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Abstract

The term evolutionary computation encompasses a host of methodologies inspired by
natural evolution that are used to solve hard problems. This paper provides an overview of
evolutionary computation as applied to problems in the medical domains. We begin by
outlining the basic workings of six types of evolutionary algorithms: genetic algorithms,
genetic programming, evolution strategies, evolutionary programming, classifier systems, and
hybrid systems. We then describe how evolutionary algorithms are applied to solve medical
problems, including diagnosis, prognosis, imaging, signal processing, planning, and schedul-
ing. Finally, we provide an extensive bibliography, classified both according to the medical
task addressed and according to the evolutionary technique used. © 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The Merriam–Webster OnLine Dictionary (www.m-w.com) defines medicine as
‘‘the science and art dealing with the maintenance of health and the prevention,
alleviation, or cure of disease’’. In aiming to fulfill their defined mission medical
professionals are confronted daily with problems from diverse walks of (medical)
life, which all exhibit an underlying commonality: searching for a good solution
among a (usually huge) space of possible solutions. Whether trying to pry out signs
of malignant cancer in cell biopsies or looking for irregularities in EEG signals, the
basic problem is that of sifting through a welter of candidate solutions to find as
good a solution as possible.

As in any other area of modern life, computers are omnipresent in medicine,
from the hospital accounting computer to the high-end MRI scanner. In particular
computers are used as tools to abet medical professionals in resolving search
problems. Numerous techniques have been applied over the past few decades to
solve medical problems: expert systems, artificial neural networks, linear program-
ming, and database systems are but a sampling of the approaches used. One of the
relative newcomers in medicine is the approach known as evolutionary computa-
tion, which is the object of focus in this paper.

The idea of applying the biological principle of natural evolution to artificial
systems, introduced more than four decades ago, has seen impressive growth in the
past few years. Known as evolutionary algorithms or evolutionary computation,
these techniques are common nowadays, having been successfully applied to
numerous problems from different domains, including optimization, automatic
programming, circuit design, machine learning, economics, ecology, and population
genetics, to mention but a few. In particular, evolutionary algorithms have been
applied to problems in medicine.

This paper provides an overview of evolutionary computation in medicine. In the
next section we delineate the basic workings of six types of evolutionary algorithms:
genetic algorithms, genetic programming, evolution strategies, evolutionary pro-
gramming, classifier systems, and hybrid systems. Section 2 thus provides a brief
summary of how evolutionary computation works for readers unfamiliar with the
approach. Section 3 then describes how evolutionary algorithms are applied to
solve medical problems, including diagnosis, prognosis, imaging, signal processing,
planning, and scheduling. Finally, Section 4 provides an extensive bibliography,
classified both according to the medical task addressed and according to the
evolutionary technique used.

2. Evolutionary computation

The domain of evolutionary computation involves the study of the foundations
and the applications of computational techniques based on the principles of natural
evolution. Evolution in nature is responsible for the ‘design’ of all living beings on
earth, and for the strategies they use to interact with each other. Evolutionary



C.A. Peña-Reyes, M. Sipper / Artificial Intelligence in Medicine 19 (2000) 1–23 3

algorithms employ this powerful design philosophy to find solutions to hard
problems.

Generally speaking, evolutionary techniques can be viewed either as search
methods, or as optimization techniques. As written by Michalewicz [66]: ‘‘Any
abstract task to be accomplished can be thought of as solving a problem, which, in
turn, can be perceived as a search through a space of potential solutions. Since
usually we are after ‘the best’ solution, we can view this task as an optimization
process’’.

The first works on the use of evolution-inspired approaches to problem solving
date back to the late 1950s [13,14,28,33,34]. Independent and almost simultaneous
research conducted by Rechenberg and Schwefel on evolution strategies
[81,82,86,87], by Holland on genetic algorithms [44,46], and by Fogel on evolution-
ary programming [31,32] triggered the study and the application of evolutionary
techniques.

Three basic mechanisms drive natural evolution: reproduction, mutation, and
selection. These mechanisms act ultimately on the chromosomes containing the
genetic information of the indi6idual (the genotype), rather than on the individual
itself (the phenotype). Reproduction is the process whereby new individuals are
introduced into a population. During sexual reproduction recombination (or
crosso6er) occurs, transmitting to the offspring chromosomes that are a melange of
both parents’ genetic information. Mutation introduces small changes into the
inherited chromosomes; it often results from copying errors during reproduction.
Selection is a process guided by the Darwinian principle of survival of the fittest.
The fittest individuals are those best adapted to their environment, which thus
survive and reproduce.

Evolutionary computation makes use of a metaphor of natural evolution.
According to this metaphor, a problem plays the role of an environment wherein
lives a population of individuals, each representing a possible solution to the
problem. The degree of adaptation of each individual (i.e. candidate solution) to its
environment is expressed by an adequacy measure known as the fitness function.
The phenotype of each individual, i.e. the candidate solution itself, is generally
encoded in some manner into its genome (genotype). Like evolution in nature,
evolutionary algorithms potentially produce progressively better solutions to the
problem. This is possible thanks to the constant introduction of new ‘genetic’
material into the population, by applying so-called genetic operators that are the
computational equivalents of natural evolutionary mechanisms.

