Design, Observation, Surprise!
A Test of Emergence

Abstract The field of artificial life (Alife) is replete with
documented instances of emergence, though debate still
persists as to the meaning of this term. We contend that, in
the absence of an acceptable definition, researchers in the
field would be well served by adopting an emergence
certification mark that would garner approval from the Alife
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I Introduction

When a bank’s accounting program goes seemingly independent and does its own
thing, the programmer scratches his head, sighs, and prepares for doing overtime with
the debugger. But when a society of agents does something surprising, Alife researchers
may solemnly document this “emergent behavior,” and move on to other issues without
always seeking to determine the cause of their observations. Indeed, overly facile use
of the term emergence has made it controversial. Arkin recently observed that:

Emergence is often invoked in an almost mystical sense regarding the
capabilities of behavior-based systems. Emergent behavior implies a holistic
capability where the sum is considerably greater than its parts. It is true that
what occurs in a behavior-based system is often a surprise to the system’s
designer, but does the surprise come because of a shortcoming of the analysis of
the constituent behavioral building blocks and their coordination, or because of
something else? ([1], p. 105).

Altogether, it seems the emergence tag has become a great attention grabber, thanks
to the striking behaviors demonstrated in artificial life experiments. We do not think,
however, that emergence should be diagnosed ipso facto whenever the unexpected
intrudes into the visual field of the experimenter; nor should the diagnosis of emergence
immediately justify an economy of explanation. Such abuse and overuse of the term
eventually will devalue its significance, and bring work centered on emergence into
disrepute. Therefore, we contend that, in the absence of an acceptable definition,
researchers in the field would be well served by adopting an emergence certification
mark that would garner approval from the Alife community.

Motivated by this wish to standardize the tagging task, we propose an emergence
test, namely, criteria by which one can justify conferring the emergence label [24]. Our
criteria are motivated by an examination of published work in the field of Alife.

The emergence test is presented in the next section and followed in Section 3 by a
host of case studies demonstrating its applicability. Finally, in Section 4, we discuss our
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Figure |. Examples of emergence. (a) A flock of simulated birds parts smoothly when faced with an obstacle, and
“flows” around it—to then reunite again (after Reynolds [23]). (b) Two Game-of-Life patterns, known as a “glider”
and a “block.” (c) The trail created by the highway-constructing Langton ant.

test in the light of previous work, and establish that it indeed articulates and clarifies
existing views on the matter of emergence.

2 An Operant Definition of Emergence for Alife Researchers

2.1 Examples of Emergence in the Alife Literature

Before presenting the emergence test itself, we outline below a sampling of work in
the field, which serves to delineate the scope of our investigation. The reader is urged
to keep these in mind while perusing the emergence test, described in Section 2.4.

o Emergence of flocking behavior in simulated birds, from a set of three simple
steering behaviors (Figure 1a) [23].

o Emergence of wall-following behavior in an autonomous, mobile robot, from the
simultaneous operation of two simple behavior systems: obstacle avoidance and
wall seeking [29].

e Emergence of cooperation in the iterated prisoner’s dilemma, from the application
of simple game strategies [3].

o Emergence of self-replicating structures from simple basic components [10, 19, 27].

e Emergence of a menagerie of patterns in the Game of Life (e.g., gliders,
spaceships, puffer trains) from simple, local rules (Figure 1b) [4].

e Emergence of team behavior (foraging, flocking, consuming, moving material,
grazing) in autonomous, mobile robots, from simple rules [2].

e Emergence of social structures and group behaviors in the artificial society of
“Sugarscape,” from the interactions of individuals (agents) [14].

e Emergence of a “highway” created by the artificial Langton ant, from simple
movement rules (Figure 1¢) [30].

e Emergence of complex behaviors in machines known as Braitenberg vehicles, from

simple internal structures and mechanisms [7].
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e Emergence of a nest structure in a simulated wasp colony, from the interactions
taking place between individual wasps [31].

e Emergence of a solution to a character-recognition problem in artificial neural
networks, from the interactions of the individual neurons.

e Emergence of a solution to the density problem in cellular automata, from simple,
local interactions (Figure 2) [8, 26, 28].

e Minsky’s theory, according to which mind emerges from a society of myriad,
mindless components [21].

