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Abstract

A major impediment preventing ubiquitous computing with cellular au-
tomata (CA) stems from the difficulty of utilizing their complex behav-
ior to perform useful computations. In this paper non-uniform CAs are
studied, presenting the cellular programming algorithm for co-evolving
such CAs to perform computations. The algorithm’s efficacy is demon-
strated on two non-trivial computational tasks, namely synchronization
and random number generation; furthermore, we present initial results
demonstrating the robustness of our evolved systems. We believe that
cellular programming holds potential for attaining ‘evolving ware’, evol-
ware, which can be implemented in software, hardware, or other possible
forms, such as bioware.

1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are dis-
crete, exhibiting three notable features: massive parallelism, locality of cellular
interactions, and simplicity of basic components (cells). A major impediment
preventing ubiquitous computing with CAs stems from the difficulty of utiliz-
ing their complex behavior to perform useful computations. Designing CAs
to have a specific behavior or perform a particular task is highly complicated,
thus severely limiting their applications; automating the design (programming)
process would greatly enhance the viability of CAs [Mitchell et al., 1994]. A
prime motivation for studying CAs stems from the observation that they are
naturally suited for hardware implementation, with the potential of exhibiting
extremely fast and reliable computation that is robust to noisy input data and
component failure [Gacs, 1985].

Recent studies have shown that CAs can be evolved, using genetic-algorithm
based methods, to perform non-trivial computational tasks. The model inves-
tigated in this paper is an extension of the CA model, termed non-uniform

cellular automata [Sipper, 1994, Vichniac et al., 1986]. Such automata func-
tion in the same way as uniform ones, the only difference being in the cellular
rules that need not be identical for all cells. Our main focus is on the evolu-

tion of non-uniform CAs to perform computational tasks, employing a local,
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co-evolutionary algorithm, an approach referred to as cellular programming.
In this paper we present our approach and demonstrate its application to two
non-trivial computational problems: synchronization and random number gen-
eration. We believe that cellular programming holds potential for attaining
‘evolving ware’, evolware, which can be implemented in software, hardware,
or other possible forms. Of particular interest is the issue of evolving hard-
ware, which has recently made its appearance on the artificial evolution scene
[Sanchez and Tomassini, 1996].

The application of genetic algorithms to the evolution of uniform cellular
automata was initially studied by [Packard, 1988] and recently undertaken by
the EVCA (evolving CA) group [Mitchell et al., 1994, Das et al., 1995], demon-
strating that CAs can be evolved to perform computational tasks. They carried
out experiments involving uniform, one-dimensional CAs with k = 2 and r = 3,
where k denotes the number of possible states per cell and r denotes the radius
of a cell, i.e., the number of neighbors on either side (thus each cell has 2r + 1
neighbors, including itself). Spatially periodic boundary conditions are used,
resulting in a circular grid. We had first studied non-uniform CAs in [Sipper,
1994, Sipper, 1995b] and demonstrated in [Sipper, 1995a] that universal com-
putation can be attained in such CAs. The universal systems we presented are
simpler than previous ones and are quasi-uniform, meaning that the number of
distinct rules is extremely small with respect to rule space size; furthermore,
the rules are distributed such that a subset of dominant rules occupies most
of the grid. The co-evolution of non-uniform, one-dimensional CAs to perform
computations was undertaken in [Sipper, 1996], where the cellular program-
ming algorithm was presented; we showed that high performance, non-uniform
CAs can be co-evolved not only with radius r = 3, as previously studied, but
also for smaller radiuses, most notably for minimal r = 1. It was also found
that evolved systems exhibiting high performance are quasi-uniform.

The cellular programming algorithm is delineated in the next section. In
Section 3, we demonstrate its application to two computational tasks, namely
synchronization and random number generation. Our conclusions are presented
in Section 4.

2 The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a different
rule. A cell’s rule table is encoded as a bit string, known as the “genome”, con-
taining the next-state (output) bits for all possible neighborhood configurations,1

listed in lexicographic order; e.g., for CAs with r = 1, the genome consists of 8
bits, where the bit at position 0 is the state to which neighborhood configuration
000 is mapped to and so on until bit 7 corresponding to neighborhood configu-
ration 111. Rather than employ a population of evolving, uniform CAs, as with
genetic algorithm approaches, our algorithm involves a single, non-uniform CA
of size N . Cell rules are initialized at random, uniformly distributed among

1The term ‘configuration’ refers to an assignment of states to grid cells.