There are several types of evolutionary algorithms, among which the best known
are genetic algorithms, genetic programming, e6olution strategies, and e6olutionary
programming ; though different in the specifics they are all based on the same
general principles. The archetypal evolutionary algorithm proceeds as follows: An
initial population of individuals, P(0), is generated at random or heuristically.
Every evolutionary step t, known as a generation, the individuals in the current
population, P(t), are decoded and e6aluated according to some predefined quality
criterion, referred to as the fitness, or fitness function. Then, a subset of individuals,
P %(t) — known as the mating pool — is selected to reproduce, with selection of
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individuals done according to their fitness. Thus, high-fitness (‘good’) individuals
stand a better chance of ‘reproducing’, while low-fitness ones are more likely to
disappear.

Selection alone cannot introduce any new individuals into the population, i.e. it
cannot find new points in the search space. These points are generated by altering
the selected population P %(t) via the application of crossover and mutation, so as to
produce a new population, P %%(t). Crossover tends to enable the evolutionary
process to move toward ‘promising’ regions of the search space. Mutation is
introduced to prevent premature convergence to local optima, by randomly sam-
pling new points in the search space. Finally, the new individuals P %%(t) are
introduced into the next-generation population, P(t+1); usually P %%(t) simply
becomes P(t+1). The termination condition may be specified as some fixed,
maximal number of generations or as the attainment of an acceptable fitness level.
Fig. 1 presents the structure of a generic evolutionary algorithm in pseudo-code
format.

As they combine elements of directed and stochastic search evolutionary tech-
niques exhibit a number of advantages over other search methods. First, they
usually need a smaller amount of knowledge and fewer assumptions about the
characteristics of the search space. Second, they can more easily avoid getting stuck
in local optima. Finally, they strike a good balance between exploitation of the best
solutions, and exploration of the search space. The strength of evolutionary
algorithms relies on their population-based search, and on the use of the genetic
mechanisms described above. The existence of a population of candidate solutions
entails a parallel search, with the selection mechanism directing the search to the
most promising regions. The crossover operator encourages the exchange of
information between these search-space regions, while the mutation operator
enables the exploration of new directions.

The application of an evolutionary algorithm involves a number of important
considerations. The first decision to take when applying such an algorithm is how
to encode candidate solutions within the genome. The representation must allow for
the encoding of all possible solutions while being sufficiently simple to be searched
in a reasonable amount of time. Next, an appropriate fitness function must be
defined for evaluating the individuals. The (usually scalar) fitness must reflect the

Fig. 1. Pseudo-code of an evolutionary algorithm.
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criteria to be optimized and their relative importance. Representation and fitness
are thus clearly problem-dependent, in contrast to selection, crossover, and muta-
tion, which seem prima facie more problem-independent. Practice has shown,
however, that while standard genetic operators can be used, one often needs to
tailor these to the problem as well.

We noted above that there are several types of evolutionary algorithms. This
classification is due mainly to historical reasons and the different types of evolution-
ary algorithms are in fact quite similar. One could argue that there is but a single
general evolutionary algorithm, or just the opposite — that ‘‘there are as many
evolutionary algorithms as the researchers working in evolutionary computation’’
[78]. The frontiers among the widely accepted classes of evolutionary algorithms
have become fuzzy over the years as each technique has attempted to overcome its
limitations, by imbibing characteristics of the other techniques. To design an
evolutionary algorithm one must define a number of important parameters, which
are precisely those that demarcate the different evolutionary-computation classes.
Some important parameters are: representation (genome), selection mechanism,
crossover, mutation, size of populations P % and P %%, variability or fixity of popula-
tion size, and variability or fixity of genome length.

The next subsections present the major evolutionary methods, emphasizing the
specific properties of each one along with the most typical choices of parameters.
These methods are: genetic algorithms (Section 2.1), genetic programming (Section
2.2), evolution strategies (Section 2.3), and evolutionary programming (Section 2.4).
Section 2.5 then introduces a somewhat different evolutionary technique, known as
classifier systems, which offers on-line learning capabilities. Finally, Section 2.6
outlines the principles for integrating evolutionary computation with other tech-
niques, especially with fuzzy logic and neural networks. Detailed discussion on
theory and on advanced topics of evolutionary computation can be found in
[4,66,68,92,95].

2.1. Genetic algorithms

Proposed by John Holland in the 1960s [44,46], genetic algorithms are the best
known class of evolutionary algorithms. They are used so extensively that often the
terms genetic algorithms and evolutionary computation are used interchangeably
(though, as noted, they should be considered distinct).

There is a clear distinction between the solution being tested, the ‘adult individ-
ual’ or phenotype, and its representation — the genome or genotype. Traditionally,
the genome is a fixed-length binary string. With such a data structure it is possible
to represent solutions to virtually any problem. However, so that the genetic
algorithm may converge to good solutions, the representation must be carefully
designed to minimize redundancy (i.e. several genotypes encoding the same pheno-
type) and to avoid invalid representations (i.e. a genotype encoding a phenotype
which is not a possible solution to the problem at hand).

