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Two-state,r = 1 Cellular Automaton that Classifies Density
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It has recently been shown that no one-dimensional, two-state cellular automaton can classify binary
strings according to whether their density t6 exceeds).5 or not. We show that by changing
the output specification, namely, the final pattern toward which the system should converge, without
increasing its computational complexity, a two-states 1 cellular automaton exists that can perfectly
solve the density problem. [S0031-9007(96)01847-9]

PACS numbers: 89.80.+h, 02.70.Rw, 07.05.Bx

Cellular automata (CA) are discrete, dynamical systemslassifier exists, upon defining a different output specifi-
that perform computations in a distributed fashion on acation. Consider the two-state,= 1 rule 184 CA [9],
spatially extended grid. A cellular automaton consistsdefined as follows:

of an array of cells, each of which can be in one of a , e

.. . — Sl*l(t)9 lf Sl(t) 0’

finite number of possible states, updated synchronously sit + 1) = sio1(0), if s;(6) = 1

in discrete time steps according to a local, identical ’ ' '

interaction rule. where s;(¢) is the state of celli at time r. Upon

The dynamical behavior of a CA may give rise to emer-presentation of an arbitrary initial configuration, the grid
gent computation, referring to the appearance of globalelaxes to a limit cycle, withifN /2] time steps, that
information processing capabilities that are not explicprovides a classification of the initial configuration's
itly represented in the system’s elementary componentdensity of1s: If this density>0.5 (respectively,<0.5),
or in their local interconnections [1]. As such, they offer then the final configuration consists of one or more blocks
an austere yet versatile model for studying natural pheef at least two consecutivés (0s), interspersed by an
nomena, as well as a powerful paradigm for attaining finealternation of0s andls; for an initial density of exactly
grained, massively parallel computation. 0.5, the final configuration consists of an alternatior0sf

An example of such emergent computation is to use and Is. The computation’s output is given by the state
CA to determine the global density of bits in an initial of the consecutive block (or blocks) of same-state cells
state configuration. Known as the density classificatior(Fig. 1); as proved in this paper, this rule performs perfect
problem, the one-dimensional, two-state CA is presentedensity classification (including the density 0.5 case).
with an arbitrary initial configuration, and should con- We note in passing that the reflection-symmetric 1226
verge in time to a state of alks if the initial configuration holds the same properties of rul84 studied below.
contains a density ofs >0.5, and to allOs if this den- As the input configuration is random, this entails a high
sity <0.5; for an initial density 0f0.5, the CA'’s behavior Kolmogorov complexity; intuitively, for a given finite
is undefined. Spatially periodic boundary conditions arestring, this measure concerns the size of the shortest
used, resulting in a circular grid. program that computes the string [10]. Both the fixed-

It has been shown that for a one-dimensional grid ofpoint output of the original problem, as well as our own
fixed size N, and for a fixed radius = 1 [2], there “blocks” output, involve a notable reduction with respect
exists no two-state CA rule which correctly classifiesto this complexity measure. It has been noted by [8]
all possible initial configurations [3]; this says nothing, that the computational complexity of the input is that of
however, about how well an imperfect CA might perform.a nonregular language since a counter register is needed
One such CA, known as the GKL rule [4], can correctlywhose size is proportional to (N), whereas the fixed-
classify approximately82% out of a random sample point output of the original problem involves a simple
of initial configurations, for a grid of sizeV = 149  regular language (alds or all 1s) [11]; we note that
[5]. Recently, researchers have focused on the use a@fur novel output specification also involves a regular
artificial evolution techniques, demonstrating that high-language (a block of two state-0 or state-1 cells). We
performance (though imperfect) CAs can be evolved tdhus conclude that our newly proposed density classifier
solve this problem [5-8]. is as viable as the original one with respect to these

The density classification problem studied to date specieomplexity measures, while surpassing the latter in terms
fies convergence to one of two fixed-point configurationspf performance.
which are considered as the output of the computation. In the remainder of this paper we prove rul84’s
The main result of this paper is that a perfect CA densityability to perfectly classify density. Throughout, we
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FIG. 1. Density classification: Demonstration of rui& on
four initial configurations.
state0, black squares represent cells in sthte The pattern
of configurations is shown for the fir&00 time steps, with

White squares represent cells in

The proof of this theorem involves four lemmas, proved
below.

Lemma —For a finite-size CA of sizéVv, D(S(r +
1)) = D(S(r)),t € {0, 1,...}.

Proof—Application of the transition rule to
St =0" or S(z) =1V vyields St + 1) =0" or
S(t + 1) = 1V, respectively. Taking note of the grid’s
circularity, any other configurationS(z) can be ex-
pressed asd“0”,...,1%0", wheren = 1, a;,b; > 0,
i€{l,...,n}, and > ,a; + b; = N. 1t follows di-
rectly from the rule’s definition that a block0” at time
t is transformed intol% 10107 ! at times + 1. Thus,
each such block conserves its density over one time step
and the lemma is proven [12].

