
Evolware

Designing Evolware by Cellular Programming

Moshe Sipper

Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens,
CH-1015 Lausanne, Switzerland. E-mail: Moshe.Sipper@di.epfl.ch

Abstract . A major impediment preventing ubiquitous computing with
cellular automata (CA) stems from the difficulty of utilizing their com-
plex behavior to perform useful computations. In this paper non-uniform
CAs are studied, presenting the cellular programming algorithm for co-
evolving such systems to perform computations. The algorithm is applied
to five computational tasks: density, synchronization, ordering, bound-
ary computation, and thinning; our results show that non-uniform CAs
can attain high computational performance, and furthermore, that such
systems can be evolved rather than designed. We believe that cellu-
lar programming holds potential for attaining 'evolving ware', evolware,
which can be implemented in software, hardware, or other possible forms,
such as bioware. We have recently implemented an evolving, online, au-
tonomous hardware system based on the approach described herein.

1 I n t r o d u c t i o n

Cellular automata (CA) are dynamical systems in which space and time are
discrete. A cellular automaton consists of an array of cells, each of which can be
in one of a finite number of possible states, updated synchronously in discrete
time steps according to a local, identical interaction rule. The state of a cell is
determined by the previous states of a surrounding neighborhood of cells [34, 30].

CAs exhibit three notable features: massive parallelism, locality of cellular
interactions, and simplicity of basic components (cells). They perform compu-
tations in a distributed fashion on a spatially extended grid. As such they differ
from the standard approach to parallel computation in which a problem is split
into independent sub-problems, each solved by a different processor, later to be
combined in order to yield the final solution. CAs suggest a new approach in
which complex behavior arises in a bottom-up manner from non-linear, spatially
extended, local interactions [14].

A major impediment preventing ubiquitous computing with CAs stems from
the difficulty of utilizing their complex behavior to perform useful computations.
Designing CAs to have a specific behavior or perform a particular task is highly
complicated, thus severely limiting their applications; automating the design
(programming) process would greatly enhance the viability of CAs [14]. A prime
motivation for studying CAs stems from the observation that they are naturally
suited for hardware implementation, with the potential of exhibiting extremely
fast and reliable computation that is robust to noisy input data and component
failure [7].

82

The model investigated in this paper is an extension of the CA model, termed
non-uniform cellular automata [20]. Such automata function in the same way as
uniform ones, the only difference being in the cellular rules that need not be
identical for all cells. Our main focus is on the evolution of non-uniform CAs
to perform computational tasks, employing a local, co-evolutionary algorithm,
an approach referred to as cellular programming. We believe that cellular pro-
gramming holds potential for attaining 'evolving ware', evolware, which can be
implemented in software, hardware, or other possible forms, such as bioware. Of
particular interest is the issue of evolving hardware, which has recently made its
appearance on the artificial evolution scene [19]. We have recently implemented
an evolving, online, autonomous hardware system based on the approach de-
scribed herein [8].

Our aim in this paper is to introduce the cellular programming approach,
toward which end we shall delineate the basic methodology and present exam-
ples of co-evolved, non-uniform CAs. In Section 2 we present previous work on
non-uniform CAs and evolving CAs. The cellular programming algorithm is de-
lineated in Section 3, and applied to five computational tasks in Section 4: den-
sity, synchronization, ordering, boundary computation, and thinning. We demon-
strate that high performance is attained on these tasks using one-dimensional
grids as well as previously unstudied two-dimensional ones. Our findings are
discussed in Section 5.

2 P r e v i o u s w o r k

The application of genetic algorithms to the evolution of uniform cellular au-
tomata was initially studied by [16] and recently undertaken by the EVCA
(evolving CA) group [15, 14, 13, 6, 5]. They carried out experiments involv-
ing uniform, one-dimensional CAs with k -- 2 and r = 3, where k denotes the
number of possible states per cell and r denotes the radius of a cell, i.e., the num-
ber of neighbors on either side (thus, each cell has 2r -t- 1 neighbors, including
itself). Spatially periodic boundary conditions are used, resulting in a circular
grid. A common method of examining the behavior of one-dimensional CAs is to
display a two-dimensional space-time diagram, where the horizontal axis depicts
the configuration at a certain time t and the vertical axis depicts successive time
steps (e.g., Figure 2). The term 'configuration' refers to an assignment of 1 states
to several cells, and 0s otherwise.