With genetic algorithms the population size is constant and individuals are
decoded and evaluated at each generation. Individuals are then selected according
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to their fitness. Many selection procedures are currently in use, one of the simplest
being fitness-proportionate selection, where individuals are selected with a probabil-
ity proportional to their fitness. This ensures that the expected number of times an
individual is chosen is approximately proportional to its relative performance in the
population. Selection produces a mating pool of the same size as the original
population (P %=P).

Crossover is performed with probability Pc (the ‘crossover probability’ or
‘crossover rate’) between two selected individuals, called parents, by exchanging
parts of their genomes to form two new individuals, called offspring. In its simplest
form, known as one-point crosso6er, substrings are exchanged after a randomly
selected crossover point. The mutation operator is carried out by flipping bits at
random, with some (usually small) probability Pm. The crossover and mutation
operators preserve the size of the population, i.e. P¦=P %.

Genetic algorithms are by far the most popular evolutionary technique (though
genetic programming is rapidly ‘gaining’ on them). This is due in part to their
conceptual simplicity, the ease of programming entailed, and the small number of
parameters to be defined (apart from the genomic representation and the fitness
function, parameters include mainly population size, crossover and mutation prob-
abilities, and termination condition).

There are several variations of the simple genetic algorithm [95], with different
selection mechanisms (e.g. ranking, tournament, and elitism), crossover operators
(e.g. multi-point crossover), and mutation operators (e.g. adaptive mutation). These
and other advanced topics concerning genetic algorithms are presented in Refs.
[66,68,95].

2.2. Genetic programming

John Koza [50,51] developed relatively recently a variant of genetic algorithms
called genetic programming. In this approach, instead of encoding possible solu-
tions to a problem as a fixed-length character string, they are encoded as computer
programs. To wit, the individuals in the population are programs that — when
executed — are the candidate solutions (phenotypes) to the problem.

Programs in genetic programming may be expressed in any language in principle.
However, to guarantee that evolution be able to generate valid, executable pro-
grams, it is necessary to restrict the choice of language. Thus, programs are
expressed as parse trees, rather than as lines of code, i.e. using a functional
language rather than a procedural one. The set of possible internal (non-terminal)
nodes of these parse trees, called the function set (F), is composed of user-defined
functions. The terminal nodes, which form the terminal set (T), are usually either
variables or constants. The syntactic closure property requires that each function in
F be able to accept as arguments any other returned function value and any value
and data type in the terminal set T. This property prevents the proliferation of
illegal programs due to crossover and mutation.

As an example consider a basic arithmetic language whose function and terminal
set are defined as follows: F={+ ,− , �, /} and T={A, B, C, 2}. Fig. 2 shows two
examples of parse trees.



C.A. Peña-Reyes, M. Sipper / Artificial Intelligence in Medicine 19 (2000) 1–23 7

Fig. 2. Genetic programming parse trees, representing the following programs in LISP-like syntax: (a)
(/(�AB)(+2C)), and (b) (�A(/B(+2C))). Both programs implement the expression AB/(2+C). It is
important to note that though LISP is the language chosen by Koza to implement genetic programming,
it is not the only possibility. Any language capable of representing programs as parse trees is adequate.
Moreover, machine language has been used as well [73].

Fig. 3. Crossover in genetic programming. The two shadowed subtrees of the parent trees are exchanged
to produce two offspring trees. Note that the two parents, as well as the two offspring, are typically of
different size.

Evolution in genetic programming proceeds along the general lines of the generic
evolutionary algorithm (Fig. 1), with the genetic operators adapted to the tree
representation. Reproduction is performed in both asexual and sexual ways.
Asexual reproduction, or cloning, allows some of the fittest individuals to survive
into the next generation; this is equivalent to so-called elitist selection in genetic
algorithms. Sexual reproduction, i.e. crossover, starts out by selecting a random
crossover point in each parent tree and then exchanging the subtrees ‘hanging’ from
these points, thus producing two offspring trees (Fig. 3). Mutation in genetic
programming is considered as a secondary genetic operator and is applied much
less frequently [51]. It is performed by removing a subtree at a randomly selected
point and inserting at that point a new random subtree.

One important issue in genetic programming is related to the size of the trees.
Under the influence of the crossover operator, the depth of the trees can quickly
increase, leading to a fitness plateau. The presence of huge programs in the
population also has direct consequences vis-a-vis computer memory and evaluation
speed. Most implementations of genetic programming include mechanisms to



C.A. Peña-Reyes, M. Sipper / Artificial Intelligence in Medicine 19 (2000) 1–238

prevent trees from becoming too deep. However, these mechanisms also present
a disadvantage, in that they reduce the genetic diversity contained in larger trees.

Further information on advanced topics and applications of genetic program-
ming can be found in Ref. [6].

2.3. E6olution strategies

Evolution strategies were introduced by Ingo Rechenberg [81,82] and Hans
Paul Schweffel [86,87] in the 1960s as a method for solving parameter-optimiza-
tion problems. In its most general form the phenotype of an individual is a
vector x� containing the candidate values of the parameters being optimized. The
genotype of each individual is a pair of real-valued vectors 6� ={x� , s� }, where x� is
the above phenotypic vector (the genotype–phenotype distinction is thus some-
what degenerate with evolution strategies), and s� is a vector of standard devia-
tions (S.D.s) used to apply the mutation operator. The inclusion of the s� vector
in the genome allows the algorithm to self-adapt the mutation operator while
searching for the solution.

