
Evolution of an Efficient Search Algorithm for
the Mate-In-N Problem in Chess

Ami Hauptman and Moshe Sipper

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Abstract. We propose an approach for developing efficient search algo-
rithms through genetic programming. Focusing on the game of chess we
evolve entire game-tree search algorithms to solve the Mate-In-N prob-
lem: find a key move such that even with the best possible counterplays,
the opponent cannot avoid being mated in (or before) move N . We show
that our evolved search algorithms successfully solve several instances of
the Mate-In-N problem, for the hardest ones developing 47% less game-
tree nodes than CRAFTY—a state-of-the-art chess engine with a ranking
of 2614 points. Improvement is thus not over the basic alpha-beta algo-
rithm, but over a world-class program using all standard enhancements.

1 Introduction

Artificial intelligence for board games is widely based on developing deep, large
game trees. In a two-player game, such as chess or go, players move in turn,
each trying to win against the opponent according to specific rules. The course
of the game may be modeled using a structure known as an adversarial game
tree (or simply game tree), in which nodes are positions in the game and edges
are moves [10]. The complete game tree for a given game is the tree starting
at the initial position (the root) and containing all possible moves (edges) from
each position. Terminal nodes represent positions where the rules of the game
determine whether the result is a win, a draw, or a loss.

When the game tree is too large to be generated completely, only a partial
tree (called a search tree) is generated instead. This is accomplished by invoking
a search algorithm, deciding which nodes are to be developed at any given time,
and when to terminate the search (typically at non-terminal nodes due to time
constraints) [17]. During the search, some nodes are evaluated by means of an
evaluation function according to given heuristics. This is done mostly at the
leaves of the tree. Furthermore, search can start from any position, and not just
the beginning of the game.

In general, there is a tradeoff between search and knowledge, i.e., the amount
of search (development of the game tree) carried out and the amount of knowl-
edge in the leaf-node evaluator. Because deeper search yields better results but
takes exponentially more time, various techniques are used to guide the search,
typically pruning the game tree. While some techniques are more generic and
domain independent, such as alpha-beta search [14] and the use of hash tables

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 78–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Draf
t

Evolution of an Efficient Search Algorithm 79

(i.e., transposition and refutation) [2], other methods rely on domain-specific
knowledge. For example, quiescence search [12] relies on examining capture move
sequences in chess (and relevant parts of the game tree) more thoroughly than
other moves. This is derived from empirical knowledge regarding the importance
of capture moves. Theoretically speaking, perfect domain knowledge would ren-
der the search futile, as is the case in solved endgames in chess [3]. However,
constructing a full knowledge base for difficult games such as chess is still far
from attainable.

While state-of-the-art chess engines integrate both search and knowledge the
scale is tipped towards generic search enhancements, rather than knowledge-
based reasoning [15]. In this paper we evolve a search algorithm, allowing evo-
lution to “balance the scale” between search and knowledge. The entire search
algorithm, based on building blocks taken from existing methods, is subject to
evolution. Some such blocks are representative of queries performed by strong
human players, allowing evolution to find ways of correctly integrating them
into the search algorithm. This was previously too difficult a task to be done
without optimization algorithms, as evidenced by the authors of Deep Blue [5].
Our results show that the number of search-tree nodes required by the evolved
search algorithms can be greatly reduced in many cases.

2 Previous Work

Our interest in this paper is in evolving a search algorithm by means of ge-
netic programming. We found little work in the literature on the evolution of
search algorithms. Brave [4] compared several genetic-programming methods on
a planning problem involving tree search, in which a goal node was to be found
in one of the leaves of a full binary tree of a given depth. While this work con-
cluded that genetic programming with recursive automatically defined functions
(ADFs) outperforms other methods and scales well, the problems he tackled
were specifically tailored, and not real-world problems.

Hong et al. applied evolutionary algorithms to game search trees, both for
single-player games [10], and for two-player games [11]. Each individual in the
population encoded a path in the search tree, and the entire population was
evolved to solve single game positions. Their results show considerable improve-
ment over the minimax algorithm, both in speed and accuracy, which seems
promising. However, their system required that search trees have the same num-
ber of next-moves for all positions. Moreover, they did not tackle real-world
games.