The EVCA group employed a standard genetic algorithm to evolve uniform
CAs to perform two computational tasks, namely density and synchronization
(see Section 4). The algorithm uses a randomly generated initial population of
CAs with k --- 2, r ---- 3. Each CA is represented by a bit string, delineating its
rule table, containing the output bits for all possible neighborhood configura-
tions (i.e., the bit at position 0 is the state to which neighborhood configura-
tion 0000000 is mapped to and so on until bit 127 corresponding to neighbor-
hood configuration 1111111). The bit string, known as the "genome", is of size
22r+1 -- 128, resulting in a huge search space of size 2128. Each CA in the pop-

83

ulation was run for a maximum number of M time steps, after which its fitness
was evaluated, defined as the fraction of cell states correct at the last time step.
Using the genetic algorithm highly successful CA rules were found for both tasks
[15, 14, 5].

The model investigated in this paper is that of non-uniform CAs, where cel-
lular rules need not be identical for all cells. As noted in Section 1, CAs lend
themselves naturally to hardware implementation, which is one of the primary
motivations for their study. Note that from a hardware point of view the re-
sources required by non-uniform CAs are identical to those of uniform ones
since a cell in both cases contains a rule (albeit not necessarily the same one
in our case). A prime motivation for studying non-uniform CAs stems from the
observation that the uniform model is essentially "programmed" at an extremely
low-level [18]. A single rule is sought that must be applied universally to all cells
in the grid, a task which may be arduous even for evolutionary approaches. For
non-uniform CAs search space sizes are vastly larger than with uniform CAs,
a fact that initially seems as an impediment; however, we have found that this
model presents novel dynamics, offering new and interesting paths in the evolu-
tion of complex systems.

We have previously applied the non-uniform CA model to the investigation
of artificial life issues, presenting multi-cellular "organisms" that display sev-
eral interesting behaviors, including reproduction, growth and mobility. We also
studied evolution in the context of various environments, observing genotypic
as well as phenotypic effects [20, 23, 21]. In [22, 25] we examined the issue of
universal computation in two-dimensional CAs. We demonstrated that univer-
sality can be attained in non-uniform, 2-state, 5-neighbor cellular space (i.e.,
with a minimal number of states as well as a minimal neighborhood), which is
not universal in the uniform case [2]. The universal systems we presented are
simpler than previous ones and are quasi-uniform, meaning that the number of
distinct rules is extremely small with respect to rule space size; furthermore, the
rules are distributed such that a subset of dominant rules occupies most of the
grid [22, 25, 24].

The co-evolution of non-uniform, one-dimensional CAs to perform computa-
tions was undertaken in [24, 25]. In [24] we presented results pertaining to the
density task, showing that high performance, non-uniform CAs can be co-evolved
not only with radius r = 3, as studied by [15, 14], but also for smaller radiuses,
most notably r = 1 which is minimal. In [25] we showed that high performance
can be attained for the synchronization task as well, with r = 1, using the cel-
lular programming algorithm. It was also found that evolved systems exhibiting
high performance are quasi-uniform.

The one-dimensional density and synchronization tasks are elaborated upon
in Section 4, along with recent results pertaining to two-dimensional grids and
novel tasks. Our main findings from our previous work, as well as that reported
in this paper are:

1. Universal computation can be attained in simple, non-uniform cellular spaces
that are not universal in the uniform case. This is accomplished by utilizing
a small number of different rules (quasi-uniformity).

