
Evolving Efficient List Search Algorithms

Kfir Wolfson? and Moshe Sipper

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Abstract. We peruse the idea of algorithmic design through Darwinian
evolution, focusing on the problem of evolving list search algorithms.
Specifically, we employ genetic programming (GP) to evolve iterative
algorithms for searching for a given key in an array of integers. Our
judicious design of an evolutionary language renders the evolution of
linear-time search algorithms easy. We then turn to the far more diffi-
cult problem of logarithmic-time search, and show that our evolutionary
system successfully handles this case. Subsequently, because our setup
might be perceived as being geared towards the emergence of binary
search, we generalize our genomic representation, allowing evolution to
assemble its own useful functions via the mechanism of automatically
defined functions (ADFs). We show that our approach routinely and
repeatedly evolves general and correct efficient algorithms.

1 Introduction

One of the most basic tasks a computer scientist faces is that of designing an
algorithm to solve a given problem. In his book Algorithmics, Harel [1] de-
fines the subject matter as “the area of human study, knowledge, and expertise
that concerns algorithms.” Indeed, the subtitle of Harel’s book—“The Spirit of
Computing”—evidences the importance of algorithm design in computer science.

While simple problems readily yield to algorithmic solutions, many, if not
most, problems of interest are hard, and finding an algorithm to solve them is
an arduous task. Compounding this task is our desire not only to find a correct
algorithm but also an efficient one, with efficiency being measured in terms of
resources to be used with discretion, such as time, memory, and network traffic.

Evolutionary algorithms have been applied in recent years to numerous prob-
lems from diverse domains. However, their application within the field of soft-
ware engineering in general, and algorithmic design in particular, is still quite
limited. This dearth of research might be partly attributed to the complexity of
algorithms—and the even greater complexity of their design.

Our aim in this paper is to introduce the notion of algorithmic design through
Darwinian evolution. To find out whether this approach has any merit at all,
we begin with a benchmark case, one familiar to any freshman computer-science
student: searching for a given key in an array of elements. A solution to this

? Kfir Wolfson was partially supported by the Frankel Center for Computer Science
at Ben-Gurion University.

problem is known as a list search algorithm (implying a one-dimensional array,
or a linked-list of elements), and can be either iterative or recursive in nature.
Herein, we evolve iterative algorithms for arrays of integers (rather than lists),
and refer to them as array search algorithms, or simply search algorithms. We
ask two questions:

1. Can evolution be applied to finding a search algorithm?
2. Can evolution be applied to finding an efficient search algorithm?

Employing genetic programming (GP) to find algorithmic innovations, our
findings show that the answer to both questions is affirmative. Indeed, our judi-
cious design of an evolutionary language renders the answer to the first question
quite straightforward: A search algorithm that operates in linear time is easily
evolved. We then turn to finding a more efficient algorithm for sorted arrays,
concentrating on execution time as a measure of efficiency. We show that a
logarithmic-time search algorithm can be evolved, and proceed to analyze its
workings.

This paper is organized as follows: In the next section we describe our setup
for evolving search algorithms, followed by results in Section 3. A more general
representation involving automatically defined functions (ADFs) is presented in
Section 4. Related work on program evolution is described in Section 5, with
concluding remarks following in Section 6.

2 The Evolutionary Setup

We use Koza-style GP [2], in which a population of individuals evolves. An
individual is represented by an ensemble of LISP expressions, each composed
of functions and terminals. Each individual represents a computer program—or
algorithm—for searching an element in an array. Since most common computer
languages are typed, we opted for strongly-typed genetic programming [3], which
may ultimately help in evolving more understandable algorithms. We used the
ECJ package to conduct the experiments [4].

2.1 Representation

We designed a representation that has proven successful in the evolution both
of linear and sublinear search algorithms. The genotypic function set is detailed
in Table 1. In order to evaluate an individual, a phenotype is constructed by
plugging the genotypic code into the template given in Fig. 1. The genotype
thus represents the body of the for loop, the hardest part to develop in the
algorithm, while the incorporating phenotype adds the necessary programmatic
paraphernalia.

As can be seen in Fig. 1, the individual’s genotypic code is executed
iterations times for an input array of size n, with a global variable ITER
incremented after each iteration. For the linear case we set iterations to n,
whereas for the sublinear case iterations is set to dlog2 ne. This upper limit

Table 1. Terminal and function sets for the evolution of search algorithms (both linear
and sublinear). int refers to Integer, bool – Boolean.