Gross et al. [7] evolved search for chess players using an alpha-beta algorithm
as the kernel of an individual which was enhanced by genetic-programming and
evolution-strategies modules. Thus, although the algorithmic skeleton was prede-
termined, the more “clever” parts of the algorithm (such as move ordering, search
cut-off, and node evaluation) were evolved. Results showed a reduction in the num-
ber of nodes required by alpha-beta to an astonishing 6 percent. However, since the
general framework of the algorithm was determined beforehand, the full power of

80 A. Hauptman and M. Sipper

evolution was not tapped. Moreover, there is no record of successfully competing
against commercial programs, which are known to greatly outperform alpha-beta
(with standard enhancements) on specific game-playing tasks.

Previously [9], we evolved chess endgame players using genetic programming,
which successfully competed against CRAFTY, a world-class chess program
(rated at 2614 points, which places it at the human Grandmaster level), on var-
ious endgames. Deeper analysis of the strategies developed [8] revealed several
important shortcomings, most of which stemmed from the fact that they used
deep knowledge and little search (typically, they developed only one level of the
search tree). Simply increasing the search depth would not solve the problem,
since the evolved programs examine each board very thoroughly, and scanning
many boards would increase time requirements prohibitively.

And so we turn to evolution to find an optimal way to overcome this problem:
How to add more search at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining better performance. In the
experiment described herein we evolved the search algorithm itself. While previ-
ous work on evolving search used either a scaffolding algorithm [7], or searching
in toy problems [4], we present a novel approach of evolving the entire search
algorithm, based on building blocks taken from existing methods, integrating
knowledge in the process, and applying our results to a real-world problem.

We consider all endgames, as opposed to our previous set of experiments [9], in
which we only considered a limited subset of endgames. However, an important
limit has been imposed: Since efficiently searching the entire game (or endgame)
tree is an extremely difficult task, we limited ourselves for now to searching only
for game termination (or mate positions) of varying tree depths, as explained in
the next section.

3 The Mate-In-N Problem

The Mate-In-N problem in chess is defined as finding a key move such that even
with the best possible counterplays, the opponent cannot avoid being mated
in (or before) move N , where N counts only the player’s moves and not the
opponent’s. This implies finding a subtree of forced moves, leading the opponent
to defeat in (2N − 1) plies (actually, 2N plies, since we need an additional ply
to verify a mate). Typically, for such tactical positions (where long forcing move
sequences exist), chess engines search much more thoroughly, using far more
resources. For example, Deep Blue searches at roughly half the usual speed in
such positions [5].

Allegedly, solving the mate problem may be accomplished by performing ex-
haustive search. However, because deep search is required when N is large, the
number of nodes grows exponentially, and a full search is next to impossible.
For example, finding a mate-in-5 sequence requires searching 10 or 11 plies, and
more than 2∗1010 nodes. Of course, advanced chess engines search far less nodes
due to state-of-the-art search enhancements, as can be seen in Table 1. Still, the
problem remains difficult.

Evolution of an Efficient Search Algorithm 81

Table 1. Number of nodes required to solve the Mate-in-N problem by CRAFTY—
a top machine player—averaged over our test examples. Depth in plies (half-moves)
needed is also shown.

Mate-in 1 2 3 4 5
Depth in plies 2 4 6 8 10
Nodes developed 600 7K 50K 138K 1.6M

A basic algorithm for solving the Mate-In-N problem through exhaustive
search is shown in Figure 1. First, we check if the search should terminate:
successfully, if the given board is indeed a mate; in failure, if the required depth
was reached and no mate was found. Then, for each of the player’s moves we
perform the following check: if, after making the move, all the opponent’s moves
lead (recursively) to Mate-in-(N −1) or better (procedure CheckOppTurn), the
mating sequence was found, and we return true. If not, we iterate on all the
player’s other moves. If no move meets the condition, we return false.

Mate-In-N?(board, depth)

procedure CheckOppTurn(board, depth)
//Check if all opponent’s moves lead to Mate-in-(N-1)
for each oppmove ∈ GetNextMoves(board)

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MakeMove(board, oppmove)
result ← Mate-In-N?(board, depth− 1)
UndoMove(board, oppmove)
if not result
then return (false)

return (true)

main
if IsMate(board)
then return (true)

if depth = 0
then return (false)

for each move ∈ GetNextMoves(board)

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MakeMove(board, move)
result ← CheckOppTurn(board, depth)
UndoMove(board, move)
if result
then return (true)

return (false)

Fig. 1. A basic algorithm for solving the Mate-In-N problem through exhaustive search

This algorithm has much in common with several algorithms, including alpha-
beta search and proof-number (pn) search [1]. However, as no advanced schemas
(for example, move-ordering or cutoffs) are employed here, the algorithm be-
comes infeasible for large values of N .

