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Two-state,r 5 1 Cellular Automaton that Classifies Density
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It has recently been shown that no one-dimensional, two-state cellular automaton can classify
strings according to whether their density of1s exceeds0.5 or not. We show that by changing
the output specification, namely, the final pattern toward which the system should converge, w
increasing its computational complexity, a two-state,r ­ 1 cellular automaton exists that can perfect
solve the density problem. [S0031-9007(96)01847-9]

PACS numbers: 89.80.+h, 02.70.Rw, 07.05.Bx
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Cellular automata (CA) are discrete, dynamical syste
that perform computations in a distributed fashion on
spatially extended grid. A cellular automaton consi
of an array of cells, each of which can be in one o
finite number of possible states, updated synchrono
in discrete time steps according to a local, identi
interaction rule.

The dynamical behavior of a CA may give rise to em
gent computation, referring to the appearance of glo
information processing capabilities that are not exp
itly represented in the system’s elementary compon
or in their local interconnections [1]. As such, they off
an austere yet versatile model for studying natural p
nomena, as well as a powerful paradigm for attaining fi
grained, massively parallel computation.

An example of such emergent computation is to us
CA to determine the global density of bits in an initi
state configuration. Known as the density classificat
problem, the one-dimensional, two-state CA is presen
with an arbitrary initial configuration, and should co
verge in time to a state of all1s if the initial configuration
contains a density of1s .0.5, and to all0s if this den-
sity ,0.5; for an initial density of0.5, the CA’s behavior
is undefined. Spatially periodic boundary conditions
used, resulting in a circular grid.

It has been shown that for a one-dimensional grid
fixed size N , and for a fixed radiusr $ 1 [2], there
exists no two-state CA rule which correctly classifi
all possible initial configurations [3]; this says nothin
however, about how well an imperfect CA might perfor
One such CA, known as the GKL rule [4], can correc
classify approximately82% out of a random sampl
of initial configurations, for a grid of sizeN ­ 149
[5]. Recently, researchers have focused on the us
artificial evolution techniques, demonstrating that hig
performance (though imperfect) CAs can be evolved
solve this problem [5–8].

The density classification problem studied to date sp
fies convergence to one of two fixed-point configuratio
which are considered as the output of the computat
The main result of this paper is that a perfect CA den
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classifier exists, upon defining a different output spec
cation. Consider the two-state,r ­ 1 rule 184 CA [9],
defined as follows:

sist 1 1d ­

(
si21std , if sistd ­ 0 ,
si11std , if sistd ­ 1 ,

where sistd is the state of celli at time t. Upon
presentation of an arbitrary initial configuration, the g
relaxes to a limit cycle, withindNy2e time steps, that
provides a classification of the initial configuration
density of1s: If this density.0.5 (respectively,,0.5),
then the final configuration consists of one or more blo
of at least two consecutive1s (0s), interspersed by an
alternation of0s and1s; for an initial density of exactly
0.5, the final configuration consists of an alternation of0s
and 1s. The computation’s output is given by the sta
of the consecutive block (or blocks) of same-state c
(Fig. 1); as proved in this paper, this rule performs perf
density classification (including the density­ 0.5 case).
We note in passing that the reflection-symmetric rule226
holds the same properties of rule184 studied below.

As the input configuration is random, this entails a hi
Kolmogorov complexity; intuitively, for a given finite
string, this measure concerns the size of the shor
program that computes the string [10]. Both the fixe
point output of the original problem, as well as our ow
“blocks” output, involve a notable reduction with respe
to this complexity measure. It has been noted by
that the computational complexity of the input is that
a nonregular language since a counter register is nee
whose size is proportional to lnsNd, whereas the fixed-
point output of the original problem involves a simp
regular language (all0s or all 1s) [11]; we note that
our novel output specification also involves a regu
language (a block of two state-0 or state-1 cells). W
thus conclude that our newly proposed density class
is as viable as the original one with respect to the
complexity measures, while surpassing the latter in te
of performance.