2.2 Artificial Life as a Science of the Artificial
As seen from the examples in the previous subsection, we are restricting the scope
of our study of emergence to instances of artificial life. Alife is a constructive en-
deavor: Some researchers aim at evolving patterns in a computer; some seek to elicit
social behaviors in real-world robots; others wish to study life-related phenomena in
a more controllable setting, while still others are interested in the synthesis of novel
lifelike systems in chemical, electronic, mechanical, and other artificial media. Alife is
an experimental discipline, fundamentally consisting of the observation of run-time be-
haviors, those complex interactions generated when populations of man-made, artificial
creatures are immersed in real or simulated environments. Published work in the field
usually relates the conception of a model, its instantiation into real-world or simulated
objects, and the observed behavior of these objects in a collection of experiments.
The field of artificial life thus quintessentially exemplifies a science of the artificial,
as it accords with the four indicia given by Herbert Simon in his influential work, The
Sciences of the Artificial (125, p. 8):

1. Artificial things are synthesized (though not always or usually with full forethought)
by man.

2. Artificial things may imitate appearances in natural things while lacking, in one or
many respects, the reality of the latter.

3. Artificial things can be characterized in terms of functions, goals, adaptation.

4. Artificial things are often discussed, particularly when they are being designed, in
terms of imperatives as well as descriptives.

We agree with Simon in that the artificial can—and should—be treated differently from
the natural. In this spirit, our emergence test below is aimed only at the artificial, and
in particular at artificial life.

2.3 Preliminary Remarks on the Ontology of Emergence
Before formulating a definition of emergence, let us make some preliminary remarks:

e Emergence is not a specific thing; for example, like a stone in your pocket.
e Emergence is not one specific behavior, known to occur at some moment in time.

e Neither is emergence a well-defined category, like the stones on some particular
beach.

e The category of all emergent behaviors is of interest; yet debate will occur on

which behaviors should be included, and which should be excluded.
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e Hence it is each observer who decides to include or exclude a given behavior in
his own category of emergent behaviors.

The description of a phenomenon as emergent is contingent, then, on the existence
of an observer; being a visualization constructed in the mind of the observer, emergence
can be described as a concept, like beauty or intelligence. Such concepts are slippery.

2.4 Formulating the Emergence Test

The difficulties we face in adopting a definition of the concept of emergence are rem-
iniscent of the complications faced by early Artificial Intelligence (AD) researchers in
defining intelligence. Nonetheless, where the equally elusive concept of intelligence is
concerned, Alan Turing found a way to cut the Gordian knot, by means of an operant
definition that is useful within the limited context of man-machine interaction [32].
Debate concerning the concept of intelligence is unlikely to subside in the foreseeable
future, and the same, we believe, holds for emergence. We deem, however, that view-
ing the world through Turing colored glasses might improve our vision as regards the
concept of emergence—at least where modern-day Alife practice is concerned.

The Turing test focuses on a human experimenter’s incapacity at discerning human
from machine when holding what we now would call an Internet chat session. Our
emergence test centers on an observer’s avowed incapacity (amazement) to reconcile
his perception of an experiment in terms of a global world view with his awareness of
the atomic nature of the elementary interactions.

Assume that the scientists attendant upon an Alife experiment are just two: a system
designer and a system observer (both of whom in fact can be one and the same), and
that the following three conditions hold:

1. Design: The system has been constructed by the designer, by describing local
elementary interactions between components (e.g., artificial creatures and elements
of the environment) in a language £;.

2. Observation: The observer is fully aware of the design, but describes global
behaviors and properties of the running system, over a period of time, using a
language L£,.

3. Surprise: The language of design £, and the language of observation £, are
distinct, and the causal link between the elementary interactions programmed in £,
and the behaviors observed in L, is non-obvious to the observer—who therefore
experiences surprise. In other words, there is a cognitive dissonance between the
observer’s mental image of the system’s design stated in £, and his contempora-
neous observation of the system’s behavior stated in £,.