In the course of our experiments we broke the algorithmic skeleton into its
component building blocks, and incorporated them, along with other important
elements, into the evolving genetic-programming individuals.

82 A. Hauptman and M. Sipper

4 Evolving Mate-Solving Algorithms

We evolve our mate-solving search algorithms using Koza-style genetic program-
ming [13]. In genetic programming we evolve a population of individual LISP ex-
pressions, each comprising functions and terminals. Since LISP programs may
be readily represented as program trees, the functions are internal nodes and
the terminals are leaves. (NB: There are two types of tree involved in our work:
game search tree and the tree representing the LISP search algorithm.)

Since we wish to develop intelligent—rather than exhaustive—search, our
board evaluation requires special care. Human players never develop the entire
tree, even when this is possible. For example, Mate-in-1 problems are typically
solved by only developing checking moves, and not all possible moves (since non-
checking moves are necessarily non-mating moves, there is no point in looking
into them). As human players only consider 2–3 boards per second yet still solve
deep Mate-in-N problems fast (for example, Grandmasters often find winning
combinations more than 10 moves ahead in mere seconds), they rely either on
massive pattern recognition or on intelligent pruning, or both [6].

Thus, we evolved our individuals (game search-tree algorithms) accordingly,
following these guidelines: 1) Individuals only consider moves adhering to certain
conditions (themselves developed by evolution). 2) The amount of lookahead is
left to the individual’s discretion, with fitness penalties for deep lookahead (to
avoid exhaustive search). Thus, we also get evolving lookahead. 3) Development
of the game tree is asymmetrical. This helps with computation since we do not
need to consider the same aspects for both players’ moves. 4) Each node exam-
ined during the search is individually considered according to game knowledge,
and move sequence may be developed to a different depth.

4.1 Basic Program Architecture

Our individuals receive a chessboard as input, and return a real-valued score
in the range [−1000.0, 1000.0] , indicating the likelihood of this board leading
to a mate (higher is more likely). A representation issue is whether to evolve
boards returning scores or moves (allowing to return no move to indicate no mate
has been found). An alternative approach might be evolving the individuals as
move-ordering modules. However, the approach we took was both more versatile
and reduced the overhead of move comparison by the individual—instead of
comparing moves by the genetic programming individual, the first level of the
search is done by a separate module. An evolved program thus receives as input
all possible board configurations reachable from the current position by making
one legal move. After all options are considered by the program, the move that
received the highest score is selected, and compared to the known solution for
fitness purposes (described in Section 4.3).

4.2 Functions and Terminals

We developed most of our terminals and functions by consulting several high-
ranking chess players.

Evolution of an Efficient Search Algorithm 83

Domain-specific functions. These functions are listed in Table 5. Note that
domain-specific functions typically examine if a move the player makes adheres
to a given condition, which is known to lead to a mate in various positions.
If so, this move is made, and evaluation continues. If not, the other child is
evaluated. Also, a more generic function, namely IfMyMoveExistsSuchThat,
was included to incorporate other (possibly unknown) considerations in making
moves by the player. All functions undo the moves they make after evalua-
tion of their children is completed. Since some functions are only appropriate
in MAX nodes (player’s turn), and others in MIN nodes (opponent’s turn),
some functions in the table were only used at the relevant levels. Other func-
tions, such as MakeBestMove, behave differently in MAX nodes and in MIN
nodes.

Sometimes functions that consider a player’s move are called when it is the
opponent’s turn. In this case we go immediately to the false condition (without
making a move). This solution was simpler than, for example, defining a new
set of return types. Some of these functions appear as terminals also, to allow
considerations to be made while it is the opponent’s turn.

Generic functions appear in Table 4. As in [9], these domain-independent
functions were included to allow logic and some numeric calculations.

Chess terminals, some of which were also used used in [9], are shown in Ta-
ble 6. Here, several mating aspects of the board, of varying complexity levels, are
considered. From the number of possible moves for the opponent’s king, through
checking if the player creates a fork attacking the opponent’s king, to one of
the most important terminals—IsMateInOneOrLess. This terminal is used to
allow the player to easily identify very close mates. Of course, repeated applica-
tions of this terminal at varying tree depths might have solved our problem but
this alternative was not chosen by evolution (as shown below). Material value
and material change are considered, to allow the player to make choices involving
not losing pieces.