In the remainder of this paper we prove rule184’s
ability to perfectly classify density. Throughout, w
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FIG. 1. Density classification: Demonstration of rule184 on
four initial configurations. White squares represent cells
state0, black squares represent cells in state1. The pattern
of configurations is shown for the first200 time steps, with
time increasing down the page. Initial configurations in (a
(c) were randomly generated. (a) Grid size isN ­ 149.
DsssSs0dddd ­ 0.497, i.e., 75 cells are in state0, and 74 are
in state1. The final configuration consists of an alternatio
of 0s and 1s with a single block of two cells in state0.
(b) N ­ 149. DsssSs0dddd ­ 0.537. The final configuration
consists of an alternation of0s and1s with several blocks of
two or more cells in state1. (c) N ­ 150. DsssSs0dddd ­ 0.5.
The final configuration consists of an alternation of0s and
1s. (d) N ­ 149. Initial configuration consists of a block o
37 zeros, followed by37 ones, followed by37 zeros, ending
with 38 ones. The final configuration consists of an alternat
of 0s and1s with a single block of two cells in state1. In all
cases the CA correctly classifies the initial configuration.

assume that cellular indices are computed modulus
grid sizeN (grid is circular), and that they are in the rang
h0, . . . , N 2 1j; for brevity we omit this range hereafter.

Theorem.—For a finite-size CA of sizeN , let Sstd ­
hs0std, . . . , sN21stdj be the grid configuration at time ste
t, let Dssshsistd, . . . , si1k21stdjddd be the density of1s at time
t over a block ofk cells at positionshi, . . . , i 1 k 2 1j,
and letT ­ dNy2e. Then note the following.

(1) If DsssSs0dddd . 0.5, then (a) there exists a pair o
adjacent cellsi, i 1 1 such thatsisT d ­ 1 andsi11sT d ­
1, and (b) for alli, sisT d ­ 0 ) si11sT d ­ 1.

(2) If DsssSs0dddd , 0.5, then (a) there exists a pair o
adjacent cellsi, i 1 1 such thatsisT d ­ 0 andsi11sTd ­
0, and (b) for alli, sisT d ­ 1 ) si11sT d ­ 0.

(3) If DsssSs0dddd ­ 0.5, then for alli, sisT d fi si11sT d.
4970
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The proof of this theorem involves four lemmas, prov
below.

Lemma 1.—For a finite-size CA of sizeN , DsssSst 1

1dddd ­ DsssSstdddd, t [ h0, 1, . . .j.
Proof—Application of the transition rule to

Sstd ­ 0N or Sstd ­ 1N yields Sst 1 1d ­ 0N or
Sst 1 1d ­ 1N , respectively. Taking note of the grid’
circularity, any other configurationSstd can be ex-
pressed as1a1 0b1 , . . . , 1an 0bn , where n $ 1, ai , bi . 0,
i [ h1, . . . , nj, and

Pn
i­1 ai 1 bi ­ N . It follows di-

rectly from the rule’s definition that a block1ai 0bi at time
t is transformed into1ai21010bi21 at time t 1 1. Thus,
each such block conserves its density over one time s
and the lemma is proven [12].

Corollary 1.1.—For a finite-size CA of sizeN,
DsssSst 1 1dddd ­ DsssSs0dddd, t [ h0, 1, . . .j.

Proof.—Follows directly from lemma 1 by recursive
application.

Lemma 2.—Given a blockx0a1by, x, y [ h0, 1j, 2 #

a, b # N 2 2, at time t, beginning at celli (i.e., cell
i is the block’s leftmost cell), then at timet 1 y, y ­
minsa, bd 2 1, and beginning at celli 1 y: (1) If a . b

there is a blockx0a2b111y. (2) If b . a there is a block
x01b2a11y. (3) If a ­ b there is a blockx01y.

Proof.—Applying the transition rule to a blockx0a1by
at time t, beginning at celli, results at timet 1 1 in a
block x0a211b21y beginning at celli 1 1. By simple
recursion, at timet 1 u, u # minsa, bd 2 2, there is a
block x0a2u1b2uy, beginning at celli 1 u.

