65
120 60 100 200,000 45
120 60 100 400,000 58
149 75 100 250,000 66

149 75 100 500,000 73

1022 M. Sipper & M. Tomassini

N=101, max configurations=100,000 N=101, max configurations=250,000

o

|

-]

= \wl 5 an||éu|1!$||:|1 1
1
N 80

(a) (b)

200 220 240 EEUQODNIMI%KINIWIWMMMO

=120, 000 120, max
10000 Ll — s 10000 B e
1000 | 1000
i P
|
§ 100 b | E 100 b d
g g
10 ‘ i0E E
|
4 . | ‘ e [‘ .
0 20 4 60 80 100 120 140 160 180 200 220 240 1oeommw|oo|munqwmmmm

(©) (d)

M=149, configurationss 148, 500,000
10000 . o U e 10000 — PR
|
|
1000 1000
§
g 100 | ‘ 5 100
I 4
g g
10 E 0k
| ‘ ‘
e ‘ o b Dot i LA,
20 40 60 B0 100 12%“]40 160 180 QCD 220 240 W 1@ TW 140 160 180 200 220 24

(e) ()
Fig. 4. Rules present in the final evolved grids. For each of the six experiments, consisting of
100 evolutionary runs, the respective histogram shows the number of occurrences of each of the
possible 256 rules.

Convergence to Uniformity in a Cellular Automaton via Local Coevolution 1023

the evolutionary process was revealed when examining the ensembile of rules present
in the evolved grids. Our results are presented in Fig. 4 in the form of histograms,
showing the number of occurrences of each of the possible 256 rules within the final
evolved grids. The manifest similarity between the six experiments suggests that
the coevolutionary fitness landscape is independent of the CA parameters (N, M),
the presence of some rules proving advantageous, the presence of others proving
detrimental.

The r = 1 rules discussed herein can be expressed in minimal disjunctive nor-
mal form, using boolean multiplication and addition (corresponding to the AND
and OR operations), and bar to denote complementation.}” Observing the his-
tograms in Fig. 4, we find that the most widespread rules are (in decreasing order
of appearance):

rule minimal disjunctive normal form
184 s(t+1)= 8 1(1)3i(t) + 8¢ (t)BH.l(t)
176 si(t+1)= 8;-1(t)8:(t) + 8;—1(t)8i+1(t)
186 s(t+1)= si-1(t)35(t) + 8i+1(2)

18 si(t+1) = 8i—1(8)3(t)

187 8:(t + 1) = 5:(8) + 8i+1(t)

We note that the top-ranking evolved rules are similar to rule 184. It was also
observed that rule 184’s reflection-symmetric rule, 226, appeared quite sparsely. As
noted above, this rule holds the same properties as rule 184, however, the “signals”
are “reversed.” Its sparse occurrence is evidence of the fitness function’s precision,
“targeting” exactly those signals manifest by rule 184 (Fig. 3).

5. Concluding Remarks

We set out to investigate whether the local coevolutionary cellular programming
algorithm can find a provenly optimal uniform CA that solves the density problem.
Since our approach involves the evolution of non-uniform CAs, where cellular rules
are initially assigned at random, such convergence to uniformity cannot be a priori
expected to easily emerge. Our experiment shows that in the case of the density
problem the optimal solution can be found. Although this result does not necessarily
apply to local coevolution in general, it is nonetheless an encouraging step. It
should be mentioned that no evolutionary algorithm is guaranteed to produce an
optimal solution (or even a good one) for a general search problem.!3 As noted, one
motivation for such studies is the observation that local evolutionary processes are
more amenable to parallel implementation, using commercially available parallel
machines or specialized hardware.

References

1. C. J. Mode, Evolution 12, 158 (1958).

1024 M. Sipper & M. Tomassini

2.
3.

4.
5.

© w3 o

11.

12

13.

14.

15.
16.
17.
18.

19.

20.

C. Darwin, The Origin of Species (John Murray, London, 1859).

M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Ap-
proach (Springer-Verlag, Heidelberg, 1997).

M. Sipper, Physica D92, 193 (1996).

M. Sipper, “Evolving uniform and non-uniform cellular automata networks,” in An-
nual Reviews of Computational Physics, Volume V, ed. D. Stauffer (World Scientific,
Singapore, 1997), pp. 243-285.

. M. Sipper, BioSystems, 42, 29 (1997).
. M. Sipper and E. Ruppin, Physica D99, 428 (1997).
. M. Sipper and M. Tomassini, Int. J. Mod. Phys. C7(2), 181 (1996).

T. Toffoli and N. Margolus, Cellular Automata Machines (MIT Press, Cambridge,
1987).

M. Land and R. K. Belew, Phys. Rev. Letts. T4(25), 5148 (1995).

N. H. Packard, “Adaptation toward the edge of chaos,” in Dynamic Patterns in Com-
plez Systems, eds. J. A. S. Kelso, A. J. Mandell, and M. F. Shlesinger (World Scientific,
1988), pp. 293-301.

M. Mitchell, J. P. Crutchfield, and P. T. Hraber, Physica D75, 361 (1994).

M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA,
1996).

D. Andre, F. H Bennett III, and J. R. Koza, “Discovery by genetic programming of a
cellular automata rule that is better than any known rule for the majority classification
problem,” in eds. J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Genetic
Programming 1996: Proc. First Ann. Conf. (MIT Press, Cambridge, MA, 1996), pp. 3-
11.

J. R. Koza, Genetic Programming (MIT Press, Cambridge MA, 1992).

M. 8. Capcarrere, M. Sipper, and M. Tomassini, Phys. Rev. Lett. 77(24), 4969 (1996).
S. Wolfram, Cellular Autormata and Complezity (Addison-Wesley, Reading, MA, 1994).
M. Li and P. Vitanyi, An Introduction to Kolmogorov Complerity and its Applications
(Springer-Verlag, New York, 1993).

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory Languages and
Computation (Addison-Wesley, Redwood City, CA, 1979).

J. P. Crutchfield and M. Mitchell, “The evolution of emergent computation,” Proc. of
the Nat. Acad. of Sci. USA, 92(23), 10742 (1995).