Name Arguments Return
Type

Description

TERMINALS

INDEX none int Current pointer into array

Array[INDEX] none int Element at location INDEX in the input ar-
ray. If INDEX is not in [0, n − 1], for array
length n, 0 is returned

KEY none int The element we are searching for

ITER none int Current iteration number

M0, M1 none int Getters to global variables, at the algo-
rithm’s disposal

[M0+M1]/2 none int Average of M0, M1 (truncated to nearest
integer)

NOP none void Does nothing

TRUE, FALSE none bool Boolean terminals

FUNCTIONS

INDEX:= int void Sets the value of variable INDEX to value
returned by argument

M0:=, M1:= int void Setters to global variables

>, <, = int, int bool Returns true if the first argument is greater
than, less than, or equal to the second ar-
gument, respectively; else returns false

PROGN2 void, void void Sequence: execute first argument, then ex-
ecute second argument

If bool, void, void void Conditional branching: if the first argu-
ment evaluates to true, execute second ar-
gument, otherwise execute third argument

on the number of loop iterations is the only difference between the evolution of
the two cases and can be considered as part of the fitness function (described
below), specifically, the differentiating part.

We decided not to add an early-termination condition, which exits the loop
when the index of the searched-for key is found, in order to render the problem
harder for evolution: The evolving search algorithm should learn to retain the
correct index, if the key is located before the loop terminates.

The terminal and function sets include read access to the variable ITER and
the searched-for KEY, and read/write access to a global variable INDEX, initialized
to 0. INDEX is used to access array elements through the Array[INDEX] terminal,
and the value of INDEX after the final iteration is taken as the return value of the
run. To discourage INDEX being set to values outside the array bounds ([0, n−1]
since we use Java), Array[INDEX] returns 0 if INDEX is outside of bounds. Note
that the key 0 does not appear in any input array because all the keys are
positive, as described below.

The evolving search algorithm is provided with read/write access to two
global variables, M0 and M1, which the algorithm may use as it (or, more precisely,

� �
public stat ic int search (int [] arr , int KEY) {

int n = arr . l ength ;
int M0 = 0 ;
int M1 = n−1;
int INDEX = 0 ;
for (int ITER = 0 ; ITER < i t e r a t i o n s ; ITER++) {

−> GENOTYPE INSERTED HERE <−
}
return INDEX;

}� �
Fig. 1. Evolution of search: The evolving genotype, composed of elements delineated
in Table 1, is incorporated into the above phenotypic JAVA template. The variable
iterations is set to n for evolving linear search algorithms, and is set to dlog2 ne for
evolving sublinear algorithms.

evolution) sees fit. The variables are initialized to 0 and n−1, respectively, which
affords the individual potential knowledge of the array length. This information
should prove useful in sublinear solutions. The [M0+M1]/2 terminal embodies
human intuition about the problem, to facilitate the solution, which, nonetheless,
still requires crucial algorithmic insight—to be derived via evolution. In Section 4
we re-examine this terminal, repealing it altogether.

The remaining functions and terminals include standard comparative pred-
icates (<,>,=), conditional branching (If), a sequence operator (PROGN2), the
Boolean terminals TRUE and FALSE, and a simple NOP (no-operation) to enable,
e.g., the evolution of an if without an else part.

Note that the evolving algorithms can inherently deal with keys not in the
array, by wrapping the search method in a method that returns an illegal index
value (e.g., -1) if the array does not contain the key in the returned index. Thus,
the algorithms will not be trained or tested on such inputs. We also mention that
using our function and terminal sets (specifically, ITER being read-only, and not
defining a nested-loop function) and limiting the number of iterations of the for
loop, we avoid generating non-terminating phenotypes.

2.2 Fitness Evaluation and Run Parameters

Fitness is defined similarly both for the evolution of linear and sublinear algo-
rithms. The basic idea is to present the evolving individual with many random
input arrays, have it run and search keys in them, and reward the individual
for the closeness of the outputs to perfect answers. It is important to note that
fitness is based not on an all-or-nothing quality (key found or not), but on gra-
dations of “finding” quality—as defined below.

Specifically, to compute fitness, each individual is run over a set of training
cases, each case being an array to be searched. The set of training cases is
fixed for all individuals per generation, and is randomly generated anew every
generation, as we found this encouraged more general solutions. Let minN and
maxN be the predefined minimal and maximal training-case array lengths, and
let N = maxN − minN + 1. We generate N arrays of all N possible sizes in
the range [minN,maxN], both to induce variety during evolution and also to

render the solution general, able to function correctly on as many different array
lengths as possible.