different fractions of output 1 bits. Initial configurations are then generated at
random, in accordance with the task at hand. For each initial configuration the
CA is run for M time steps. Each cell’s fitness is accumulated over C = 300
initial configurations, where a single run’s score is 1 if the cell is in the correct
state after M iterations, and 0 otherwise. After every C configurations evo-
lution of rules occurs by applying crossover and mutation. This evolutionary
process is performed in a completely local manner, where genetic operators are
applied only between directly connected cells. It is driven by nfi(c), the num-
ber of fitter neighbors of cell i after c configurations. The pseudo-code of our
algorithm is delineated in Figure 1.

for each cell i in CA do in parallel

initialize rule table of cell i
fi = 0 { fitness value }

end parallel for

c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then

fi = fi + 1
end if

end parallel for

c = c+ 1
if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel

compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
else if nfi(c) = 2 then replace rule i with the crossover of the two fitter

neighboring rules, followed by mutation
else if nfi(c) > 2 then replace rule i with the crossover of two randomly

chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)

end if

fi = 0
end parallel for

end if

end while

Figure 1: Pseudo-code of the cellular programming algorithm.

The genetic operators of crossover and mutation are those used in genetic
algorithms [Mitchell, 1996]. Crossover between two rules is performed by select-
ing at random (with uniform probability) a single crossover point and creating
a new rule by combining the first rule’s bit string before the crossover point
with the second rule’s bit string from this point onward. Mutation is applied
to the bit string of a rule with probability 0.001 per bit.

There are two main differences between our algorithm and the standard
genetic algorithm: (a) A standard genetic algorithm involves a population of
evolving, uniform CAs; all CAs are ranked according to fitness, with crossover



occurring between any two individuals in the population. Thus, while the CA
runs in accordance with a local rule, evolution proceeds in a global manner. In
contrast, our algorithm proceeds locally in the sense that each cell has access
only to its locale, not only during the run but also during the evolutionary
phase, and no global fitness ranking is performed. (b) The standard genetic
algorithm involves a population of independent problem solutions; each CA is
run independently, after which genetic operators are applied to produce a new
population. In contrast, our CA co-evolves since each cell’s fitness depends
upon its evolving neighbors.

This latter point comprises a prime difference between our algorithm and
parallel genetic algorithms, which have attracted attention over the past few
years. These aim to exploit the inherent parallelism of evolutionary algorithms,
thereby decreasing computation time and enhancing performance [Tomassini,
1995]. A number of models have been suggested, among them coarse-grained,
island models [Starkweather et al., 1991, Cohoon et al., 1987, Tanese, 1987],
and fine-grained, grid models [Tomassini, 1993, Manderick and Spiessens, 1989].
The latter resemble our system in that they are massively parallel and local;
however, the co-evolutionary aspect is missing. As we wish to attain a system
displaying global computation, the individual cells do not evolve independently
as with genetic algorithms (be they parallel or serial), i.e., in a “loosely-coupled”
manner, but rather co-evolve, thereby comprising a “tightly-coupled” system.

3 Results

In this section we demonstrate the application of our algorithm to two non-
trivial computational problems, namely synchronization and random number
generation. The cellular space used is minimal, with k = 2 and r = 1. Perfor-
mance values reported hereafter represent the average fitness of all grid cells
after C configurations, normalized to the range [0, 1].

3.1 The synchronization task

The one-dimensional synchronization task was introduced by [Das et al., 1995]

and studied by us in [Sipper, 1997] using non-uniform CAs. In this task the
CA, given any initial configuration, must reach a final configuration, within M
time steps, that oscillates between all 0s and all 1s on successive time steps.
It belongs to a class of problems studied in other domains, such as distributed
computing, known as firing squad problems [Lamport and Lynch, 1990].

The task is non-trivial since synchronous oscillation is a global property of a
configuration, whereas a small radius CA employs only local interactions. Thus,
while local regions of synchrony can be directly attained, it is more difficult to
design CAs in which spatially distant regions are in phase. Since out-of-phase
regions can be distributed throughout the lattice, propagation of information
must occur over large space-time distances (i.e., O(N)) to remove these phase
defects and produce a globally synchronous configuration [Das et al., 1995].



In [Sipper, 1997] we studied non-uniform, one-dimensional, minimal radius
r = 1 CAs of size N = 149. The size of uniform, r = 1 CA rule space is small,
consisting of only 28 = 256 rules. This enabled us to check each and every one
of these rules on the synchronization task, a feat not possible for larger values
of r. Our results show that the maximal performance for uniform, r = 1 CAs
is 0.84. For the cellular programming algorithm we used randomly generated
initial configurations, with the CA being run for M = 150 time steps. We found
that quasi-uniform CAs had co-evolved that exhibit near-perfect performance,
thereby surpassing any possible uniform CA. Figure 2a depicts the operation
of a co-evolved CA, along with a rules map, depicting the distribution of rules
by assigning a unique color to each distinct rule. A detailed investigation of
the one-dimensional synchronization task can be found in [Sipper, 1997].

