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Abstract .  A major impediment preventing ubiquitous computing with 
cellular automata (CA) stems from the difficulty of utilizing their com- 
plex behavior to perform useful computations. In this paper non-uniform 
CAs are studied, presenting the cellular programming algorithm for co- 
evolving such systems to perform computations. The algorithm is applied 
to five computational tasks: density, synchronization, ordering, bound- 
ary computation, and thinning; our results show that non-uniform CAs 
can attain high computational performance, and furthermore, that such 
systems can be evolved rather than designed. We believe that cellu- 
lar programming holds potential for attaining 'evolving ware', evolware, 
which can be implemented in software, hardware, or other possible forms, 
such as bioware. We have recently implemented an evolving, online, au- 
tonomous hardware system based on the approach described herein. 

1 I n t r o d u c t i o n  

Cellular automata (CA) are dynamical systems in which space and time are 
discrete. A cellular automaton consists of an array of cells, each of which can be 
in one of a finite number of possible states, updated synchronously in discrete 
time steps according to a local, identical interaction rule. The state of a cell is 
determined by the previous states of a surrounding neighborhood of cells [34, 30]. 

CAs exhibit three notable features: massive parallelism, locality of cellular 
interactions, and simplicity of basic components (cells). They perform compu- 
tations in a distributed fashion on a spatially extended grid. As such they differ 
from the standard approach to parallel computation in which a problem is split 
into independent sub-problems, each solved by a different processor, later to be 
combined in order to yield the final solution. CAs suggest a new approach in 
which complex behavior arises in a bottom-up manner from non-linear, spatially 
extended, local interactions [14]. 

A major impediment preventing ubiquitous computing with CAs stems from 
the difficulty of utilizing their complex behavior to perform useful computations. 
Designing CAs to have a specific behavior or perform a particular task is highly 
complicated, thus severely limiting their applications; automating the design 
(programming) process would greatly enhance the viability of CAs [14]. A prime 
motivation for studying CAs stems from the observation that  they are naturally 
suited for hardware implementation, with the potential of exhibiting extremely 
fast and reliable computation that  is robust to noisy input data  and component 
failure [7]. 
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The model investigated in this paper is an extension of the CA model, termed 
non-uniform cellular automata [20]. Such automata function in the same way as 
uniform ones, the only difference being in the cellular rules that need not be 
identical for all cells. Our main focus is on the evolution of non-uniform CAs 
to perform computational tasks, employing a local, co-evolutionary algorithm, 
an approach referred to as cellular programming. We believe that cellular pro- 
gramming holds potential for attaining 'evolving ware', evolware, which can be 
implemented in software, hardware, or other possible forms, such as bioware. Of 
particular interest is the issue of evolving hardware, which has recently made its 
appearance on the artificial evolution scene [19]. We have recently implemented 
an evolving, online, autonomous hardware system based on the approach de- 
scribed herein [8]. 

Our aim in this paper is to introduce the cellular programming approach, 
toward which end we shall delineate the basic methodology and present exam- 
ples of co-evolved, non-uniform CAs. In Section 2 we present previous work on 
non-uniform CAs and evolving CAs. The cellular programming algorithm is de- 
lineated in Section 3, and applied to five computational tasks in Section 4: den- 
sity, synchronization, ordering, boundary computation, and thinning. We demon- 
strate that high performance is attained on these tasks using one-dimensional 
grids as well as previously unstudied two-dimensional ones. Our findings are 
discussed in Section 5. 

2 P r e v i o u s  w o r k  

The application of genetic algorithms to the evolution of uniform cellular au- 
tomata was initially studied by [16] and recently undertaken by the EVCA 
(evolving CA) group [15, 14, 13, 6, 5]. They carried out experiments involv- 
ing uniform, one-dimensional CAs with k -- 2 and r = 3, where k denotes the 
number of possible states per cell and r denotes the radius of a cell, i.e., the num- 
ber of neighbors on either side (thus, each cell has 2r -t- 1 neighbors, including 
itself). Spatially periodic boundary conditions are used, resulting in a circular 
grid. A common method of examining the behavior of one-dimensional CAs is to 
display a two-dimensional space-time diagram, where the horizontal axis depicts 
the configuration at a certain time t and the vertical axis depicts successive time 
steps (e.g., Figure 2). The term 'configuration' refers to an assignment of 1 states 
to several cells, and 0s otherwise. 