Mate terminals, which were specifically constructed for this experiment, are
shown in Table 3. Some of these terminals resemble those from the function set,
to allow building different calculations with similar (important) units.

4.3 Fitness

In order to test our individuals and assign fitness values we used a pool of
100 Mate-in-N problems of varying depths (i.e., values of N). The easier 50
problems (N = 1..3) were taken from Polgar’s Book [16], while those with larger
Ns (N ≥ 4) were taken from various issues of the Israeli Chess Federation
Newsletter (http://www.chess.org.il). All problems were solved offline by
CRAFTY.

Special care was taken to ensure that all of the deeper problems could not be
solved trivially (e.g., if there are only a few pieces left on the board, or when the
opponent’s king can be easily pushed towards the edges). We used CRAFTY’s

84 A. Hauptman and M. Sipper

feature of counting nodes in the game tree and made sure that the amount of
search required to solve all problems was close to the average values given in
Table 1 (we saved this value for each problem, to use for scoring purposes).

The fitness score was assigned according to an individual (search algorithm’s)
success in solving a random sample of problems of all depths, taken from the
pool (sample size was 5 per N). For each solution, the score was calculated using
the formula:

fitness =
s·MaxN∑

i=1

Correctnessi · 2Ni · Boardsi

with the following specifications:

– i ,N , and s are the problem instance, the depth, and the sample size, respec-
tively. MaxN is the maximal depth we worked with (currently 5).

– Correctnessi ∈ [0, 1] represents the percentage of the correctness of the move.
If the correct piece was selected, this score is 0.5d, where d is the distance (in
squares) between the correct destination and the chosen destination for the
piece. If the correct square was attacked but with the wrong piece, it was 0.1.
In the later stages of each run (after more than 75% of the problems were
solved by the best individuals), this factor was only 0.0 or 1.0.

– Ni is the depth of the problem. Since for larger Ns, finding the mating move
is exponentially more difficult, this factor also increases exponentially.

– Boardsi is the number of boards examined by CRAFTY for this problem,
divided by the number examined by the individual1. For small Ns, this factor
was only used at later stages of evolution.

We used the standard reproduction, crossover, and mutation operators, as in
[13]. We experimented with several configurations finally setting on: population
size – between 70 and 100, generation count – between 100 and 150, reproduction
probability – 0.35, crossover probability – 0.5, and mutation probability – 0.15
(including ERC—Ephemeral Random Constants). The relatively small popula-
tion size helped to maintain shorter running times, although possibly more runs
were needed to attain our results.

5 Results

After each run we extracted the top individual (i.e., the one that obtained the best
fitness throughout the run) and tested its performance with a separate problem
set (the test set), containing 10 problems per each depth, not encountered before.
The results from the ten best runs show that all problems up to N = 4 were solved
completely in most of the runs, and most N = 5 problems were also solved.

1 In order to better control running times, if an individual examined more than 1.5 the
boards examined by CRAFTY, the search tree was truncated, although the returned
score was still used.

Evolution of an Efficient Search Algorithm 85

Table 2. Number of search-tree nodes developed to solve the Mate-in-N problem by
CRAFTY, compared to the number of nodes required by our best evolved individual
from over 20 runs. Values shown are averaged over the test problems. As can be seen,
for the hardest problems (N = 5) our evolved search algorithm obtains a 47% reduction
in developed nodes.

Mate-in 1 2 3 4 5
CRAFTY 600 7K 50K 138K 1.6M
Evolved 600 2k 28k 55K 850k

Table 3. Mate terminal set of an individual program in the population. Opp: opponent,
My: player. “Close” means 2 squares or less.

B=IsNextMoveForced() Is the opponent’s next move forced (only 1 pos-
sible)?

F=IsNextMoveForcedWithKing() Opponent must move its king
B=IsPinCloseToKing() Is an opponent’s piece pinned close to the king
F=NumMyPiecesCanCheck() Number of the player’s pieces capable of checking

the opponent
B=DidNumAttackingKingIncrease() Did the number of pieces attacking the oppo-

nent’s king’s area increase after last move?
B=IsPinCloseToKing() Is an opponent’s piece pinned close to the king
B=IsDiscoveredCheck() Did the last move clear the way for another piece

to check?
B=IsDiscoveredProtectedCheck() Same as above, only the checking piece is also

protected

Table 4. Domain-independent function set of an individual program in the population.
B: Boolean, F: Float.