84

2. Non-uniform CAs can attain high performance on non-trivial computational
tasks.

3. Non-uniform CAs can be co-evolved to perform computations, with high
performance systems exhibiting quasi-uniformity.

4. Non-uniformity may reduce connectivity requirements, i.e., the use of smaller
cellular neighborhoods is made possible.

3 T h e c e l l u l a r p r o g r a m m i n g a l g o r i t h m

We study 2-state, non-uniform CAs, in which each cell may contain a different
rule. A cell's rule table is encoded as a bit string, known as the "genome',
containing the output bits for all possible neighborhood configurations (as in
Section 2). Rather than employ a population of evolving, uniform CAs, as with
genetic algorithm approaches, our algorithm involves a single, non-uniform CA
of size N, with cell rules initialized at random. Initial configurations are then
generated at random, in accordance with the task at hand. For each initial
configuration the CA is run for M time steps. Each cell's fitness is accumulated
over C = 300 initial configurations, where a single run's score is 1 if the cell is in
the correct state after M iterations, and 0 otherwise. After every C configurations
evolution of rules occurs by applying crossover and mutation. This evolutionary
process is performed in a completely local manner, where genetic operators are
applied only between directly connected cells. It is driven by nf~ (c), the number of
fitter neighbors of cell i after c configurations. The pseudo-code of our algorithm
is delineated in Figure 1.

Crossover between two rules is performed by selecting at random (with uni-
form probability) a single crossover point and creating a new rule by combining
the first rule's bit string before the crossover point with the second rule's bit
string from this point onward. Mutation is applied to the bit string of a rule
with probability 0.001 per bit.

There are two main differences between our algorithm and the standard ge-
netic algorithm: (a) A standard genetic algorithm involves a population of evolv-
ing, uniform CAs; all CAs are ranked according to fitness, with crossover occur-
ring between any two individuals in the population. Thus, while the CA runs in
accordance with a local rule, evolution proceeds in a global manner. In contrast,
our algorithm proceeds locally in the sense that each cell has access only to its
locale, not only during the run but also during the evolutionary phase, and no
global fitness ranking is performed. (b) The standard genetic algorithm involves
a population of independent problem solutions; the CAs in the population are
assigned fitness values independent of one another, and interact only through
the genetic operators in order to produce the next generation. In contrast, our
CA co-evolves since each cell's fitness depends upon its evolving neighbors.

This latter point comprises a prime difference between our algorithm and
parallel genetic algorithms, which have attracted attention over the past few
years. These aim to exploit the inherent parallelism of evolutionary algorithms,

85

for each cell i in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }

end parallel for
c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state t hen
fi = f i T 1

end if
e n d parallel for
c = c §
if c rood C = 0 t h e n { evolve every C configurations}

for each cell i do in parallel
compute nfi(c) { number of fitter neighbors }
f fn f i (c) = 0 t h e n rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
t hen replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation
then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation

e l se if nfi(c) ---- 2

e l se if nfl (e) > 2

end if
1~=0

end paralleI for
e n d if

e n d while
Fig. 1. Pseudo-code of the cellular programming algorithm.

thereby decreasing computation time and enhancing performance [32]. A num-
ber of models have been suggested, among them coarse-grained, island models
[28, 3, 29], and fine-grained, grid models [31, 12]. The latter resemble our sys-
tem in that they are massively parallel and local; however, the co-evolutionary
aspect is missing. As we wish to at tain a system displaying global computation,
the individual cells do not evolve independently as with genetic algorithms (be
they parallel or serial), i.e., in a "loosely-coupled" manner, but rather co-evolve,
thereby comprising a "tightly-coupled" system.

4 R e s u l t s

In this section we study five computational tasks using one-dimensional grids
as well as previously unstudied two-dimensional ones: density (Section 4.1),
synchronization (Section 4.2), ordering (Section 4.3), rectangle-boundary (Sec-

86

tion 4.4), and thinning (Section 4.5). Minimal cellular spaces are used: 2-state,
r = 1 for the one-dimensional case and 2-state, 5-neighbor for the two-dimensional
one. The total number of initial configurations per evolutionary run was in the
range [105 , 106]. Performance values reported hereafter represent the average fit-
ness of all grid cells after C configurations, normalized to the range [0, 1]; these
are obtained during execution of the cellular programming algorithm.