Somewhat different to the generic evolutionary algorithm (Fig. 1), selection is
performed after the genetic operators have been applied. The standard notations
in this domain, (m, l)−ES and (m+l)−ES, denote algorithms in which a
population of m parents generates l offspring. The next generation is created by
selecting the fittest m individuals. In the case of (m, l)−ES only the l offspring
are considered for selection, thus limiting the ‘life’ of an individual to one
generation, while in the (m+l)−ES the m parents are also considered for selec-
tion.

Mutation is the major genetic operator in evolution strategies. It also plays the
role of a reproduction operator given that the mutated individual is viewed as
an offspring for the selection operator to work on. In its most general form,
mutation modifies a genotype 6� ={x� , s� }, by first randomly altering s� , and then
modifying x� according to the new values provided by s� . This operation produces
a new individual 6� %={x� %, s� %}, where x� %=x� +N(0, s� %). N(0, s� %) denotes a vector
of independent random Gaussian values with mean 0 and S.D.s s� %.

The crossover (or recombination) operator generates an offspring from a num-
ber of parents (usually two). There are two types of crossover operators: discrete
and intermediate. In discrete recombination each component of 6� , i.e. each pair
of scalars (x� i, s� i), is copied from one of the parents at random. In intermediate
recombination, the offspring values are a linear combination of all the parent
vectors participating in the recombination process.

The earliest evolution strategies were (1+1)−ES [81,86], involving a single
parent–single offspring search. Mutation was the only genetic operator. and the
standard deviation vector s� was constant or modified by some deterministic
algorithm. Later, recombination was added as evolution strategies were extended
to encompass populations of individuals.

A good source for further information on evolution strategies is Ref. [88].
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2.4. E6olutionary programming

Fogel [31,32] proposed evolutionary programming as a means to develop artifi-
cial intelligence. He argued that intelligent behavior requires both the ability to
predict changes in an environment, and a translation of the predictions into actions
appropriate for reaching a goal. In its most general, the environment is described as
a sequence of symbols taken from a finite alphabet. With its knowledge of the
environment the evolving entity is supposed to produce an output symbol that is
related in some way to the next symbol appearing in the environment. The output
symbol should maximize a payoff function, which measures the accuracy of the
prediction. Finite state machines were selected to represent individuals in evolution-
ary programming as they provide a meaningful representation of behavior based on
interpretation of symbols.

A finite state machine is a machine possessing a finite number of different
internal states. When stimulated by an input symbol the machine undergoes a
transition (i.e. a change in the internal state) and produces an output symbol. The
behavior of the finite state machine is described completely by defining the (output
symbol, next state) pair for each (input symbol, current state) pair. Fig. 4 shows an
example of a three-state machine.

Evolutionary programming maintains a population of finite state machines, each
one representing a particular candidate behavior for solving the problem at hand.
The fitness of an individual is calculated by presenting sequentially to the finite
state machine the symbols in the environment and observing the predicted output.
The quality of the prediction is quantified according to the given payoff function.
Once the individual has been exposed to the whole sequence of symbols, its overall
performance (e.g. average payoff per symbol) is used as the fitness value.

Like with evolution strategies, evolutionary programming first generates off-
spring and then selects the next generation. There is no sexual reproduction
(crossover), but rather each parent machine is mutated to produce a single
offspring. There are five possible mutation operators: change of an output symbol,

Fig. 4. A finite state machine with states {Z, T, R}. The input symbols belong to the set {0, 1}, and the
output alphabet is the set {m, n, p, q}. The edges representing the state transitions are labeled a/b, where
a represents the input symbol triggering the transition, and b represents the output symbol. For example,
when the machine is in state R and the input is 0 it switches to state T and outputs q. A double circle
indicates the initial state.
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change of a state transition, addition of a state, deletion of a state, and change of
the initial state. The two latter operations are not allowed when the parent machine
has only one state. Mutation operators and the number of mutations per offspring
are chosen with respect to a probability distribution. The offspring are then
evaluated in the same way as their parents, and the next generation is selected from
the ensemble of parents and offspring. This process is iterated until a new symbol
is required in the environment. The best individual obtained up to this moment
provides the prediction, the new symbol is added to the environment, and the
algorithm is executed again. Note that as opposed to most evolutionary-computa-
tion applications where fitness is fixed from the outset, evolutionary programming
inherently incorporates a dynamic fitness, i.e. the environment changes in time.

Fogel’s book [29] is a good reference on evolutionary programming.

2.5. Classifier systems

Classifier systems, presented by Holland [45,46], are evolution-based learning
systems, rather than a ‘pure’ evolutionary algorithm. They can be thought of as
restricted versions of classical rule-based systems, with the addition of input and
output interfaces. A classifier system consists of three main components: (1) the rule
and message system, which performs the inference and defines the behavior of the
whole system, (2) the apportionment of credit system, which adapts the behavior by
credit assignment, and (3) the genetic algorithm, which adapts the system’s knowl-
edge by rule discovery.