When assessing this clause of our test one should bear in mind that as human
beings we are quite easily surprised (as any novice magician will attest). The
question reposes rather on how evanescent the surprise effect is; that is, how easy
(or strenuous) it is for the observer to bridge the £,—L, gap, thus reconciling his
global view of the system with his awareness of the underlying elementary
interactions. One can draw an analogy with the concept of intelligence and the
Turing test: the chatty terminal at first might appear to be carrying on like an
intelligent interlocutor, only to lose its “intelligence certificate” once the tester has
pondered upon the true nature of the ongoing conversation.

The above three clauses relating design, observation, and surprise describe our con-
ditions for diagnosing emergence, that is, for accepting that a system is displaying
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emergent behavior. Some of the above points deserve further elaboration, or indeed
invite debate. Before treating these issues in Section 4, we wish to demonstrate the
application of our test to several cases.

3 Administering the Emergence Test: Case Studies

In this section we administer the emergence test to eight examples (some of which are
taken from Section 2.1), thus demonstrating its application. Each example ends with a
“test score,” a diagnosis constituting our own assertion as observers of whether we are
indeed surprised, that is, of whether emergent behavior is indeed displayed—or not.

3.1 Emergence of a Nest Structure in a Simulated Wasp Colony, from the
Interactions Taking Place between Individual Wasps [31]

e Design: The design language £, is that of local wasp interactions, including
movement on a three-dimensional cubic lattice and placement of bricks. A wasp’s
decision is based upon a local configuration of bricks, which lie in its “visual” field.
Actions to be taken are prewired under the form of a lookup table with as many
entries as there are stimulating configurations.

e Observation: The observation language £, is that of large-scale geometry, as
employed to describe nest architectures.

Surprise: While fully aware of the underlying wasp interaction rules, the observer
nonetheless marvels at the sophistication of the constructions and at their striking
similarity to naturally occurring nests.

e ? Diagnosis: Emergent behavior is displayed by the nest-building wasps.

3.2 Emergence of a “Highway” Created by the Artificial Langton Ant, from
Simple Movement Rules [30]

e Design: The design language £, is that of single moves of a simple, myopic ant.
The ant starts out on the central cell of a two-dimensional, rectangular lattice,
heading in some selected direction. It moves one cell in that direction and looks at
the color of the cell it lands on—black or white. If it lands on a black cell, it paints
it white and turns 90 degrees to the left; if it lands on a white cell, it paints it black
and turns 90 degrees to the right. These simple rules are iterated indefinitely.

e Observation: The observation language £, is that of global behavioral patterns,
extended over time and space (i.e., tens of thousands of single ant moves,
spanning thousands of cells). Specifically, the ant was observed to construct a
“highway,” that is, a repeating pattern of fixed width that extends indefinitely in a
specific direction (Figure 1¢).

o Surprise: While fully aware of the very simple ant rules, the observer is
nonetheless surprised by the appearance of a4 highway.

e ? Diagnosis: Emergent behavior is displayed by the highway-constructing ant.
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3.3 Emergence of a Menagerie of Patterns in the Game of Life (e.g., Gliders,
Spaceships, Puffer Trains), from Simple, Local Rules [4]

e Design: The Game of Life is played out on a two-dimensional, rectangular lattice,
each cell of which can be colored either white or black (as with the Langton ant).
The design language £, is that of local color changes; this language is employed to
delineate the rules according to which a cell changes its color in light of its
immediate surrounding cells.

e Observation: The observation language L, is that of global behavioral patterns,
including such observed structures as gliders, spaceships, and puffer trains
(Figure 1b).

o Surprise: While fully aware of the simple color-transformation rules, the observer is
nonetheless amazed by the appearance of this bestiary of critters.

o ? Diagnosis: Emergent behavior is displayed by numerous instantiations of the
Game of Life.

3.4 Emergence of Complex Behaviors in Machines Known as Braitenberg
Vehicles, from Simple Internal Structures and Mechanisms [7]

Design: The design language £, is that of simple internal structures and
mechanisms (sensors, actuators, and computational devices).

o Observation: The observation language L, is that of global behavioral patterns, to
which Braitenberg playfully ascribed such anthropomorphic terms as “fear,”
“aggression,” and “love.”

o Surprise: While fully aware of the vehicles’ simple internal workings, the observer
is nonetheless amazed by the appearance of lifelike behaviors. This is true for
vehicles 3 through 14; on the contrary, the behaviors of vehicles 1 and 2 can be
straightforwardly divined by the observer.

e ? Diagnosis: Emergent behavior is displayed where vehicles 3 through 14 are
concerned, while vehicles 1 and 2 are non-emergent.