4.1 The density t a s k

The one-dimensional density task is to decide whether or not the initial config-
uration contains more than 50% ls, relaxing to a fixed-point pattern of all ls if
the initial density of ls exceeds 0.5, and all 0s otherwise. As noted by [14], the
density task comprises a non-trivial computation for a small radius CA (r << N,
where N is the grid size); the density is a global property of a configuration
whereas a small-radius CA relies solely on local interactions. Since the ls can
be distributed throughout the grid, propagation of information must occur over
large distances (i.e., O(N)). The minimum amount of memory required for the
task is O(logN) using a serial scan algorithm, thus the computation involved
corresponds to recognition of a non-regular language.

We have studied this task in [24, 25] using non-uniform, one-dimensional,
minimal radius r = 1 CAs of size N = 149. The search space involved is ex-
tremely large; since each cell contains one of 2 s possible rules this space is of size
(28) 149 = 21192. In contrast, the size of ~miform, r = 1 CA rule space is small,
consisting of only 2 s -- 256 rules. This enabled us to test each and every one of
these rules, a feat not possible for larger values of r, finding that the maximal
performance of uniform, r = 1 CAs on the density task is 0.83.

For the cellular programming algorithm we used randomly generated initial
configurations, uniformly distributed over densities in the range [0, 1], with the
CA being run for M ---- 150 time steps (thus, computation time is linear with grid
size). We found that non-uniform CAs had co-evolved that exhibit peak perfor-
mance values as high as 0.93; furthermore, these consist of a grid in which one
rule dominates, a situation referred to as quasi-uniformity (Section 2). Figure 2
demonstrates the operation of one such co-evolved CA along with a rules map,
depicting the distribution of rules by assigning a unique color to each distinct
rule.

The results obtained by us using a minimal radius of r = 1 are comparable
to those of [15], who used uniform CAs of radius r -- 3; furthermore, we at tain
notably higher performance than any possible uniform, r = 1 CA. This suggests
that non-uniformity reduces connectivity requirements, i.e., the use of smaller
cellular neighborhoods is made possible. A detailed investigation of the one-
dimensional density task can be found in [24, 25].

The density task can be extended in a straightforward manner to two-dimensional
grids. Applying our algorithm to such grids yielded notably higher performance
than the one-dimensional case, with peak values of 0.99. Figure 3 demonstrates
the operation of one such co-evolved CA. Qualitatively, we observe the CA's

8?

I II l
(a) (b)

Fig. 2. One-dimensional density task: Operation of a co-evolved, non-uniform, connec-
tivity radius r ---- 1 CA. Grid size is N = 149. White squares represent cells in state 0,
black squares represent cells in state 1. The pattern of configurations is shown through
time (which increases down the page). Top figures depict space-time diagrams, bottom
figures depict rule maps. Initial configurations were randomly generated. (a) Initial
density of ls is 0.40, final density is 0. (b) Initial density of ls is 0.60, final density is 1.
The CA relaxes in both cases to a fixed pattern of all 0s or all Is, correctly classifying
the initial configuration.

"strategy" of successively classifying local densities, with the locality range in-
creasing over time; "competing" regions of density 0 and density 1 are manifest,
ult imately relaxing to the correct fixed point.

4.2 T h e s y n c h r o n i z a t i o n t a s k

The one-dimensional synchronization task was introduced by [5] and studied by
us in [25] using non-uniform CAs. In this task the CA, given any initial config-
uration, must reach a final configuration, within M time steps, that oscillates
between all 0s and all ls on successive time steps. This task comprises a non-
trivial computation for a small radius CA; it belongs to a class of problems
studied in other domains, such as distributed computing, known as firing squad
problems [11].