The rule and message system includes four subcomponents: the message list, the
classifier list, the input interface, and the output interface. The input interface, also
known as the detector, translates information from the system’s environment into
one or more finite-length binary messages, which are posted to the finite-length
message list. These messages may then activate one or more matching classifiers
from the classifier list. A classifier is a rule of the form if condition then message,
where condition is a finite-length string, and the message, posted to the message list,
may then activate other classifiers or trigger a system’s action through the output
interface, also called the effector (the alphabet of classifiers includes the symbol c
that plays the role of a wild-card character).

The apportionment-of-credit algorithm adapts the behavior of the classifier
system by modifying the way existing classifiers are used. Unlike traditional
rule-based systems, classifier systems use parallel rule activation. This characteristic
allows the system to accelerate the inference process and to coordinate several
actions simultaneously. However, with such a competitive approach the system
must determine the importance (strength) of rules in order to combine them to
make an overall decision. Although there are several ways to accomplish this, the
bucket-brigade algorithm continues to be the most popular [35]. It is a parallel,
local, credit-assignment-based reinforcement learning algorithm, which may be
viewed as an ‘information market’, where the right to trade information is bought
and sold by classifiers. Each matched classifier makes a bid proportional to its
strength. Rules that have accumulated a large ‘capital’ (i.e. strength) are preferred
over other rules.
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The genetic algorithm adapts the classifier system by introducing new classifiers
(rules). There exist two approaches for the application of evolutionary techniques in
the design of rule-based systems in general: the Michigan approach and the
Pittsburgh approach; these two approaches are also applied to classifier systems. In
the Michigan approach each individual represents a single rule, and the classifier list
is represented by the entire population. The strengths calculated by the bucket-
brigade algorithm are used as a fitness function to evaluate the quality of each
classifier. In the Pittsburgh approach the genetic algorithm maintains a population
of candidate classifier lists, with each individual representing an entire list.

A good introduction to classifier systems is given by Goldberg [35].

2.6. Hybrid approaches: cooperating to succeed

There exist several so-called ‘intelligent’ techniques applicable to medical prob-
lems, evolutionary computation being one of them (and our focus herein). All the
techniques have different capabilities and different limitations which determine their
efficacy for a given problem. Hybrid approaches try to combine the properties of
two or more intelligent techniques so as to enhance their capabilities and overcome
their limitations. Herein, we briefly present some general considerations regarding
the integration process that leads to hybrid systems, and then present two specific
hybrid approaches: evolutionary-fuzzy and evolutionary-neural.

2.6.1. Integration of intelligent techniques
The integration of distinct techniques can be classified according to the amount

of interactivity among the component approaches. We can distinguish between four
levels of interactivity: uncoupled, loose coupling, tight coupling, and full integration
[63,64].

In uncoupled systems, all the techniques are applied to the same problem but
they do not interact with each other. In the simplest approach, the problem is
decomposed into subproblems, and each technique solves the subproblem for which
it is best suited. Another approach, called stand-alone, consists in the simultaneous
application of the selected techniques to solve the same problem. A heuristic
algorithm compares the independent solutions to then take the final decision.
Systems which are loosely coupled also decompose the problem, but in this case the
different techniques solving the subproblems communicate via data files. The main
difference between loosely coupled systems and tightly coupled ones is that these
latter communicate via memory resident data structures rather than via external
data files, thus generally increasing overall performance. Finally, fully integrated
hybrid systems share data structures and knowledge representation among the
different search components. The communication between these components is
implicit in the structures they share, and in the way these structures are designed.
Below we briefly touch upon two types of hybrid systems, emphasizing full-integra-
tion aspects.
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2.6.2. E6olutionary-fuzzy hybrid systems
Fuzzy logic is a computational paradigm that provides a mathematical tool

for dealing with the uncertainty and the imprecision typical of human reas-
oning [97]. A prime characteristic of fuzzy logic is its capability of expres-
sing knowledge in a linguistic way, allowing a system to be described by
simple, ‘human-friendly’ rules. This characteristic, also known as inter-
pretability, renders fuzzy logic-based systems attractive from the medical point of
view.

A fuzzy inference system is a rule-based system that uses fuzzy logic, rather
than Boolean logic, to reason about data [97]. Its basic structure comprises four
main components: (1) a fuzzifier, which translates crisp (real-valued) inputs into
fuzzy values, (2) an inference engine that applies a fuzzy reasoning mechanism to
obtain a fuzzy output, (3) a defuzzifier, which translates this latter into a crisp
value, and (4) a knowledge base, which contains both an ensemble of fuzzy
rules, known as the rule base, and a database, which defines the membership
functions used in fuzzy logic [75].

The design of a fuzzy inference system, i.e. the definition of its parameters
so as to attain a desired behavior, is a hard task because of the quantity and
the diversity of these parameters. This task can be considered as an optimi-
zation process where part or all of the parameters of a fuzzy system
constitute the search space. This is where evolutionary algorithms step in, en-
abling the automatic design of fuzzy systems, based on a database of training
cases.