3.5 Minsky’s Theory, According to which Mind Emerges from a Society of
Myriad, Mindless Components {21]

o Design: The design language £, is that of simple (putative) processes, which
Minsky calls agents.

o Observation: The observation language £, is the common language of discourse
used to describe intelligent, human behavior (examples from Minsky’s book are
nonverbal reasoning, language learning, and humor [21]).

o ? Surprise and Diagnosis: Mind is an emergent phenomenon, par excellence, since
the observer always marvels at its appearance.

3.6 Emergence of Flocking Behavior in Simulated Birds, from a Set of Three
Simple Steering Behaviors [23]

e Design: The design language £, is that of local bird interactions, the three rules
being: separation—steer to avoid crowding local flockmates; alignment—steer
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toward the average heading of local flockmates; cobesion—steer to move toward
the average position of local flockmates. A bird’s decision is based upon its nearby
neighbors, that is, those that are in its “visual” field.

e Observation: The observation language £, is that of flocking behaviors, such as the
flock’s parting smoothly when faced with an obstacle, and “flowing” around it—to
then reunite again (Figure 1a).

o Surprise: While fully aware of the underlying bird interaction rules, the observer
nonetheless marvels at the lifelike flocking behaviors.

e ? Diagnosis: The flocking behavior exhibited by the artificial birds was considered
a clear case of emergence when it first appeared in 1987. However, one now could
maintain that it no longer passes the emergence test, since widespread use of this
technique in computer graphics has obviated the element of surprise. This
example demonstrates that the diagnosis of emergence is contingent upon the
sophistication of the observer.

3.7 Emergence of Wall-Following Behavior in an Autonomous, Mobile Robot,
from the Simultaneous Operation of Two Simple Behavior Systems:
Obstacle Avoidance and Wall Seeking [29]

e Design: The design language £, is that of simple robot behaviors, including—in
this case—obstacle avoidance and wall seeking.

e Observation: The observation language £, is that of more elaborate robot
behaviors, consisting—in this case—of wall following.

o Surprise: Steels wrote that “Wall following is emergent in this case because the
category ‘equidistance to the (left/right) wall’ is not explicitly sensed by the robot
or causally used in one of the controlling behavior systems” ([29], p. 92).

e ? Diagnosis: Steels diagnosed emergence in this case as it accords with his own
definition, namely, that a behavior is emergent if it necessitates the use of new
descriptive categories that are not needed to describe the behavior of the
constituent components [29]. While thus alluding to the language dichotomy
rendered explicit by our definition (i.e., the existence of two distinct
languages—that of design and that of observation), we maintain that the surprise
element is missing: The wall-following behavior can be quite readily deduced by
an observer aware of the two underlying simpler behaviors. We thus conclude that
emergent behavior is nor displayed by the wall-following robot.

3.8 Emergence of a Solution to the Density Problem in Cellular Automata,
from Simple, Local Interactions [8, 26, 28]

This final example is delineated in more detail than the previous ones so as to demon-
strate a number of interesting points concerning our test. The example is based on
the model known as cellular automata (CA), originally conceived by Ulam and von
Neumann in the 1940s to provide a formal framework for investigating the behavior
of complex, extended systems [27, 33]. CAs have been widely used over the years in
many fields of inquiry, including physics, biology, and computer science; in particular,
they figure prominently in Alife research. We first describe briefly the workings of a
CA, followed by the presentation of a specific problem, known as density classification,
which has received much attention in the CA literature. We delineate three CA solutions
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Figure 2. CA solutions to three versions of the density classification problem. The one-dimensional grid is of
size N = 149 cells. White squares represent cells in state 0, black squares represent cells in state |. The two-
dimensional images shown above are so-called space-time diagrams, a common method of depicting the behavior of
one-dimensional CAs over time. In the images, the horizontal axis depicts the configuration of states at a certain
time t, and the vertical axis depicts successive time steps (time thus increases down the page). The initial density in
all three examples is > 0.5.

to this problem, concluding that the first two pass the emergence test while the last
one does not.