We have recently begun an investigation of the robustness of the solutions
discovered by evolution. Toward this end we consider the effects of faults on the
CA’s behavior with the intention of studying the recovery capabilities of the
system. We focus on one type of error where a cell updates its state in a non-
deterministic manner: at each time step, the cell’s next state is that specified
in the rule table, with probability 1 − pf , or the complementary one with
probability pf ; pf is denoted the fault probability, representing the probability
that a cell will incorrectly update its state. Figures 2b and 2c demonstrate the
effects of different pf values on the CA’s behavior. We note that for small pf
values quick recovery is possible, while for larger values of pf behavior becomes
more erratic. We are currently conducting a quantitative study of the fault-
tolerance issue.

3.2 Random number generation

Random numbers are needed in a variety of applications, yet finding good ran-
dom number generators, or randomizers, is a difficult task [Park and Miller,
1988]. To generate a random sequence on a digital computer, one starts with
a fixed length seed, then iteratively applies some transformation to it, pro-
gressively extracting as long as possible a random sequence. Such numbers
are usually referred to as pseudo-random, as distinguished from true random
numbers resulting from some natural physical process. In order to demonstrate
the efficiency of a proposed generator, it is usually subjected to a battery of
empirical and theoretical tests, among which the most well known are those
described in [Knuth, 1981].

In the last decade CAs have been used to generate random numbers. The
first such work is that of [Wolfram, 1986], in which rule 30 is extensively studied
for its ability to produce random, temporal bit sequences.2 Such sequences are
obtained by sampling the values that a particular cell attains as a function of
time. In [Wolfram, 1986] the uniform, two-state, r = 1, rule 30 CA is initialized
with a configuration consisting of a single cell in state 1, with all other cells

2Rule numbers are given in accordance with Wolfram’s convention [Wolfram, 1983], rep-
resenting the decimal equivalent of the binary number encoding the rule table.



(a) (b) (c)

Figure 2: The one-dimensional synchronization task: Operation of a co-evolved,
non-uniform, r = 1 CA. Grid size is N = 149. White squares represent cells in
state 0, black squares represent cells in state 1. The pattern of configurations
is shown through time (which increases down the page). Initial configurations
were generated at random. Top figures depict space-time diagrams, bottom
figures depict rule maps. (a) pf = 0. (b) pf = 0.0001. (c) pf = 0.001.

being in state 0; the initially non-zero cell is the site at which the random tem-
poral sequence is generated. Wolfram studied this particular rule extensively,
demonstrating its suitability as a high-performance randomizer which can be
efficiently implemented in parallel; indeed, this CA is one of the standard gen-
erators of the massively parallel Connection Machine CM2 [Connection, 1991].
A non-uniform CA randomizer was presented by [Hortensius et al., 1989a,
Hortensius et al., 1989b] (based on the work of [Pries et al., 1986]), consist-
ing of two rules, 90 and 150, arranged in a specific order in the grid. The
performance of this CA in terms of random number generation was found to
be at least as good as that of rule 30, with the added benefit of less costly
hardware implementation. It is interesting in that it combines two rules, both
of which are simple linear rules that do not comprise good randomizers, to form
an efficient, high-performance generator. An example application of such CA
randomizers has recently been demonstrated by [Chowdhury et al., 1995] who
designed a low-cost, high-capacity associative memory.

An evolutionary approach for obtaining random number generators was
taken by [Koza, 1992], who applied genetic programming to the evolution of a
symbolic LISP expression that acts as a rule for a uniform CA (i.e., the expres-
sion is inserted into each CA cell, thereby comprising the function according to
which the cell’s next state is computed). He demonstrated evolved expressions
that are equivalent to Wolfram’s rule 30. The fitness measure used by Koza is
the entropy Eh: let k be the number of possible values per sequence position



(in our case CA states) and h a subsequence length. Eh (measured in bits) for
the set of kh probabilities of the kh possible subsequences of length h is given
by:

Eh = −

kh∑

j=1

phj
log

2
phj

where h1, h2, . . . , hkh are all the possible subsequences of length h (by con-
vention, log

2
0 = 0 when computing entropy). The entropy attains its maximal

value when the probabilities of all kh possible subsequences of length h are
equal to 1/kh; in our case k = 2 and the maximal entropy is Eh = h. Koza
evolved LISP expressions which act as rules for uniform, one-dimensional CAs.
The CAs were run for 4096 time steps and the entropy of the resulting tem-
poral sequence of a designated cell (usually the central one) was taken as the
fitness of the particular rule (i.e., LISP expression). In his experiments Koza
used a subsequence length of h = 4, obtaining rules with an entropy of 3.996.
The best rule of each run was re-tested over 65536 time steps, some of which
exhibited the maximal entropy value of 4.0.