F=If3(B, F1, F2) If B is non-zero, return F1, else return F2

B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise
B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise
B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise
B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise
B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise
B=Not(B) Return 0 if B is non-zero, 1 otherwise
B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise

Due to space restrictions we do not present herein a detailed analysis of runs
but focus on the most important issue, namely, the number of search-tree nodes
developed by our evolved search algorithms. As stated above, mates can be found
with exhaustive search and little knowledge, but the number of nodes would be

86 A. Hauptman and M. Sipper

Table 5. Domain-specific function set of an individual program in the population. B:
Boolean, F: Float. Note: all move-making functions undo the move when the function
terminates.

F=IfMyMoveExistsSuchThat(B, F1, F2) If after making one of my moves B is true,
make that move and return F1, else return
F2

F=IfForAllOpponentMoves(B, F1, F2) If after making each of the opponent’s moves
B is true, make an opponent’s move and re-
turn F1, else return F2

F=MakeBestMove(F) Make all moves possible, evaluate the child
(F) after each move, and return the maximal
(or minimal) value of all evaluations

F=MakeAnyOrAllMovesSuchThat(B,
F1, F2)

Make all possible moves (in opp turn) or
any move (my turn), and remember those for
which B was true. Evaluate F1 after making
each of these moves, and return the best re-
sult. If no such move exists, return F2.

F=IfExistsCheckingMove(F1, F2) If a checking move exists, return F1, else re-
turn F2

F=MyMoveIter(B1,B2,F1,F2) Find a player’s move for which B1 is true.
Then, develop all opponent’s moves, and
check if for all, B2 is true. If so, return F1,
else return F2

F=IfKingMustMove(F1, F2) If opponent’s king must move, make a move,
and return F1, else return F2

F=IfCaptureCloseToKingMove(F1, F2) If player can capture close to king, make that
move and return F1, else return F2

F=IfPinCloseToKingMove(F1, F2) If player can pin a piece close to opponent’s
king, make that move and return F1, else re-
turn F2

F=IfAttackingKingMove(F1, F2) If player can move a piece into a square at-
tacking the area near opponent’s king, make
that move and return F1, else return F2

F=IfClearingWayMove(F1, F2) If player can move a piece in such a way that
another piece can check next turn, return F1,
else return F2

F=IfSuicideCheck(B,F1, F2) If player can check the opponent’s king while
losing its own piece and B is true, evaluate
F1, else return F2

prohibitive. Table 2 presents the number of nodes examined by our best evolved
algorithms compared with the number of nodes required by CRAFTY. As can
be seen, a reduction of 47% is achieved for the most difficult case (N = 5).
Note that improvement is not over the basic alpha-beta algorithm, but over a
world-class program using all standard enhancements.

Evolution of an Efficient Search Algorithm 87

Table 6. Chess terminal set of an individual program in the population. Opp:
opponent.

B=IsCheck() Is the opponent’s king being checked?
F=OppKingProximityToEdges() The player’s king’s proximity to the edges of the

board
F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces close

to its king
B=IsCheckFork() Is the player creating a fork attacking the opponent’s

king?
F=NumNotMovesOppKing() The number of illegal moves for the opponent’s king
B=NumNotMovesOppBigger() Has the number of illegal moves for the opponent’s

king increased?
B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of its pieces?
F=EvaluateMaterial() The material value of the board
B=IsMaterialChange() Was the last move a capture move?
B=IsMateInOneOrLess() Is the opponent in mate, or can be in the next turn?
B=IsOppKingStuck() Do all legal moves for the opponent’s king advance

it closer to the edges?
B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?

6 Concluding Remarks

Our results show that the number of search-tree nodes required to find mates may
be significantly reduced by evolving a search algorithm with building blocks that
provide a-priori knowledge. This is reminiscent of human thinking, since human
players survey very few boards (typically 1-2 per second) but apply knowledge
far more complex than any artificial evaluation function. On the other hand, even
strong human players usually do not find mates as fast as machines (especially
in complex positions). Our evolved players are both fast and accurate.