In [25] we studied non-uniform, one-dimensional, minimal radius r = 1 CAs
of size N = 149. As for the density task, we first tested all possible uniform,
r = 1 CAs on the synchronization task, finding that the maximal performance is
0.84. For the cellular programming algorithm we used randomly generated initial

88

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

Fig. 3. Two-dimensional density task: Operation of a co-evolved, non-uniform, 2-state,
5-neighbor CA. Grid size is N ---- 225 (15 x 15). Initial density of ls is 0.51, final density
is 1. Numbers at bottom of images denote time steps.

configurations, uniformly distributed over densities in the range [0, 1], with the
CA being run for M = 150 t ime steps. We found that quasi-uniform CAs had
co-evolved tha t exhibit perfect performance, thereby surpassing any possible
uniform CA. Figure 4 depicts the operation of two such co-evolved CAs, along
with rule maps. A detailed investigation of the one-dimensional synchronization
task can be found in [25]. This task can also be extended in a straightforward
manner to two-dimensional grids, an investigation of which we have carried out;
our results show tha t perfect performance can be co-evolved for such CAs as
well.

4.3 The ordering task

In this task, the one-dimensional CA, given any initial configuration, must reach
a final configuration in which all 0s are placed on the left side of the grid and all
ls on the right side. The ordering task may be viewed as a variant of the density
task and is clearly non-trivial using similar arguments to those of Section 4.1. It
is interesting in that the output is not a uniform configuration of all 0s or all ls
as with the density and synchronization tasks.

Testing all uniform, r = 1 CAs on the ordering task we found tha t the

89

(a) (b)

Fig. 4. One-dimensional synchronization task: Operation of two co-evolved,
non-uniform, r -- 1 CAs. Grid size is N --- 149. Top figures depict space-time dia-
grams, bottom figures depict rule maps.

maximal performance is 0.71. Our algorithm yielded quasi-uniform CAs with
fitness values as high as 0.93, one of which is depicted in Figure 5. As with the
previous two tasks we find that non-uniform CAs can be co-evolved to attain
high performance, exceeding that of the best uniform CA.

4.4 The rectangle-boundary task

The possibility of applying CAs to perform image processing tasks arises as a
natural consequence of their architecture; in a two-dimensional CA, a cell (or
a group of cells) can correspond to an image pixel, with the CA's dynamics
designed so as to perform a desired image processing task. Earlier work in this
area, carried out mostly in the 1960s and the 1970s, was treated in [17], with
more recent applications presented in [1, 10].

The final two tasks we study involve image processing operations. In this
section we discuss a two-dimensional boundary computation: given an initial
configuration consisting of a non-filled rectangle, the CA must reach a final
configuration in which the rectangular region is filled, i.e., all cells within the
confines of the rectangle are in state 1, and all other cells are in state 0. Initial
configurations consist of random-sized rectangles placed randomly on the grid (in
our simulations, cells within the rectangle in the initial configuration were set to
state 1 with probability 0.3; cells outside the rectangle were set to 0). Note that
boundary cells can also be absent in the initial configuration. This operation can

90

(a) (b)

Fig. 5. One-dimensional ordering task: Operation of a co-evolved, non-uniform, r -- 1
CA. Top figures depict space-time diagrams, bottom figures depict rule maps. (a) Initial
density of ls is 0.315, final density is 0.328. (b) Initial density of ls is 0.60, final density
is 0.59.

be considered a form of image enhancement, used, e.g., for treating corrupted
images. Using cellular programming, non-uniform CAs were evolved with peak
performance values of 0.99, one of which is depicted in Figure 6.

Upon studying the (two-dimensional) rules map of the co-evolved, non-uniform
CA, we found that the grid is quasi-uniform, with one dominant rule present in
most cells. This rule maps the cell's state to zero if the number of neighboring
cells in state 1 (including the cell itself) is less than two, otherwise mapping the
cell's state to one 1. Thus, growing regions of ls are more likely to occur within
the rectangle confines than without.