Cellular automata are discrete, dynamical systems that perform computations in a
distributed fashion on a spatially extended grid. A cellular automaton consists of an
array of cells, each of which can be in one of a finite number of possible states,
updated synchronously in discrete time steps according to a local, identical interaction
rule [26]. The state of a cell at the next time step is determined by the current states of a
surrounding neighborhood of cells. This transition is usually specified in the form of a
rule table, delineating the cell’s next state for each possible neighborhood configuration.
The cellular array (grid) is n-dimensional, where # = 1, 2, 3 is used in practice.

CAs are one of the prime models used to study emergent behavior and computation.
One oft-cited problem involving (putative) emergent computation is for a CA to deter-
mine the global density of bits in an initial state configuration. This problem, known
as density classification, has been studied intensively over the past few years (26]. In
a recent paper, Sipper, Capcarrére, and Ronald [28] described two previous versions
of the problem along with their CA solutions, and then went on to show that there
exists yet a third version—which admits a simple solution. Below, we summarize their
results, after which we will administer the emergence test to all three versions.

3.8.1 Versionl

In the original statement of the problem [22], a one-dimensional, two-state CA (meaning
that each cell can be in one of two states, 0 or 1) is presented with an arbitrary initial
configuration of states (the input). The CA then should converge in time to a state of
all 1s if the initial configuration contains a density of 1s > 0.5 (i.e., a majority of 1s),
and converge to all Os if this density < 0.5 (i.e., a majority of 0s); for an initial density of
0.5, the CA’s behavior is undefined (Figure 2(I)). The final configuration is considered
as the output of the computation. Spatially periodic boundary conditions are used,
resulting in a circular grid. It has been proven that no perfect CA solution exists for
this problem version, though high-performance CAs have been designed by hand as
well as found by means of artificial evolution [26] (these CAs do not perform perfect
classification, i.e., they misclassify some of the initial configurations; the CA solution
demonstrated in Figure 2(1), known as the GKL rule, in fact does not classify correctly
all initial configurations).
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3.8.2 Versionll

Capcarrére, Sipper, and Tomassini [8] showed that a perfect, one-dimensional, two-state
CA density classifier does exist, upon defining a different output specification (again,
periodic boundary conditions are assumed). This CA is demonstrated in Figure 2(ID:
Upon presentation of an arbitrary initial configuration, the N-cell grid relaxes to a limit-
cycle, within [V/2] time steps, that provides a classification of the initial configuration’s
density of 1s. If this density > 0.5 (respectively, < 0.5), then the final configuration
consists of one or more blocks of at least two consecutive 1s (0s), interspersed by an
alternation of 0s and 1s; for an initial density of exactly 0.5, the final configuration
consists of an alternation of 0s and 1s. The computation’s output is given by the state
of the consecutive block (or blocks) of same-state cells: If the same-state cells are in
state 1 (respectively, 0), then this signifies a majority of 1s (0s) in the input; if there
is but an alternation of 0s and 1s, then this signifies that the input contains an equal
number of 0s and 1s.

3.8.3 Version Il

More recently, Sipper, Capcarrére, and Ronald [28] described yet another modification
of the original problem (version I), with a different output specification, as well as
fixed boundary conditions, rather than the periodic ones previously assumed. These
two modifications give rise to a simple density classifier, demonstrated in Figure 2(I11):
The CA of size N (boundary cells excluded) converges in at most N — 1 time steps
to a configuration 091#, where «, 8 denote the number of 0s and 1s at time step 0,
respectively; o, 8 € {0, ..., N}, a + B = N. For N odd, the density classification of the
input is attained by considering the middle cell’s final state: 0 signifies a majority of Os in
the input, 1 signifies a majority of 1s; for N even, we consider the two middle cells: 00
signifies a majority of Os in the input, 11 signifies a majority of 1s, 01 signifies equality,
and 10 is impossible. This example in fact initiated our current study of emergence,
ultimately culminating in the proposed emergence test.