The EVCA group employed a standard genetic algorithm to evolve uniform 
CAs to perform two computational tasks, namely density and synchronization 
(see Section 4). The algorithm uses a randomly generated initial population of 
CAs with k --- 2, r ---- 3. Each CA is represented by a bit string, delineating its 
rule table, containing the output bits for all possible neighborhood configura- 
tions (i.e., the bit at position 0 is the state to which neighborhood configura- 
tion 0000000 is mapped to and so on until bit 127 corresponding to neighbor- 
hood configuration 1111111). The bit string, known as the "genome", is of size 
22r+1 -- 128, resulting in a huge search space of size 2128. Each CA in the pop- 
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ulation was run for a maximum number of M time steps, after which its fitness 
was evaluated, defined as the fraction of cell states correct at the last time step. 
Using the genetic algorithm highly successful CA rules were found for both tasks 
[15, 14, 5]. 

The model investigated in this paper is that  of non-uniform CAs, where cel- 
lular rules need not be identical for all cells. As noted in Section 1, CAs lend 
themselves naturally to hardware implementation, which is one of the primary 
motivations for their study. Note that  from a hardware point of view the re- 
sources required by non-uniform CAs are identical to those of uniform ones 
since a cell in both cases contains a rule (albeit not necessarily the same one 
in our case). A prime motivation for studying non-uniform CAs stems from the 
observation that  the uniform model is essentially "programmed" at an extremely 
low-level [18]. A single rule is sought that  must be applied universally to all cells 
in the grid, a task which may be arduous even for evolutionary approaches. For 
non-uniform CAs search space sizes are vastly larger than with uniform CAs, 
a fact that  initially seems as an impediment; however, we have found that  this 
model presents novel dynamics, offering new and interesting paths in the evolu- 
tion of complex systems. 

We have previously applied the non-uniform CA model to the investigation 
of artificial life issues, presenting multi-cellular "organisms" that  display sev- 
eral interesting behaviors, including reproduction, growth and mobility. We also 
studied evolution in the context of various environments, observing genotypic 
as well as phenotypic effects [20, 23, 21]. In [22, 25] we examined the issue of 
universal computation in two-dimensional CAs. We demonstrated that  univer- 
sality can be attained in non-uniform, 2-state, 5-neighbor cellular space (i.e., 
with a minimal number of states as well as a minimal neighborhood), which is 
not universal in the uniform case [2]. The universal systems we presented are 
simpler than previous ones and are quasi-uniform, meaning that  the number of 
distinct rules is extremely small with respect to rule space size; furthermore, the 
rules are distributed such that  a subset of dominant rules occupies most of the 
grid [22, 25, 24]. 

The co-evolution of non-uniform, one-dimensional CAs to perform computa- 
tions was undertaken in [24, 25]. In [24] we presented results pertaining to the 
density task, showing that  high performance, non-uniform CAs can be co-evolved 
not only with radius r = 3, as studied by [15, 14], but also for smaller radiuses, 
most notably r = 1 which is minimal. In [25] we showed that  high performance 
can be attained for the synchronization task as well, with r = 1, using the cel- 
lular programming algorithm. It was also found that  evolved systems exhibiting 
high performance are quasi-uniform. 

The one-dimensional density and synchronization tasks are elaborated upon 
in Section 4, along with recent results pertaining to two-dimensional grids and 
novel tasks. Our main findings from our previous work, as well as that  reported 
in this paper are: 

1. Universal computation can be attained in simple, non-uniform cellular spaces 
that  are not universal in the uniform case. This is accomplished by utilizing 
a small number of different rules (quasi-uniformity). 
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2. Non-uniform CAs can attain high performance on non-trivial computational 
tasks. 

3. Non-uniform CAs can be co-evolved to perform computations, with high 
performance systems exhibiting quasi-uniformity. 

4. Non-uniformity may reduce connectivity requirements, i.e., the use of smaller 
cellular neighborhoods is made possible. 

3 T h e  c e l l u l a r  p r o g r a m m i n g  a l g o r i t h m  

We study 2-state, non-uniform CAs, in which each cell may contain a different 
rule. A cell's rule table is encoded as a bit string, known as the "genome', 
containing the output bits for all possible neighborhood configurations (as in 
Section 2). Rather than employ a population of evolving, uniform CAs, as with 
genetic algorithm approaches, our algorithm involves a single, non-uniform CA 
of size N, with cell rules initialized at random. Initial configurations are then 
generated at random, in accordance with the task at hand. For each initial 
configuration the CA is run for M time steps. Each cell's fitness is accumulated 
over C = 300 initial configurations, where a single run's score is 1 if the cell is in 
the correct state after M iterations, and 0 otherwise. After every C configurations 
evolution of rules occurs by applying crossover and mutation. This evolutionary 
process is performed in a completely local manner, where genetic operators are 
applied only between directly connected cells. It is driven by nf~ (c), the number of 
fitter neighbors of cell i after c configurations. The pseudo-code of our algorithm 
is delineated in Figure 1. 