4.5 T h e t h i n n i n g t a s k

Thinning (also known as skeletonization) is a fundamental preprocessing step
in many image processing and pat tern recognition algorithms. When the image
consists of strokes or curves of varying thickness it is usually desirable to reduce
them to thin representations located along the approximate middle of the original
figure. Such "thinned" representations are typically easier to process in later
stages, entailing savings in both time and storage space [9].

1 This is referred to as a totalistic rule, in which the state of a cell depends only on
the sum of the states of its neighbors at the previous time step, and not on their
individual states [33].

91

k: II II
0 1 2 3

I I
4 5 6 7

Fig. 6. Two-dimensional rectangle-boundary task: Operation of a co-evolved,
non-uniform, 2-state, 5-neighbor CA. Grid size is N -~ 225 (15 x 15). Numbers at
bottom of images denote time steps.

While the first thinning algorithms were designed for serial implementation,
current interest lies in parallel systems, early examples of which were presented
in [17]. The difficulty of designing a good thinning algorithm using a small, local
cellular neighborhood, coupled with the task's importance has motivated us to
explore the possibility of applying the cellular programming algorithm.

In [9] four sets of binary images were considered, two of which consist of rect-
angular patterns oriented at different angles. The algorithms presented therein
employ a two-dimensional grid with a 9-cell neighborhood; each parallel step
consists of two sub-iterations in which distinct operations take place. The set
of images considered by us consists of rectangular patterns oriented either hori-
zontally or vertically; while more restrictive than that of [9], it is noted that we
employ a smaller neighborhood (5-cell) and do not apply any sub-iterations.

Figure 7 demonstrates the operation of a co-evolved CA performing the thin-
ning task. Although the evolved grid does not compute perfect solutions, we ob-
serve, nonetheless, good thinning "behavior" upon presentation of rectangular
patterns as defined above (Figure 7a); furthermore, partial success is demon-
strated when presented with more difficult images involving intersecting lines
(Figure 7b).

5 D i s c u s s i o n

A major impediment preventing ubiquitous computing with CAs stems from the
difficulty of utilizing their complex behavior to perform useful computations. We
presented the cellular programming algorithm for co-evolving computation in

92

0 1 2 3

(a)

t I
0 1 2 3

(b)

Fig. 7. Two-dimensional thinning task: Operation of a co-evolved, non-uniform,
2-state, 5-neighbor CA. Grid size is N =- 1600 (40 x 40). Numbers at bottom of images
denote time steps. (a) Two separate lines. (b) Two intersecting lines.

non-uniform CAs, demonstrating that high performance systems can be evolved
for a number of non-trivial computational tasks. Our results suggest that non-
uniformity reduces connectivity requirements, i.e., the use of smaller cellular
neighborhoods is made possible.

An important issue when considering systems such as ours is that of scaling,
where two separate matters are of concern: the evolutionary algorithm and the
evolved solutions. As for the former, namely how does the evolutionary algorithm
scale with grid size, we note that as our algorithm is local, it scales better in terms
of hardware resources than the standard (global) genetic algorithm; adding grid
cells requires only local connections in our case whereas the standard genetic
algorithm includes global operators such as fitness ranking and crossover. The
second issue is how can larger grids be obtained from smaller (evolved) ones, i.e.,
how can evolved solutions be scaled? This has been purported as an advantage
of uniform CAs, since one can directly use the evolved rule in a grid of any
desired size. However, this form of simple scaling does not bring about task scal-
ing; as demonstrated, e.g., by [4] for the density task, performance decreases as
grid size increases. For non-uniform CAs, quasi-uniformity may facilitate scaling
since only a small number of rules must ultimately be considered. To date we
have attained successful systems for some tasks using a simple scaling scheme
involving the duplication of the rules grid; we are currently exploring a more

93

sophisticated scaling approach, with preliminary encouraging results.
Our work to date suggests that the use of non-uniform CAs coupled with

a local, co-evolutionary algorithm offers a number of advantages, including: (1)
increased rule variability, thereby entailing easier "adaptation" to a possible
change in the "environment", i.e., task, (2) easier implementation as evolware,
(3) fault tolerance arising from the insensitivity to minor differences between
cellular rules, and (4) better scalability (as noted above).