Depending on several criteria, evolutionary computation can be applied in
different stages of the fuzzy-parameter search. In the simplest approach, an
evolutionary algorithm is used to find the adequate membership function values
contained in the database. The design of the rule base, and of the entire knowl-
edge base, can be viewed as rule-based learning processes with different levels of
complexity. They can thus be assimilated within other methods of machine learn-
ing, taking advantage of experience gained in this latter domain. The aforemen-
tioned Michigan and Pittsburgh approaches (see Section 2.5) are widely applied
in evolutionary-fuzzy modeling. A more recent method proposed specifically for
fuzzy systems is the iterative rule learning approach [42].

2.6.3. E6olutionary-neural hybrid systems
Evolution and learning [3] are two forms of adaptation, the former adapting

populations by globally optimizing their collective performance, while the
latter adapts individuals by locally optimizing their individual performance. Evo-
lutionary artificial neural networks refers to a special class of artificial neural
networks where evolution is combined with learning to attain adaptation. In the
simplest approach, evolutionary algorithms search for network connection
weights, thus substituting the learning rule. More sophisticated approaches use
evolutionary techniques to perform various other tasks, such as topology defini-
tion, learning-rule adaptation, input feature selection, and connection-weights
initialization [99].
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3. Applying evolutionary computation to solve medical problems

Most (if not all) medical decisions can be formulated as a search in some
appropriate space. For example. a pathologist analyzing biopsies to decide whether
they are malignant or not, is searching in the space of all possible cell features for
a set of features permitting him to provide a clear diagnosis [75]. A radiologist
planning a sequence of radiation doses is searching for the best treatment in the
space of all possible treatments [103].

Medical search spaces are usually very large and complex. Medical decisions are
based on clinical tests which provide huge amounts of data. Based on these data
one must ultimately make a single decision (e.g. benign or malignant). Given the
tight interdependency among the domain variables, and the inherent non-linearity
of most real-world problems, neighboring points in the search space may have
widely differing qualities, turning the search into a complex task. Indeed, due to
this complexity, several medical problems are used as benchmarks to test and
compare machine learning techniques [65,67].

Evolutionary computation provides powerful techniques for searching complex
spaces. As stated in Section 2 evolutionary techniques exploit mechanisms of
natural evolution to search efficiently in a given space. Their intrinsic parallelism
diminishes the risk of the search being trapped in a local optimum.

The construction of accurate models of medical decision from extant knowledge
is a hard task. On the one hand, the models involve too many non-linear and
uncertain parameters to be treated analytically. On the other hand, medical experts
are usually not available, or simply do not collaborate in translating their experi-
ence into a usable decision tool.

Nevertheless, there is a large number of accessible medical databases. Currently,
medical results are electronically stored and accumulated in databases so as to serve
both as a record of patients’ history, and as a source of medical knowledge. The
amount of available data is increasing continuously and, therefore, its exploitation
requires the use of more sophisticated computational processing tools.

Evolutionary computation is applied in medicine to perform several types of
tasks. Whenever a decision is required in medicine, it is usually possible to find a
niche for evolutionary techniques. The tasks performed by evolutionary algorithms
in the medical domain can be divided into three groups: (1) data mining, mainly as
applied to diagnosis and prognosis, (2) medical imaging and signal processing, and
(3) planning and scheduling.

3.1. Data mining

Data mining, also known as knowledge discovery, is the process of finding
patterns, trends, and regularities by sifting through large amounts of data [26].
Data mining involves the analysis of data stored in databases to discover associa-
tions or patterns, to segment (or cluster) records based on similarity of attributes,
and to create predictive (or classification) models.
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There are two major approaches to data mining: supervised and unsupervised.
In the supervised approach, specific examples of a target concept are given,
and the goal is to learn how to recognize members of the class using the
description attributes. In the unsupervised approach, a set of examples is pro-
vided without any prior classification, and the goal is to discover underlying
regularities and patterns, most often by identifying clusters or subsets of similar
examples.

Clinical databases have accumulated large amounts of data on patients and
their medical conditions. The clinical history of a patient generates data that
goes beyond the disease being treated. This information, stored along with that
of other patients, constitutes a good place to look for new relationships and
patterns, or to validate proposed hypotheses.

The range of applications of data mining in medicine is very wide, with the
two most popular applications being diagnosis and prognosis. Diagnosis is the
process of selectively gathering information concerning a patient, and interpret-
ing it according to previous knowledge, as evidence for or against the presence
or absence of disorders [58]. In a prognostic process, a patient’s information
is also gathered and interpreted, but the objective is to predict the future devel-
opment of the patient’s condition. Due to the predictive nature of this
process, prognostic systems are frequently used as tools to plan medical treat-
ments [59].

The role played by data mining in the context of diagnosis and prognosis is
the discovery of the knowledge necessary to interpret the gathered information.
In some cases this knowledge is expressed as probabilistic relationships between
clinical features and the proposed diagnosis or prognosis. In other cases a rule-
based representation is chosen so as to provide the physician with an explana-
tion of the decision. Finally, in yet other cases, the system is designed as a
black-box decision maker that is totally unconcerned with the interpretation of
its decisions.