GP-trees of our best evolved individuals were quite large, and difficult to an-
alyze. However, from examining the results it is clear that the best individuals’
search was efficient, and thus domain-specific functions and terminals play an im-
portant role in guiding search. This implies that much “knowledge” was incorpo-
rated into stronger individuals, although it would be difficult to quantify it.

The depths (Ns) we dealt with are still relatively small. However, as the notion
of evolving the entire search algorithm is new, we expect to achieve better results
in the near future. Our most immediate priority is generalizing our results to
larger values of N , a task we are currently working on. In the short term we
would like to evolve a general Mate-In-N module, which could replace a chess
engine’s current module, thereby increasing its rating—no mean feat where top-
of-the-line engines are concerned!

In the longer term we intend to seek ways of combining the algorithms evolved
here into an algorithm playing the entire game. The search algorithms we evolved

88 A. Hauptman and M. Sipper

may provide a framework for searching generic chess positions (not only find-
ing mates). Learning how to combine this search with the evaluation functions
previously developed by [9] may give rise to stronger (evolved) chess players.

Ultimately, our approach could prove useful in every domain in which knowl-
edge is used, with or without search. The genetic programming paradigm still
bears great untapped potential in constructing and representing knowledge.

References

1. L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search.
Artificial Intelligence, 66:91–124, 1994.

2. D. F. Beal and M. C. Smith. Multiple probes of transposition tables. ICCA
Journal, 19(4):227–233, December 1996.

3. M. S. Bourzutschky, J. A. Tamplin, and G. McC. Haworth. Chess endgames: 6-man
data and strategy. Theoretical Computer Science, 349:140–157, December 2005.

4. Scott Brave. Evolving recursive programs for tree search. In Peter J. Angeline and
K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 10, pages
203–220. MIT Press, Cambridge, MA, USA, 1996.

5. Murray Campbell, A. Joseph Hoane, Jr., and Feng-Hsiung Hsu. Deep blue. Arti-
ficial Intelligence, 134(1–2):57–83, 2002.

6. C. F. Chabris and E. S. Hearst. Visualization, pattern recognition, and forward
search: Effects of playing speed and sight of the position on grandmaster chess
errors. Cognitive Science, 27:637–648, February 2003.

7. R. Gross, K. Albrecht, W. Kantschik, and W. Banzhaf. Evolving chess playing
programs. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 740–747, New
York, 9-13 July 2002. Morgan Kaufmann Publishers.

8. A. Hauptman and M. Sipper. Analyzing the intelligence of a genetically pro-
grammed chess player. In Late Breaking Papers at the Genetic and Evolutionary
Computation Conference 2005. Washington DC, June 2005.

9. A. Hauptman and M. Sipper. GP-endchess: Using genetic programming to evolve
chess endgame players. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet,
Jano I. van Hemert, and Marco Tomassini, editors, Proceedings of the 8th Euro-
pean Conference on Genetic Programming, volume 3447 of Lecture Notes in Com-
puter Science, pages 120–131, Lausanne, Switzerland, 30 March - 1 April 2005.
Springer.

10. Tzung-Pei Hong, Ke-Yuan Huang, and Wen-Yang Lin. Adversarial search by evo-
lutionary computation. Evolutionary Computation, 9(3):371–385, 2001.

11. Tzung-Pei Hong, Ke-Yuan Huang, and Wen-Yang Lin. Applying genetic algorithms
to game search trees. Soft Comput., 6(3-4):277–283, 2002.

12. Hermann Kaindl. Quiescence search in computer chess. ACM SIGART Bulletin,
(80):124–131, 1982. Reprint in Computer Game-Playing: Theory and Practice,
Ellis Horwood, Chichester, England, 1983.

13. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge Massachusetts, May 1994.

Evolution of an Efficient Search Algorithm 89

14. T. Anthony Marsland and Murray S. Campbell. A survey of enhancements to
the alpha-beta algorithm. In Proceedings of the ACM National Conference, pages
109–114, November 1981.

15. Monty Newborn. Deep blue’s contribution to AI. Ann. Math. Artif. Intell, 28(1-
4):27–30, 2000.

16. Laszlo Polgar. Chess : 5334 Problems, Combinations, and Games. Black Dog and
Leventhal Publishers, 1995.

17. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs , NJ, 1995.

	Introduction
	Previous Work
	The Mate-In-N Problem
	Evolving Mate-Solving Algorithms
	Basic Program Architecture
	Functions and Terminals
	Fitness

	Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