Crossover between two rules is performed by selecting at random (with uni- 
form probability) a single crossover point and creating a new rule by combining 
the first rule's bit string before the crossover point with the second rule's bit 
string from this point onward. Mutation is applied to the bit string of a rule 
with probability 0.001 per bit. 

There are two main differences between our algorithm and the standard ge- 
netic algorithm: (a) A standard genetic algorithm involves a population of evolv- 
ing, uniform CAs; all CAs are ranked according to fitness, with crossover occur- 
ring between any two individuals in the population. Thus, while the CA runs in 
accordance with a local rule, evolution proceeds in a global manner. In contrast, 
our algorithm proceeds locally in the sense that each cell has access only to its 
locale, not only during the run but also during the evolutionary phase, and no 
global fitness ranking is performed. (b) The standard genetic algorithm involves 
a population of independent problem solutions; the CAs in the population are 
assigned fitness values independent of one another, and interact only through 
the genetic operators in order to produce the next generation. In contrast, our 
CA co-evolves since each cell's fitness depends upon its evolving neighbors. 

This latter point comprises a prime difference between our algorithm and 
parallel genetic algorithms, which have attracted attention over the past few 
years. These aim to exploit the inherent parallelism of evolutionary algorithms, 
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for each cell i in CA do in parallel  
initialize rule table of cell i 
fi  = 0 { fitness value } 

end parallel  for 
c = 0 { initial configurations counter } 
while not done do 

generate a random initial configuration 
run CA on initial configuration for M time steps 
for each cell i do in parallel  

if cell i is in the correct final state t hen  
fi = f i T 1  

end if 
e n d  parallel  for 
c = c §  
if c rood C = 0 t h e n  { evolve every C configurations} 

for each cell i do in parallel  
compute nfi(c) { number of fitter neighbors } 
f fn f i (c)  = 0 t h e n  rule i is left unchanged 
else if nfi(c) = 1 then  replace rule i with the fitter neighboring rule, 

followed by mutation 
t hen  replace rule i with the crossover of the two fitter 
neighboring rules, followed by mutation 
then  replace rule i with the crossover of two randomly 
chosen fitter neighboring rules, followed by mutation 

e l se  if  nfi(c) ---- 2 

e l se  if nfl (e) > 2 

end  if 
1~=0 

end paralleI for 
e n d  if  

e n d  while 
Fig. 1. Pseudo-code of the cellular programming algorithm. 

thereby decreasing computation time and enhancing performance [32]. A num- 
ber of models have been suggested, among them coarse-grained, island models 
[28, 3, 29], and fine-grained, grid models [31, 12]. The latter resemble our sys- 
tem in that  they are massively parallel and local; however, the co-evolutionary 
aspect is missing. As we wish to at tain a system displaying global computation, 
the individual cells do not evolve independently as with genetic algorithms (be 
they parallel or serial), i.e., in a "loosely-coupled" manner, but  rather co-evolve, 
thereby comprising a "tightly-coupled" system. 

4 R e s u l t s  

In this section we study five computational tasks using one-dimensional grids 
as well as previously unstudied two-dimensional ones: density (Section 4.1), 
synchronization (Section 4.2), ordering (Section 4.3), rectangle-boundary (Sec- 
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tion 4.4), and thinning (Section 4.5). Minimal cellular spaces are used: 2-state, 
r = 1 for the one-dimensional case and 2-state, 5-neighbor for the two-dimensional 
one. The  total number of initial configurations per evolutionary run was in the 
range [105 , 106]. Performance values reported hereafter represent the average fit- 
ness of all grid cells after C configurations, normalized to the range [0, 1]; these 
are obtained during execution of the cellular programming algorithm. 