For the cellular programming algorithm the cell’s fitness score for a single
configuration is defined as the entropy Eh of the temporal sequence, after the
CA has been run for M time steps; fi is then updated as follows (refer to
Figure 1):

for each cell i do in parallel

fi = fi+ entropy Eh of the temporal sequence of cell i
end parallel for

Rather than restrict ourselves to one designated cell, we consider all grid cells,
thus obtaining N random sequences in parallel, rather than a single one. Initial
configurations for our evolving, non-uniform CA are selected at random,3 after
which the CA is run for M = 4096 time steps. In our simulations (using grids
of sizes N = 50 and N = 150), we observed that the average cellular entropy
taken over all grid cells is initially low (usually in the range [0.2, 0.5]), ultimately
evolving to a maximum of 3.997, when using a subsequence size of h = 4 (i.e.,
entropy is computed by considering the occurrence probabilities of 16 possible
subsequences, using a “sliding window” of length 4).

We performed several such experiments using h = 4 and h = 7; the evolved,
non-uniform CAs attained average fitness values (entropy) of 3.997 and 6.978,
respectively. We then re-tested our best CAs over M = 65536 times steps (as
in [Koza, 1992]), obtaining entropy values of 3.9998 and 6.999, respectively.
Interestingly, when we performed this test with h = 7 for CAs which were
evolved using h = 4, high entropy was displayed as for CAs which were origi-
nally evolved with h = 7. The entropy results are comparable to those of [Koza,
1992] as well as to the rule 30 CA of [Wolfram, 1986] and the non-uniform, rules
{90, 150} CA of [Hortensius et al., 1989a, Hortensius et al., 1989b]. Note that
while our fitness measure is local, the evolved entropy results reported above

3A standard, 48-bit, linear congruential algorithm proved sufficient for the generation of
initial configurations.



represent the average of all grid cells; thus, we obtain N random sequences in
parallel, rather than a single one. Figure 3 demonstrates the operation of three
CAs discussed above: rule 30, rules {90, 150}, and a co-evolved CA. A more
detailed investigation has been carried out in [Sipper and Tomassini, 1996b,
Sipper and Tomassini, 1996a], using tests described in [Knuth, 1981], suggest-
ing that good randomizers can be evolved; these exhibit behavior at least as
good as that of previously described CA generators, with notable advantages
arising from the existence of a “tunable” algorithm for the generation of ran-
domizers.

(a) (b) (c)

Figure 3: One-dimensional random number generators: Operation of three
CAs. Grid size is N = 50, radius is r = 1. Top figures depict space-time
diagrams, bottom figures depict rule maps. (a) Rule 30 CA. (b) Rules {90, 150}
CA. (c) A co-evolved, non-uniform CA, consisting of three rules: rule 165 (22
cells), rule 90 (22 cells), rule 150 (6 cells).

4 Conclusions

A major impediment preventing ubiquitous computing with CAs stems from
the difficulty of utilizing their complex behavior to perform useful computa-
tions. We presented the cellular programming algorithm for co-evolving com-
putation in non-uniform CAs, demonstrating that high performance systems
can be evolved for non-trivial computational tasks. Several possible avenues
of research suggest themselves; one of these concerns a detailed investigation



into the robustness of our systems, as described in Section 3.1. Another study
which we have undertaken involves a modified model, in which the concomitant
evolution of cellular rules and cellular connections takes place. We found that
performance can be markedly increased for global computational tasks by such
co-evolving architectures [Sipper and Ruppin, 1997, Sipper and Ruppin, 1996].

Evolving, non-uniform CAs hold potential for studying phenomena of inter-
est in areas such as complex systems, artificial life and parallel computation.
This work has shed light on the possibility of computing with such CAs, and
demonstrated the feasibility of their programming by means of co-evolution.
We believe that cellular programming holds potential for attaining ‘evolving
ware’, evolware, which can be implemented in software, hardware, or other
possible forms, such as bioware.
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