We found that markedly higher performance is attained for the density task
with two-dimensional grids along with shorter computation times, as compared
with one-dimensional grids. It is readily observed that a two-dimensional, locally
connected grid can be embedded in a one-dimensional grid with local and dis-
tant connections. Since the density task is global, it is likely that the observed
superior performance of two-dimensional grids arises from the existence of dis-
tant connections that enhance information propagation across the grid. This
result has motivated the study of a modified model, involving the concomitant
evolution of cellular rules and cellular connections. We have found that perfor-
mance can be markedly increased for global computational tasks by co-evolving
connectivity architectures [26, 27].

The nature of computation in CAs is a question of primary importance that
has been gaining attention in recent years. We wish to enhance our understanding
of the ways CAs perform computations, attempting to gain insight into the laws
and mechanisms by which they operate. It is important to learn how CAs may
be evolved, rather than designed, to perform computational tasks and what
kinds of classes of tasks are most suited for such a computational paradigm. We
seek to understand how evolution creates complex, global behavior in locally
interconnected systems of simple parts. These goals are significant both from a
scientific standpoint as well as from an applicative one.

Evolving, non-uniform CAs hold potential for studying phenomena of interest
in areas such as complex systems, artificial life and parallel computation. This
work has shed light on the possibility of computing with such CAs, and demon-
strated the feasibility of their programming by means of co-evolution. We believe
that cellular programming holds potential for attaining evolware which can be
implemented in software, hardware, or other possible forms, such as bioware.

A c k n o w l e d g m e n t s

I am grateful to Daniel Mange, Eytan Ruppin, Eduardo Sanchez, and Marco
Tomassini for helpful discussions.

R e f e r e n c e s

1. A. Broggi, V. D'Andrea, and G. Destri. Cellular automata as a computational
model for low-level vision. International Journal o] Modern Physics C, 4(1):5-16,
1993.

2. E. F. Codd. Cellular Automata. Academic Press, New York, 1968,

94

3. J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated equilibria:
A parallel genetic algorithm. In J. J. Grefenstette, editor, Proceedings of the Sec-
ond International Conference on Genetic Algorithms, page 148. Lawrence Erlbaum
Associates, 1987.

4. J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Pro-
ceedings of the National Academy of Sciences USA, 92(23):10742-10746, 1995.

5. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally syn-
chronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 336-343, San Francisco,
CA, 1995. Morgan Kaufmann.

6. R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers particle-
based computation in cellular automata. In Y. Davidor, H.-P. Schwefel, and
R. M~inner, editors, Parallel Problem Solving from Nature- PPSN III, volume 866 of
Lecture Notes in Computer Science, pages 344-353, Berlin, 1994. Springer-Verlag.

7. P. Gacs. Nonergodic one-dimensional media and reliable computation. Contem-
porary Mathematics, 41:125, 1985.

8. M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini. On-
line autonomous evolware. In Proceedings of The First International Conference
on Evolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Com-
puter Science. Springer-Verlag, Heidelberg, 1996.

9. Z. Guo and R. W. Hall. Parallel thinning with two-subiteratiou algorithms. Com-
munications of the ACM, 32(3):359-373, March 1989.

10. G. Hernandez and H. J. Herrmann. Cellular-automata for elementary image-
enhancement. CVGIP: Graphical Models and Image Processing, 58(1):82-89, Jan-
uary 1996.

11. L. Lamport and N. Lynch. Distributed computing: Models and methods. In J. Van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, pages 1159-1199. Elsevier, 1990.

12. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Genetic Al-
gorithms, page 428. Morgan Kaufmann, 1989.

13. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics, computation, and the
"edge of chaos": A re-examination. In G. Cowan, D. Pines, and D. Melzner, edi-
tors, Complexity: Metaphors, Models and Reality, pages 491-513. Addison-Wesley,
Reading, MA, 1994.

14. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to
perform computations: Mechanisms and impediments. Physica D, 75:361-391,
1994.

15. M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Complex Systems, 7:89-130,
1993.

16. N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J.
Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems,
pages 293-301. World Scientific, Singapore, 1988.

17. K. Preston, Jr. and M. J. B. Duff. Modern Cellular Automata: Theory and Appli-
cations. Plenum Press, New York, 1984.

18. S. Rasmussen, C. Knudsen, and R. Feldberg. Dynamics of programmable matter.
In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial
Life II, volume X of SFI Studies in the Sciences of Complexity, pages 211-254,
Redwood City, CA, 1992. Addison-Wesley.

95

19. E. Sanchez and M. Tomassini, editors. Towards Evolvable Hardware, volume 1062
of Lecture Notes in Computer Science. Springer-Vertag, Berlin, 1996.

20. M. Sipper. Non-uniform cellular automata: Evolution in rule space and formation
of complex structures. In R. A. Brooks and P. Maes, editors, Artificial Life IV,
pages 394-399, Cambridge, Massachusetts, 1994. The MIT Press.

21. M. Sipper. An introduction to artificial life. Explorations in Artificial Life (special
issue of AI Expert), pages 4-8, September 1995. Miller Freeman, San Francisco,
CA.

22. M. Sipper. Quasi-uniform computation-universal cellular automata. In F. Mors
A. Moreno, J. J. Merelo, and P. Chac6n, editors, ECAL'95: Third European Con-
ference on Artificial Life, volume 929 of Lecture Notes in Computer Science, pages
544--554, Berlin, 1995. Springer-Verlag.

23. M. Sipper. Studying artificial life using a simple, general cellular model. Artificial
Life Journal, 2(1):1-35, 1995. The MIT Press, Cambridge, MA.

24. M. Sipper. Co-evolving non-uniform cellular automata to perform computations.
Physiea D, 92:193-208, 1996.

25. M. Sipper. Complex computation in non-uniform cellular automata, 1996. (sub-
mitted).

26. M. Sipper and E. Ruppin. Co-evolving architectures for cellular machines. Physica
D, 1996. (to appear).

27. M. Sipper and E. Ruppin. Co-evolving cellular architectures by cellular program-
ming. In Proceedings of IEEE Third International Conference on Evolutionary
Computation (ICEC'96), pages 306-311, 1996.

28. T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed ge-
netic algorithms. In H. -P. Schwefel and R. M~inner, editors, Parallel Problem
Solving from Nature, volume 496 of Lecture Notes in Computer Science, page 176,
Berlin, 1991. Springer-Verlag.

29. R. Tanese. Parallel genetic algorithms for a hypercube. In J. J. Grefenstette,
editor, Proceedings of the Second International Conference on Genetic Algorithms,
page 177. Lawrence Erlbaum Associates, 1987.

30. T. Toffoli and N. Margolus. Cellular Automata Machines. The MIT Press, Cam-
bridge, Massachusetts, 1987.

31. M. Tomassini. The parallel genetic cellular automata: Application to global func-
tion optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Pro-
ceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms, pages 385-391. Springer-Verlag, 1993.

32. M. Tomassini. A survey of genetic algorithms. In D. Stauffer, editor, Annual
Reviews of Computational Physics, volume III, pages 87-118. World Scientific,
1995. Also available as: Technical Report 95/137, Department of Computer Sci-
ence, Swiss Federal Institute of Technology, Lausanne, Switzerland, July, 1995.

33. S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern
Physics, 55(3):601-644, July 1983.

34. S. Wolfram. Universality and complexity in cellular automata. Physiea D, 10:1-35,
1984.