4.1 The density t a s k  

The one-dimensional density task is to decide whether or not the initial config- 
uration contains more than 50% ls, relaxing to a fixed-point pattern of all ls  if 
the initial density of ls  exceeds 0.5, and all 0s otherwise. As noted by [14], the 
density task comprises a non-trivial computation for a small radius CA (r  << N,  
where N is the grid size); the density is a global property of a configuration 
whereas a small-radius CA relies solely on local interactions. Since the ls can 
be distributed throughout the grid, propagation of information must occur over 
large distances (i.e., O(N)). The minimum amount of memory required for the 
task is O( logN)  using a serial scan algorithm, thus the computation involved 
corresponds to recognition of a non-regular language. 

We have studied this task in [24, 25] using non-uniform, one-dimensional, 
minimal radius r = 1 CAs of size N = 149. The search space involved is ex- 
tremely large; since each cell contains one of 2 s possible rules this space is of size 
(28) 149 = 21192. In contrast, the size of ~miform, r = 1 CA rule space is small, 
consisting of only 2 s -- 256 rules. This enabled us to test each and every one of 
these rules, a feat not possible for larger values of r, finding that  the maximal 
performance of uniform, r = 1 CAs on the density task is 0.83. 

For the cellular programming algorithm we used randomly generated initial 
configurations, uniformly distributed over densities in the range [0, 1], with the 
CA being run for M ---- 150 time steps (thus, computation time is linear with grid 
size). We found that  non-uniform CAs had co-evolved that  exhibit peak perfor- 
mance values as high as 0.93; furthermore, these consist of a grid in which one 
rule dominates, a situation referred to as quasi-uniformity (Section 2). Figure 2 
demonstrates the operation of one such co-evolved CA along with a rules map, 
depicting the distribution of rules by assigning a unique color to each distinct 
rule. 

The results obtained by us using a minimal radius of r = 1 are comparable 
to those of [15], who used uniform CAs of radius r -- 3; furthermore, we at tain 
notably higher performance than any possible uniform, r = 1 CA. This suggests 
that non-uniformity reduces connectivity requirements, i.e., the use of smaller 
cellular neighborhoods is made possible. A detailed investigation of the one- 
dimensional density task can be found in [24, 25]. 

The density task can be extended in a straightforward manner to two-dimensional 
grids. Applying our algorithm to such grids yielded notably higher performance 
than the one-dimensional case, with peak values of 0.99. Figure 3 demonstrates 
the operation of one such co-evolved CA. Qualitatively, we observe the CA's 
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Fig. 2. One-dimensional density task: Operation of a co-evolved, non-uniform, connec- 
tivity radius r ---- 1 CA. Grid size is N = 149. White squares represent cells in state 0, 
black squares represent cells in state 1. The pattern of configurations is shown through 
time (which increases down the page). Top figures depict space-time diagrams, bottom 
figures depict rule maps. Initial configurations were randomly generated. (a) Initial 
density of ls is 0.40, final density is 0. (b) Initial density of ls is 0.60, final density is 1. 
The CA relaxes in both cases to a fixed pattern of all 0s or all Is, correctly classifying 
the initial configuration. 

"strategy" of successively classifying local densities, with the locality range in- 
creasing over time; "competing" regions of density 0 and density 1 are manifest, 
ult imately relaxing to the correct fixed point. 

4.2 T h e  s y n c h r o n i z a t i o n  t a s k  

The one-dimensional synchronization task was introduced by [5] and studied by 
us in [25] using non-uniform CAs. In this task the CA, given any initial config- 
uration, must reach a final configuration, within M time steps, that  oscillates 
between all 0s and all ls on successive time steps. This task comprises a non- 
trivial computation for a small radius CA; it belongs to a class of problems 
studied in other domains, such as distributed computing, known as firing squad 
problems [11]. 

In [25] we studied non-uniform, one-dimensional, minimal radius r = 1 CAs 
of size N = 149. As for the density task, we first tested all possible uniform, 
r = 1 CAs on the synchronization task, finding that  the maximal performance is 
0.84. For the cellular programming algorithm we used randomly generated initial 
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Fig. 3. Two-dimensional density task: Operation of a co-evolved, non-uniform, 2-state, 
5-neighbor CA. Grid size is N ---- 225 (15 x 15). Initial density of ls is 0.51, final density 
is 1. Numbers at bottom of images denote time steps. 

configurations, uniformly distributed over densities in the range [0, 1], with the 
CA being run for M = 150 t ime steps. We found that  quasi-uniform CAs had 
co-evolved tha t  exhibit perfect performance, thereby surpassing any possible 
uniform CA. Figure 4 depicts the operation of two such co-evolved CAs, along 
with rule maps. A detailed investigation of the one-dimensional synchronization 
task can be found in [25]. This task can also be extended in a straightforward 
manner  to two-dimensional grids, an investigation of which we have carried out; 
our results show tha t  perfect performance can be co-evolved for such CAs as 
well. 