Consider the casea . b, and letu ­ b 2 2. At time
t 1 u, there is a blockx0a2b1212y, beginning at cell
i 1 u. Applying the transition rule results at the ne
time step,t 1 y, y ­ b 2 1, in a block x0a2b111y,
beginning at cell i 1 y. The caseb . a follows
analogously.

For a ­ b, at timet 1 b 2 2 there is a blockx0212y,
beginning at cell i 1 b 2 2, which yields a block
x01y at the next time step, beginning at celli 1 b 2 1
s­ i 1 yd.

Lemma 3.—Given a block0a (respectively,1a), 1 #

a # N , at timet beginning at celli, then at timet 2 u,
u # t, there was a block0a s1ad beginning at celli 2 u
si 1 ud.

Proof.—By contradiction (we prove the0a case, with
the 1a case following analogously). Suppose at tim
t 2 1 there existsj [ hi 2 1, . . . , i 1 a 2 2j, such that
sjst 2 1d ­ 1. Given thatsj11std ­ 0, this implies that
sj11st 2 1d ­ 1 and sj12st 2 1d ­ 0; however, this re-
sults insjstd ­ 1 andsj12std ­ 1, at least one of which
must be within the0a block beginning at celli, thus con-
tradicting the assumption. Therefore, at timet 2 1 there
is a block0a beginning at celli 2 1; the lemma is proven
by recursively applying this argument.

Lemma 4.—For a finite-size CA of sizeN, no two
blocks 0a and 1b, 2 # a, b # N 2 2, can coexist at
time dNy2e.
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Proof.—By contradiction. If two blocks0a and 1b

coexist at timedNy2e, then by lemma 3 they coexiste
at time 0 (each shifted bydNy2e cells). This means tha
over thedNy2e time steps the blocks had been displac
by one cell per time step, the0a block “moving” to
the right, the1b block moving to the left. Thus, both
blocks would “meet” afterdsssN 2 sa 1 bddddy2e time steps
at the latest, satisfying the conditions of lemma 2. T
implies that, at most, one block would remain aft
[sssN 2 sa 1 bddddy2 1 minsa, bd 2 1] time steps. This
latter expression,dNy2e, thus proving the lemma.

Theorem proof.—According to corollary 1.1, the den
sity of the initial configuration is preserved at each succ
sive time step. According to lemma 4, afterdNy2e steps
only 0a or 1b blocks exist,2 # a, b # N 2 2, but not
both (except for density­ 0.5, where no such block ex
ists). This means that the “correct” block must exist, w
no occurrence of the “incorrect” one, thereby proving t
theorem. We also note that afterdNy2e time steps the
number of cells in state1 short (respectively, in excess) o
b0.5N c is given bys

Pm
i­1 aid 2 m, wherem is the number

of 0ai s1ai d blocks, andai are their respective sizes.
Note that in order to “read” the output one can eith

terminate the CA’s execution afterdNy2e time steps, or,
alternatively, let it continue running (for a maximum o
N 2 1 additional time steps) until the (cycling) two-cel
same-state block arrives at two predetermined cells.

Are there any other density classifiers in the two-sta
r ­ 1 class of CAs? Our experimental results sugg
that rules184 and 226 are the only ones that perform
perfect density classification with respect to the out
specification discussed in this paper [13].

In summary, we have shown that a locally spe
fied, r ­ 1 CA of any finite size N can classify
the global density of bits for an arbitrary initia
state configuration. It has previously been det
mined that this problem cannot be resolved
two-state CAs of any radius, if one insists on
fixed-point output. By changing the output spe
fication, without increasing its complexity, perfect de
sity classification can be attained. It is interesting th
the system giving rise to this (difficult) emergent com
putation exists in the simplest class of one-dimensio
CAs, namely, two-state,r ­ 1. This raises the intrigu-
ing question of whether other such simple CAs ex
which, while not capable of universal computation, m
nonetheless prove highly efficient in solving speci
tasks.
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