3.8.4 Emergent or Not?

As CA researchers, we observed the three versions depicted in Figure 2, experiencing
unease with respect to version IlI—as though we were “cheating.” And yet, why
do the first two solutions seem complex and emergent, whereas the third one seems
simple and non-emergent?’ Density is a global property of a configuration (the 1s can
be distributed throughout the grid), whereas a CA relies solely on local interactions;
this property holds true for all three versions of the problem. Moreover, the three
CA solutions presented are all legal, in that they violate none of the CA principles of
operation. In short, we are faced here with three perfectly valid solutions (albeit an
approximate one where version I is concerned).

The crux of the matter lies in the surprise phase of the emergence test: we main-
tain that there is no (lasting) surprise where version III is concerned, whereas we are
surprised by versions I and II. The language of design £; and the language of obser-
vation £, are obviously distinct in all three cases, and yet the causal link between the
elementary interactions programmed in £; and the behaviors observed in £, is rather
straightforward for version III, whereas it is non-obvious for versions I and II. An ob-
server even but slightly versed in CA dynamics will divine quickly the workings of the
version-III CA (whose rule is fully specified in [28]): basically, one can picture it as a
horizontally-oriented, transparent tube full of tennis balls, where each ball represents
a state of 1 (the absence of a ball represents a state of 0). If one places the tube in the

I We note in passing that this “feeling” is also supported by the complexity of the proofs concerning the behaviors of CA versions |
and I, versus the simplicity of the proof of CA Ili’s behavior [8, 28].
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vertical position, the balls will roll down, with classification of the initial density then
given by simply observing the absence or presence of balls in the central section of the
tube. The CA rule in question implements this metaphor (the fixed boundary conditions
are crucial in that they stop the balls dead at the tube’s end). It is the quickly fading
surprise effect experienced with the version-III solution that evoked in us the uneasy
feeling that something was not “right.” Armed with the emergence test, we can now
pinpoint the source of our uneasiness: Version III is non-emergent (no lasting surprise)
whereas versions I and II are (surprise!). (We emphasize again that version IlI—while
non-emergent—is “right” in the sense that it is a bona fide solution, which perfectly
accords with the CA principles.) This example illustrates the subtleties involved in our
test. Our conclusions regarding this CA example are recapitulated below within the
emergence-test framework:

o Design: The design language L, is that of local CA rules.

e Observation: The observation language L, is that of global behavioral patterns.
Specifically, the patterns of interest involve those that represent a solution to the
density classification problem.

o Surprise: While fully aware of the underlying CA rules, the observer is nonetheless
puzzled by the intricate behaviors of versions I and II, whereas version 111
straightforwardly yields its “secret.”

o ? Diagnosis: Emergent behavior is displayed where versions I and II are
concerned, while version III is non-emergent,

4 Discussion

Our conception of the emergence test builds on a number of ideas that have been
addressed over the years in the literature; the relationship between our test and these
works is described in this section. While a number of researchers have remarked upon
some or other ingredient of our definition, to the best of our knowledge nobody has yet
put together all the constituent elements into an emergence test such as ours. Moreover,
those elements that have been discussed in the literature are highly intermingled—
which has rendered it impossible for us to separate the discussion below into totally
orthogonal clauses; indeed, untangling this vicious circle of reasoning is, in our opinion,
one of the major contributions of our test.?

4.1 The Operant Nature of the Test

In this we have drawn our inspiration from Turing, who—concerning intelligence—
opted for an operant, informal, “social” definition, deliberately eschewing rigor. Tur-
ing’s definition has served the Al community well, and it is still considered one of the
seminal works in the field, almost half a century after its publication [32].

4.2 Emergence as a Property of Artificial Systems

In his book, Emergence: From Chaos to Order, Holland wrote that “Emergence occurs in
systems that are generated” ([17], p. 225). Reviewing Holland’s book, Mallot also opined
that “In this context [the construction of artificial systems], the problem of emergence
may actually be a genuine one” [20]. As noted in Section 2.2, we have chosen to limit

2 This section is by no means intended to serve as a review on the subject of emergence. Rather, we have cited what we believe to
be major works in this area that tie in with our emergence test. For a good critical review, the reader is referred to Bonabeau,
Dessalles, and Grumbach [5].
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the scope of our test to the sciences of the artificial, and in particular to artificial life;
this restriction is embodied in clause (1) of the test.