Evolutionary computation is usually applied in medical data mining as a
parameter finder. Evolutionary techniques search for the parameter values of the
knowledge representation set up by the designer so that the mined data are
optimally interpreted. For example, evolutionary algorithms can search for the
weights of a neural network, the membership function values of a fuzzy system,
or the coefficients of a linear regressor.

3.2. Medical imaging and signal processing

Much of the medical data are expressed as images or other types of temporal
signals. Many exams, such as magnetic resonance or mammography, provide as
a result a group of images. Sometimes the number of images is high and the
important information is distributed among all of them. Other types of exams,
like electroencephalography (EEG), provide results in the form of time-variant
signals. In these tests the information is hidden within the temporal features. The
fields of signal and image processing have developed tools to deal with such
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data. Techniques such as filtering, compression, segmentation, and pattern recog-
nition allow for the extraction of the desired features from the signals.

Signal processing in medicine is subject to several important constraints. First,
the number of signals to be processed is high, and often tightly interdependent.
Second, signals are unique, in the sense that the circumstances under which they
were obtained are normally not repeatable. Third, given the characteristics of
their sources, medical signals are often very noisy. Finally, in some cases infor-
mation about the signals is required in real time in order to take crucial deci-
sions.

Evolutionary-computation techniques are used in different ways in medical
imaging and signal processing. In some cases they are applied to improve the
performance of signal-processing algorithms (e.g. filters or compressors) by find-
ing their optimal parameters. Other works use evolutionary algorithms directly
to extract useful information from the welter of data.

3.3. Planning and scheduling

Evolutionary computation is frequently applied in problems of plan-
ning and scheduling. These tasks involve the assignment of resources subject to
several constraints. In a planning problem several resources (or operations)
are needed in order to accomplish a task, and the planning process tries
to define the sequence in which they are applied. In a scheduling problem
one or several resources have to be distributed among several tasks, and the
problem is to find a distribution (spatial and temporal) for this assignment
so that all tasks are executed. Evolutionary techniques are well suited
to solve these kinds of problems thanks to their ability to search complex
spaces.

In medicine planning and scheduling are widely used in clinical and hospital
administration applications. Clinical applications involve mainly planning
problems; e.g. in 3D radiotherapy it is necessary to plan carefully the doses
applied for several different radioactive beams, respecting clinical and geometri-
cal constraints [25]. Hospital administrators deal with problems of personnel,
patient, and resource management and control. An example is the problem of
scheduling a patient for undergoing different medical procedures and seeing dif-
ferent physicians, optimizing both patient waiting time and apparatus utilization
[77].

4. Classified bibliography

This section contains a bibliography of articles dealing with evolutionary com-
putation in medicine, classified both according to the medical task and according
to the evolutionary technique. We have chosen to concentrate mainly on articles
in archival journals so as to limit the explosive number of references. Table 1
summarizes these two classifications.
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Table 1
Classified bibliography: summary

Medical taskEvolutionary technique

Data mining Medical imaging and signal processing Planning and scheduling

PrognosisDiagnosis

Genetic algorithms
[5,15,18,21,23,27,37,41,43,52,69,72,84,91, [98,101–103][1,16,19,24,48,49,54,55,Unidimensional, binary [7–9,47,54,57,75,79,83]
93,94,96,105]60,61,70,89,90]
[20,22,39]Multidimensional [17,77,104]

[38]Real-valued [2,62,85] [25,40,56]
Rule-encoding [10,11] [11]

[53]Indexed

[10,36,71]Genetic programming
Evolution strategies [7–9] [76]
Evolutionary programming [30,71,100]

[12]Classifier systems [12,74,80]

Hybrid systems
[94][55][7–9,47,75]Evolutionary-fuzzy

[16,19,24,48,49,60,70,90] [18,23,41]Evolutionary-neural [7–9,30,74,100]
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4.1. According to the medical task

4.1.1. Data mining

4.1.1.1. Diagnosis. Diagnosis is the process of selectively gathering information
concerning a patient, and interpreting it according to previous knowledge, as
evidence for or against the presence or absence of disorders (Section 3.1) and refs
[7–12,30,36,38,47,54,57,71,74,75,79,80,83,100]. The papers in this category apply
evolutionary algorithms to solve numerous diagnostic problems, including: the
patient’s general condition evaluation, location of primary tumor, detection of
hyaline membrane disease in preterm newborn infants, detection of breast cancer
cells in peripheral blood flow, lymphography classification, brain tumor classifica-
tion, risk evaluation of heart and coronary artery diseases, profiling of risk factors
in diabetes and female urinary incontinence, and the detection of different diseases
from clinical tests (infarcts from radiography, arrythmias from electrocardiography,
neuromuscular disorders from electromyography, sleep profiling from electroen-
cephalography, and breast cancer from mammography).