Corollary 1.1—For a finite-size CA of sizeN,
D(S(t + 1)) = D(5(0)), r € {0,1,...}.

Proof—Follows directly from lemma 1 by recursive
application.

Lemma 2—Given a blockx0%1#y, x,y € {0,1},2 <
a,B =N — 2, at time ¢, beginning at celli (i.e., cell
i is the block’s leftmost cell), then at time+ v, v
min(a, B8) — 1, and beginningatcell + v: (1)Ifa > B
there is a block0* A*!1y. (2)If 8 > « there is a block
x018-atly (3)If @« = B there is a block01y.

Proof—Applying the transition rule to a block0* 17y
at time ¢, beginning at cell;, results at timer + 1 in a
block x0¢~ 18~y beginning at celli + 1. By simple

time increasing down the page. Initial configurations in (a)-recursion, at timg + u, u = min(a, 8) — 2, there is a

(c) were randomly generated. (a) Grid size As= 149.
D(S(0)) = 0.497, i.e., 75 cells are in stat®, and 74 are
in statel. The final configuration consists of an alternation
of 0s and Is with a single block of two cells in state
(b) N =149. D(S(0)) = 0.537. The final configuration
consists of an alternation @fs and1s with several blocks of
two or more cells in staté. (c) N = 150. D(S(0)) = 0.5.
The final configuration consists of an alternation G and
Is. (d)N = 149. Initial configuration consists of a block of
37 zeros, followed by37 ones, followed by37 zeros, ending

block x0¢~“18~4y, beginning at cell + u.

Consider the case > B,and letu = B — 2. Attime
t + u, there is a blockx0%~A*212y, beginning at cell
i + u. Applying the transition rule results at the next
time step,r + v, v = 8 — 1, in a block x0* #*11y,
beginning at celli + v. The caseB > a follows
analogously.

Fora = B, attimer + B — 2 there is a block0?1%y,

with 38 ones. The final configuration consists of an alternationbeginning at celli + 8 — 2, which yields a block

of 0s and1s with a single block of two cells in state In all
cases the CA correctly classifies the initial configuration.

x01y at the next time step, beginning at celt- 8 — 1
(=i+v).

Lemma 3—Given a block0“ (respectively,1¢), 1 =
a = N, at timer beginning at cell, then at timer — u,

assume that cellular indices are computed modulus the = r, there was a block® (1¢) beginning at celi — u
grid sizeN (grid is circular), and that they are in the range (i + u).

{0,...,N — 1}; for brevity we omit this range hereatfter.
Theorem—For a finite-size CA of sizeV, let S(r) =
{s0(2),...,sn—1(2)} be the grid configuration at time step

t, let D{s;(2),...,si+xk—1(x)}) be the density ols at time
t over a block ofk cells at positiondi,...,i + k — 1},
and letT = [N/2]. Then note the following.

(1) If D(S(0)) > 0.5, then (a) there exists a pair of
adjacent cells, i + 1 such thats;(T) = 1 ands;+(T) =
1, and (b) for alli, s;(T) = 0 = 5;+1(T) = 1.

(2) If D(S(0)) < 0.5, then (a) there exists a pair of
adjacent cellg, i + 1 such thats;(T) = 0 ands;+(T) =
0, and (b) for alli, s;(T) = 1 = s;+1(T) = 0.

(3) If D(S(0)) = 0.5, then for alli, s;(T) # s;+1(T).
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Proof.—By contradiction (we prove the* case, with
the 1¢ case following analogously). Suppose at time
t — lthereexisty € {i — 1,...,i + a — 2}, such that
sj(t — 1) = 1. Given thats; () = 0, this implies that
si+1(t = 1) = 1 ands;4»(r — 1) = 0; however, this re-
sults ins;(r) = 1 ands;+,(r) = 1, at least one of which
must be within theéd* block beginning at cell, thus con-
tradicting the assumption. Therefore, at time- 1 there
is a block0® beginning at cell — 1; the lemma is proven
by recursively applying this argument.