4.3 The Existence of an Observer

Artificial systems are constructed to be beheld—usually one does not build one’s sys-
tem, then walk away nonchalantly without ever looking back. Hence, there exists
an observer ipso facto (who need not necessarily be the constructor himself), a fun-
damental aspect that has not escaped researchers in the field. In a paper discussing
emergence and artificial life, Cariani wrote that “The interesting emergent events that
involve artificial life simulations reside not in the simulations themselves, but in the
ways that they change the way we think and interact with the world” ([9], p. 790). He
goes on to say that “computer simulations are catalysts for emergent processes in our
own minds ...” (9], p. 790).

Another author, Emmeche, in an introductory monograph on artificial life, examines
the case for emergence “in the eye of the beholder” ([13], p. 145). Also, Crutchfield, in
an article devoted to the subject of emergence, asks: “But for whom has the emergence
occurred? More particularly, to whom are the emergent features ‘new’? ... The newness
in both cases is in the eye of an observer ...” ((12], p. 517).

Bonabeau, Dessalles, and Grumbach, in an article presenting a conceptual frame-
work for characterizing emergent phenomena, noted the difference between “actors:
interacting agents with local perception and the ability to act locally” and “spectators:
one or several entities sensitive to the emergent phenomenon, and possessing global
perception” (6], p. 348). They wrote that “the emergent aspect of a phenomenon is
related to the point of view of an observer of this phenomenon: it is not intrinsic to
the phenomenon, but related to the global system (phenomenon + observer)” (6],

pp. 348-349).
Holland brings up the issue of the observer circuitously, when writing that “The
whole is more than the sum of the parts in these generated systems. ... Said another

way, there are regularities in system behavior that are not revealed by direct inspection
of the laws satisfied by the components” ([17], p. 225). One may ask direct inspection
by whom? Why, by the observer of course!® Clearly, the existence of an observer is a
sine qua non for the issue of emergence to arise at all.

We wish to point out that one can make a case for the analogy between the con-
cepts of emergence and complexity, as regards the presence of a baffled observer. For
example, Kolen and Pollack, considering the highly formal notion of computational
complexity, wrote: “Computational complexity, often used to separate cognitive be-
haviors from other types of animal behavior, will be shown to be dependent upon the
observation mechanism as well as the process under examination” ([18], p. 254).

4.4 The Language Dichotomy
A number of authors have alluded to the existence of a language of observation as
distinct from the language of design. In his paper on behavior-oriented artificial in-
telligence, Steels put forward a definition of emergence, writing that “A behavior is
emergent if new categories are needed to describe this underlying regularity that are
not needed to describe the behaviors (i.e., the regularities) generated by the underlying
behavior systems on their own” ([29], p. 89).

In a book, entitled Frontiers of Complexity, Coveney and Highfield, upon discussing
the behavior of collective systems of simple, interacting units, wrote that “Their inter-

3 Holland also cites a passage from Gell-Mann’s book, The Quark and the Jaguar [15], which brings up indirectly the role of the
observer: “In an astonishing variety of contexts, apparently complex structures or behaviors emerge from systems characterized
by simple rules” ([17], p. 238). Gell-Mann’s use of the qualifier “apparently” suggests that the quality in question necessitates a
judgment call—that is, an observer.
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actions lead to coherent collective phenomena, so-called emergent properties that can
be described only at higher levels than those of the individual units” ([11], p. 7).

Holland emphasized the distinct nature of these two languages, noting that one
can “converse” in the language of observation without resorting to the language of
design: “When a macrolaw can be formulated, the behavior of the whole pattern
can be described without recourse to the microlaws (generators and constraints) that
determine the behavior of its components” ([17], p. 227).

4.5 The Observer’s Reasoning Abilities

Writing on intelligence as an emergent behavior, Hillis contends that “The emergent
behaviors exhibited by these systems are a consequence of the simple underlying rules
defined by the program. Although the systems succeed in producing the desired results,
their detailed behaviors are beyond our ability to analyze and predict” ([16], pp. 188
189). Hillis thus can be seen to allude to the observer’s reasoning abilities.