4.1.1.2. Prognosis. Prognosis is the process of selectively gathering information
concerning a patient, and interpreting it according to previous knowledge, in order
to predict the future development of the patient’s condition (Section 3.1) and refs
[1,12,16,19,24,48,49,54,55,60,61,70,89,90]. The papers in this category involve prog-
nostic applications of evolutionary computation, including: breast cancer recur-
rency, donor compatibility for transplants in highly sensitized patients, outcome of
duodenal ulcer, hypoxic resistance on jet pilots, outcome of intensive-care patients,
after-surgery response for patients with lung cancer, prediction of depression after
mania, prevision of tractolimus blood level in liver transplantation patients, and
patient’s survival estimation in different types of cancer (malignant skin melanoma,
lung cancer, colorectal cancer, and gestational trophoblastic tumours).

4.1.2. Medical imaging and signal processing
The fields of medical imaging and signal processing have developed tools to deal

with huge amounts of data expressed as images or other types of temporal signals
[2,5,15,18,20–23,27,37,39,41,43,52,53,62,69,72,84,85,91,93,94,96,105]. All but one
of the papers in this category deal with problems related to clinical tests, including:
thorax radiography, retinal and cardiac angiography, computarized tomography,
magnetoencephalography, ultrasound imaging, electroencephalography, electrocar-
diography, radiographic cephalography, laser profilometry, and many applications
of both mammography and magnetic resonance. The ‘odd paper out’ presents an
application of surgery assistance [5].

4.1.3. Planning and scheduling
Planning and scheduling involve the assignment of resources to accomplish one

or more tasks subject to several constraints (Section 3.3) and refs
[11,17,25,40,56,76,77,98,101–104]. The papers in this category use evolutionary
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techniques to solve problems such as: allocation of hospital resources, electrical
carotid sinus nerve stimulation, radiologist allocation, three-dimensional radiation
therapy treatment planning, dosimetric preplanning and treatment planning of
permanent prostate implants, patient scheduling in highly constrained situations,
and stereotactic radiosurgery planning.

4.2. According to the e6olutionary technique

4.2.1. Genetic algorithms
As mentioned in Section 2 genetic algorithms are the best-known class of

evolutionary algorithms and their use is so extensive that often the terms genetic
algorithms and evolutionary computation are used interchangeably. The main
difference between genetic algorithms and other evolutionary algorithms is the
representation (genome), which we use as a criterion to further subdivide this class:

4.2.1.1. Unidimensional, binary genome. This is the most popular representation in
genetic algorithms [1,5,7–9,15,16,18,19,21,23–27,37,41,43,47–49,52,54,55,57,60,61,-
69,70,72,75,79,83,84,89–91,93,94,96,98,101–103,105] because it is simple to use and
applicable to almost any problem [92].

4.2.1.2. Multidimensional genome. In many cases the nature of the problem (e.g.
bidimensional medical imaging problems) suggests the use of matrices or multidi-
mensional arrays to represent the candidate solutions [17,20,22,39,77,104].

4.2.1.3. Real-6alued genome. The binary representation has some drawbacks when
applied to high-precision numerical problems [66]. In particular, for parameter-op-
timization problems with variables from continuous domains, a real-valued repre-
sentation is sometimes more efficient (and more natural) than a binary one
[2,25,38,40,56,62,85].

4.2.1.4. Rule-encoding genome. Rule-based systems are usually encoded in genetic
algorithms using a binary representation. However, some works, such as the two
papers of this subcategory, represent directly in the genome the rules of the
knowledge base [10,11].

4.2.1.5. Indexed representation. In this representation the genome is encoded using
a finite-length alphabet (non-binary) [53]. Each symbol of the alphabet indexes an
element, and the presence of a symbol in the genotype indicates the presence of the
element in the phenotype. In the referenced paper the indexed elements are ‘leafs’
of a known tree representation (note that this is still a genetic-algorithm string
representation and not a genetic-programming tree).

4.2.2. Genetic programming
In genetic programming solutions are encoded as computer programs rather than

as fixed-length character strings (Section 2.2) [10,36,71].
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4.2.3. E6olution strategies
Evolution strategies are well suited for parameter-optimization problems

[7–9,76]. They use mainly the mutation operator. A major characteristic of
evolution strategies is that mutation values are evolved along with the parameters
being optimized (Section 2.3).

4.2.4. E6olutionary programming
In evolutionary programming, individuals are represented by finite state

machines, which provide a meaningful representation of behavior based on
interpretation of environmental symbols (Section 2.4) [30,71,100].

4.2.5. Classifier systems
Classifier systems are evolution-based learning systems [12,74,80]. They can be

viewed as restricted versions of classical rule-based systems that add interaction
with the exterior thanks to input and output interfaces (Section 2.5).

4.2.6. Hybrid approaches

4.2.6.1. E6olutionary-fuzzy systems. In evolutionary-fuzzy systems the capability of
expressing knowledge in a linguistic, ‘human-friendly’ way offered by fuzzy logic, is
combined with the power of evolutionary algorithms to search and optimize
[7–9,47,55,75,94]. Thus one obtains systems with both high performance as well as
high interpretability (Section 2.6).

4.2.6.2. E6olutionary-neural systems. With evolutionary-neural systems evolution
and learning strategies work in concert to attain adaptation (Section 2.6) [7–
9,16,18,19,23,24,30,41,48,49,60,70,74,90,100].
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