4.3 The  ordering task 

In this task, the one-dimensional CA, given any initial configuration, must  reach 
a final configuration in which all 0s are placed on the left side of the grid and all 
ls  on the right side. The ordering task may be viewed as a variant of the density 
task and is clearly non-trivial using similar arguments to those of Section 4.1. It  
is interesting in that  the output  is not a uniform configuration of all 0s or all ls 
as with the density and synchronization tasks. 

Testing all uniform, r = 1 CAs on the ordering task we found tha t  the 
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(a) (b) 

Fig. 4. One-dimensional synchronization task: Operation of two co-evolved, 
non-uniform, r -- 1 CAs. Grid size is N --- 149. Top figures depict space-time dia- 
grams, bottom figures depict rule maps. 

maximal performance is 0.71. Our algorithm yielded quasi-uniform CAs with 
fitness values as high as 0.93, one of which is depicted in Figure 5. As with the 
previous two tasks we find that  non-uniform CAs can be co-evolved to attain 
high performance, exceeding that  of the best uniform CA. 

4.4 The rectangle-boundary task 

The possibility of applying CAs to perform image processing tasks arises as a 
natural  consequence of their architecture; in a two-dimensional CA, a cell (or 
a group of cells) can correspond to an image pixel, with the CA's dynamics 
designed so as to perform a desired image processing task. Earlier work in this 
area, carried out mostly in the 1960s and the 1970s, was treated in [17], with 
more recent applications presented in [1, 10]. 

The final two tasks we study involve image processing operations. In this 
section we discuss a two-dimensional boundary computation: given an initial 
configuration consisting of a non-filled rectangle, the CA must reach a final 
configuration in which the rectangular region is filled, i.e., all cells within the 
confines of the rectangle are in state 1, and all other cells are in state 0. Initial 
configurations consist of random-sized rectangles placed randomly on the grid (in 
our simulations, cells within the rectangle in the initial configuration were set to 
state 1 with probability 0.3; cells outside the rectangle were set to 0). Note that  
boundary cells can also be absent in the initial configuration. This operation can 
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Fig. 5. One-dimensional ordering task: Operation of a co-evolved, non-uniform, r -- 1 
CA. Top figures depict space-time diagrams, bottom figures depict rule maps. (a) Initial 
density of ls is 0.315, final density is 0.328. (b) Initial density of ls is 0.60, final density 
is 0.59. 

be considered a form of image enhancement, used, e.g., for treating corrupted 
images. Using cellular programming, non-uniform CAs were evolved with peak 
performance values of 0.99, one of which is depicted in Figure 6. 

Upon studying the (two-dimensional) rules map of the co-evolved, non-uniform 
CA, we found that  the grid is quasi-uniform, with one dominant rule present in 
most cells. This rule maps the cell's state to zero if the number of neighboring 
cells in state 1 (including the cell itself) is less than two, otherwise mapping the 
cell's state to one 1. Thus, growing regions of ls  are more likely to occur within 
the rectangle confines than without. 

4.5 T h e  t h i n n i n g  t a s k  

Thinning (also known as skeletonization) is a fundamental preprocessing step 
in many image processing and pat tern recognition algorithms. When the image 
consists of strokes or curves of varying thickness it is usually desirable to reduce 
them to thin representations located along the approximate middle of the original 
figure. Such "thinned" representations are typically easier to process in later 
stages, entailing savings in both time and storage space [9]. 

1 This is referred to as a totalistic rule, in which the state of a cell depends only on 
the sum of the states of its neighbors at the previous time step, and not on their 
individual states [33]. 
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Fig. 6. Two-dimensional rectangle-boundary task: Operation of a co-evolved, 
non-uniform, 2-state, 5-neighbor CA. Grid size is N -~ 225 (15 x 15). Numbers at 
bottom of images denote time steps. 

While the first thinning algorithms were designed for serial implementation, 
current interest lies in parallel systems, early examples of which were presented 
in [17]. The difficulty of designing a good thinning algorithm using a small, local 
cellular neighborhood, coupled with the task's importance has motivated us to 
explore the possibility of applying the cellular programming algorithm. 