As regards our test, the extent of the observer’s reasoning abilities does indeed influ-
ence the diagnosis of emergence. To render a diagnosis established by a single judge
more credible, we could replace one judge with a collective; moreover, membership of
such an emergence jury could be restricted to the suitably qualified. On the jury issue,
Turing also noted that “A number of interrogators could be used, and statistics com-
piled to show how often the right identification was given” [32]. Judgments often will
come with a statute of limitations—a phenomenon might be reclassified from emergent
to non-emergent with the progress of science (as with the artificial-flock example in
Section 3). Here again, the analogy with intelligence: Tasks that were once considered
intelligent—such as doing sums—nowadays are considered to be but a job for dullards.

Minsky, in his book on the emergence of mind—T7he Society of Mind [21]—nicely
illustrates the role of the observer’s reasoning abilities. He provides two sets of exam-
ples, which he denotes subjective and objective, to which we might refer within our
framework as emergent and non-emergent, respectively. Minsky’s first set of examples
(subjective or emergent) includes such questions as “What makes a drawing more than
just its separate lines?” while the second set of examples (objective or non-emergent)
includes such questions as “What makes a tower more than separate blocks?” Minsky
goes on to explain that the development of the observer’s reasoning abilities nullifies
the emergence quality where questions of the second type are concerned: “To explain
how walls and towers work, we just point out how every block is held in place by its
neighbors and by gravity. ... These explanations seem almost self-evident to adults.
However, they did not seem so simple when we were children. ... We regard such
knowledge as ‘obvious’ only because we cannot remember how hard it was to learn”
(21], p. 27.

4.6 Surprise

The surprise element also has received attention in a number of works. We noted in
Section 1 Arkin’s view: “[W]hat occurs in a behavior-based system is often a surprise to
the system’s designer...” ([1], p. 105). Minsky wrote that:

We're often told that certain wholes are “more than the sum of their parts.” We
hear this expressed with reverent words like “holistic” and “gestalt,” whose
academic tones suggest that they refer to clear and definite ideas. But I suspect
the actual function of such terms is to anesthetize a sense of ignorance. We say
“gestalt” when things combine to act in ways we can’t explain, “holistic” when
we're caught off guard by unexpected happenings and realize we understand
less than we thought we did ([21], p. 27).

236 Artificial Life Volume S, Number 3

Copyright © 1999. All rights reserved.



E. Ronald, M. Sipper, and M. S. Capcarrere Design, Observation, Surprise!

By bringing the observer’s emotion of surprise into play, our emergence test widens
the focal beam of discussion, now shining both on the system’s bebavior as well as on
the experimenter and her internalized expectations. This relates to Cariani’s nutshell
description of emergence relative to a model as “the deviation of the behavior of a
physical system from an observer’s model of it” ([9], p. 779). An author subscribing
to said deviation-from-model view would wish to document her a priori expectations
before diagnosing emergence and abandoning attempts at explanation. Our emergence
test then might be reformulated as Design (Expectations), Observation, Surprise.

4.7 Non-Obviousness

A key element of our test is the non-obviousness experienced in the surprise phase
by the observer. The study of complex systems is revealing common causes of non-
obviousness. Known categories to date include:

1. computational undecidability (e.g., in the Game of Life and cellular automata)
2. self-organizing phenomena

3. sensitivity to initial conditions, known as chaos (e.g., as in weather patterns, and in
predator-prey oscillations)

5 Summary

To summarize, the three clauses of our emergent test are grounded in previous work:
The design clause expresses our wish to restrict the test to artificially constructed sys-
tems, the observation clause reflects the necessity of there being an observer for emer-
gence to arise at all, and the surprise clause embodies both the deliberation and the
emotion implied by human judgments of value.
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From The Adventure of the Dancing Men, by Arthur Conan Doyle:

He wheeled round upon his stool, with a steaming test-tube in his hand and a
gleam of amusement in his deep-set eyes.

“Now, Watson, confess yourself utterly taken aback,” said he.

‘I am.”

“I ought to make you sign a paper to that effect.”

“Why?”

“Because in five minutes you will say that it is all so absurdly simple.”

“T am sure that I shall say nothing of the kind.”

“You see, my dear Watson”—he propped his test-tube in the rack and began to
lecture with the air of a professor addressing his class. . .

“How absurdly simple!” T cried.
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