Lemma 4—For a finite-size CA of sizeV, no two
blocks 0 and 18, 2 = @, 8 = N — 2, can coexist at
time [N /2].
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Proof —By contradiction. If two blocks0® and 17 We are grateful to Daniel Mange and Jacques Zahnd
coexist at time[N /2], then by lemma 3 they coexisted for helpful discussions and their careful reading of this
at time 0 (each shifted by~ /2] cells). This means that manuscript.
over the[N /2] time steps the blocks had been displaced
by one cell per time step, the* block “moving” to
the right, the1? block moving to the left. Thus, both *E_Iectronic address of authors: {name.surname}@
blocks would “meet” aftef(N — (a« + B))/2] time steps di.epfl.ch _ o , .
at the latest, satisfying the conditions of lemma 2. This  AlSo at the Swiss Scientific Computing Center, Via
implies that, at most, one block would remain after . Eantonale,é:H-ngs_Ma}ngoifSW|tze_rlgnd.C lect d
[(N — (a + B))/2 + min(a. B) — 1] time steps. This [1] Emergent Computation: Self-organizing, Collective, an

I . h . he | Cooperative Phenomena in Natural and Atrtificial Com-
atter expressior<[N /2], thus proving the lemma. puting Networksgedited by S. Forrest (MIT Press, Cam-

Theorem proof—According to corollary 1.1, the den- bridge, MA, 1991).
sity of the initial configuration is preserved at each succes-[2] In a one-dimensional CA, each cell has + 1 neighbors
sive time step. According to lemma 4, afféf/2] steps (r cells on either side, as well as itself), wheres referred
only 0% or 17 blocks exist2 = a,8 = N — 2, but not to as the radius.

both (except for density= 0.5, where no such block ex- [3] M. Land and R.K. Belew, Phys. Rev. Let?4, 5148
ists). This means that the “correct” block must exist, with (1995).

no occurrence of the “incorrect” one, thereby proving the [4] P. Gacs, G.L. Kurdyumov, and L. A. Levin, Probl. Pereda.
theorem. We also note that aftg¥ /2] time steps the Inf. 14, 92 (1978). _ _
number of cells in staté short (respectively, in excess) of [°] D- Andre, F.H. Bennett lll, and J.R. Koza, iGenetic

S moN : Programming 1996: Proceedings of the First Annual
0.5N]is given by(Zi:l ai) = m, wherem is the number Conference,edited by J.R. Koza, D.E. Goldberg, D.B.

of 0% (1%) blocks, andz; are their respective sizes. Fogel, and R.L. Riolo (MIT Press, Cambridge, MA,
Note that in order to “read” the output one can either 1996), pp. 3—11.

terminate the CA’s execution aftéN /2] time steps, or,  [6] M. Sipper and E. Ruppin, Physica D (Amsterdam) (to be

alternatively, let it continue running (for a maximum of published).
N — 1 additional time steps) until the (cycling) two-cell, [7] M. Sipper, Physica (Amsterdan®2D, 193 (1996).
same-state block arrives at two predetermined cells. [8] M. Mitchell, J.P. Crutchfield, and P.T. Hraber, Physica

Are there any other density classifiers in the two-state,  (Amsterdam)75D, 361 (1994). .
r =1 class of CAs? Our experimental results suggest [9] Rule nu.mbers are given in accordance with Wolfram’'s
that rules184 and 226 are the only ones that perform convention, see S. Wolfram, Rev. Mod. Phys, 601

. e . (1983).
perfep_t d_ensﬂy CIaSS|fIC.atlor.] with respect to the outpuho] M. Li and P. Vitanyi, An Introduction to Kolmogorov
specification discussed in this paper [13].

Complexity and its ApplicationgSpringer-Verlag, New

In summary, we have shown that a locally speci- York, 1993).
fied, r =1 CA of any finite size N can classify |11} 3 E. Hopcroft and J.D. Ullmanntroduction to Automata
the global density of bits for an arbitrary initial Theory Languages and ComputatiqAddison-Wesley,

state configuration. It has previously been deter- Redwood City, CA, 1979).

mined that this problem cannot be resolved by[12] A different proof of this lemma, studied in a more general
two-state CAs of any radius, if one insists on a framework, is given by T. Hattori and S. Takesue, Physica
fixed-point output. By changing the output speci- (Amsterdam)49D, 295 (1991).

fication, without increasing its complexity, perfect den-[13] Each of the256 two-state,r = 1 CA rules was tested on
sity classification can be attained. It is interesting that 1000 randomly generated initial configurations for a grid
the system giving rise to this (difficulty emergent com- O SiZ& N =149, where a correct output is considered

utation exists in the simplest class of one-dimensional to be that specified by the theorem. As expected,
P P rules184 and 226 yielded a success rate 0f00%,

CAs, namely, two-state; = 1. This raises the intrigu- followed by rules57 and 99 trailing markedly behind at

ing question of whether other such simple CAs exist, 6o, Interestingly, these latter two rules produce patterns
which, while not capable of universal computation, may  that are visually similar to rule$84 and 226; however;

nonetheless prove highly efficient in solving specific the simple aforementioned test reveals their complete
tasks. inadequacy.
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