In [9] four sets of binary images were considered, two of which consist of rect- 
angular patterns oriented at different angles. The algorithms presented therein 
employ a two-dimensional grid with a 9-cell neighborhood; each parallel step 
consists of two sub-iterations in which distinct operations take place. The set 
of images considered by us consists of rectangular patterns oriented either hori- 
zontally or vertically; while more restrictive than that of [9], it is noted that we 
employ a smaller neighborhood (5-cell) and do not apply any sub-iterations. 

Figure 7 demonstrates the operation of a co-evolved CA performing the thin- 
ning task. Although the evolved grid does not compute perfect solutions, we ob- 
serve, nonetheless, good thinning "behavior" upon presentation of rectangular 
patterns as defined above (Figure 7a); furthermore, partial success is demon- 
strated when presented with more difficult images involving intersecting lines 
(Figure 7b). 

5 D i s c u s s i o n  

A major impediment preventing ubiquitous computing with CAs stems from the 
difficulty of utilizing their complex behavior to perform useful computations. We 
presented the cellular programming algorithm for co-evolving computation in 
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Fig. 7. Two-dimensional thinning task: Operation of a co-evolved, non-uniform, 
2-state, 5-neighbor CA. Grid size is N =- 1600 (40 x 40). Numbers at bottom of images 
denote time steps. (a) Two separate lines. (b) Two intersecting lines. 

non-uniform CAs, demonstrating that  high performance systems can be evolved 
for a number of non-trivial computational tasks. Our results suggest that  non- 
uniformity reduces connectivity requirements, i.e., the use of smaller cellular 
neighborhoods is made possible. 

An important issue when considering systems such as ours is that  of scaling, 
where two separate matters are of concern: the evolutionary algorithm and the 
evolved solutions. As for the former, namely how does the evolutionary algorithm 
scale with grid size, we note that  as our algorithm is local, it scales better in terms 
of hardware resources than the standard (global) genetic algorithm; adding grid 
cells requires only local connections in our case whereas the standard genetic 
algorithm includes global operators such as fitness ranking and crossover. The 
second issue is how can larger grids be obtained from smaller (evolved) ones, i.e., 
how can evolved solutions be scaled? This has been purported as an advantage 
of uniform CAs, since one can directly use the evolved rule in a grid of any 
desired size. However, this form of simple scaling does not bring about task scal- 
ing; as demonstrated, e.g., by [4] for the density task, performance decreases as 
grid size increases. For non-uniform CAs, quasi-uniformity may facilitate scaling 
since only a small number of rules must ultimately be considered. To date we 
have attained successful systems for some tasks using a simple scaling scheme 
involving the duplication of the rules grid; we are currently exploring a more 
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sophisticated scaling approach, with preliminary encouraging results. 
Our work to date suggests that the use of non-uniform CAs coupled with 

a local, co-evolutionary algorithm offers a number of advantages, including: (1) 
increased rule variability, thereby entailing easier "adaptation" to a possible 
change in the "environment", i.e., task, (2) easier implementation as evolware, 
(3) fault tolerance arising from the insensitivity to minor differences between 
cellular rules, and (4) better scalability (as noted above). 

We found that markedly higher performance is attained for the density task 
with two-dimensional grids along with shorter computation times, as compared 
with one-dimensional grids. It is readily observed that a two-dimensional, locally 
connected grid can be embedded in a one-dimensional grid with local and dis- 
tant connections. Since the density task is global, it is likely that the observed 
superior performance of two-dimensional grids arises from the existence of dis- 
tant connections that enhance information propagation across the grid. This 
result has motivated the study of a modified model, involving the concomitant 
evolution of cellular rules and cellular connections. We have found that perfor- 
mance can be markedly increased for global computational tasks by co-evolving 
connectivity architectures [26, 27]. 

The nature of computation in CAs is a question of primary importance that 
has been gaining attention in recent years. We wish to enhance our understanding 
of the ways CAs perform computations, attempting to gain insight into the laws 
and mechanisms by which they operate. It is important to learn how CAs may 
be evolved, rather than designed, to perform computational tasks and what 
kinds of classes of tasks are most suited for such a computational paradigm. We 
seek to understand how evolution creates complex, global behavior in locally 
interconnected systems of simple parts. These goals are significant both from a 
scientific standpoint as well as from an applicative one. 

Evolving, non-uniform CAs hold potential for studying phenomena of interest 
in areas such as complex systems, artificial life and parallel computation. This 
work has shed light on the possibility of computing with such CAs, and demon- 
strated the feasibility of their programming by means of co-evolution. We believe 
that cellular programming holds potential for attaining evolware which can be 
implemented in software, hardware, or other possible forms, such as bioware. 
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