In the linear case, an array of length n ∈ [minN,maxN] holds a random
permutation of integers in the range [1000, 1000 + n− 1]. In the sublinear case,
an array of length n ∈ [minN,maxN] holds a sorted list of random integers
in the range [n, 100n]. Note that the key range is completely disjoint from the
index range, to discourage “cheating”(e.g., in a sorted array, a program might
evolve to simply return the key value, which happens to equal the index value).

All n keys are searched for by an (individual) phenotypic program in the
population, using the search(arr,KEY) method given in Fig. 1.

In order to define fitness, we first provide a number of definitions. The error
per single key search is defined as the absolute distance between the correct
index of KEY in the array and the index returned by search(arr,KEY):

error(arr, key, correct) = |correct− search(arr, key)| .

An error of zero means that the search was successful. All generated arrays
contain unique elements, to avoid ambiguity in error definition. Note that the
index returned by the search function may be out of array bounds, and as such
suffers from a larger error value—another discouragement of illegal index values.
Let calls be the total number of search calls, over all N training cases, i.e., the
total number of keys searched for:

calls =
maxN∑

n=minN

n =
maxN(maxN + 1)

2
− minN(minN − 1)

2
.

The average error per search call is calculated as follows:

avgerr =
1

calls

N∑
t=1

nt−1∑
i=0

error(arrt, arrt[i], i),

where arrt is the tth array of the N randomly generated arrays, and nt is its
length (nt = minN + t− 1). (Note: Java array indexes begin at 0.)

Note that the order of calls to search(arr,KEY) does not affect their outputs,
so it is safe to execute the individual program for consecutive indexes in the array
without bias.

We define a hit as the finding of the precise location of KEY, i.e.,
error(arr, key, correct) = 0. The total number of hits is thus given by:

hits =
N∑

t=1

nt−1∑
i=0

max (0, 1− error(arrt, arrt[i], i)) .

Finally, the fitness value of an individual is defined as the average error per
search call, with a 0.5% bonus reduction for every 1% of correct hits:

fitness = avgerr ×
(

1− 0.5× hits

calls

)
.

For example, if an individual scored 300 hits in 1000 search calls, its fitness will
be the average error per call, reduced by 15%. An evolving program attains a
perfect raw fitness value of zero if every test is passed, i.e., for every searched
KEY the correct index is returned.

The bonus hits component was added to encourage perfect answers since we
felt that an individual with a higher overall error could be considered better
than one with a lower overall error, if the former’s hit count is higher. We also
noted that the hits component increased fitness variation in the population.

The best solution of each run was subjected to a stringent generality test,
by running it on random arrays of all lengths in the range [2, 5000] (for linear
search the range was smaller, [2, 500], given the considerably longer runtime of
such a search—and of the generality test thereof).

Kinnear [5] noted that “For any algorithm... that operates on an infinite
domain of data, no amount of testing can ever establish generality. Testing can
only increase confidence.” To increase our confidence in the solutions evolved we
added analysis by hand to the generality test. Though some solutions were quite
large, the intuition behind the algorithmic idea could be gleaned by focusing on
the ADF code (Section 4).

Array-length parameters were set to minN = 2 and maxN = 10 for the
linear case, to decrease evaluation time, and minN = 2 and maxN = 100 for
the sublinear case, as a trade-off between generality and performance. (When
we used lower boundary values, evolved solutions did not prove general. Higher
boundary values yielded general solutions, at the expense of increasing evaluation
time by a quadratic factor.)

The GP run operators and parameters are summarized in Table 2.

Table 2. GP parameters.

Objective Find a key in a given input array of unsorted (linear-time case) or
sorted (sublinear-time case) positive integers in a prefixed number
of iterations

Function and Ter-
minal sets

As detailed in Table 1

Fitness Average error per search call on training set, with bonus reduction
for hits (as detailed in Section 2.2)

Selection Tournament of size 7, elitism of size 2, generational

Population Size 250

Initial Population Created using ramped-half-and-half, with a maximum depth of 6

Max tree depth 10

Generations 5000 (or until individual with perfect fitness emerges)

Crossover Standard subtree exchange

Mutation Standard grow (generate new subtree at chosen node)

Node Selection Nodes chosen for crossover or mutation are function nodes with
probability 0.9 and terminal nodes with probability 0.1

Genetic Operator
Probabilities

On the selected parent individual: with probability 0.1 copy to next
generation (reproduction); with probability 0.05 mutate individual;
with probability 0.85, select a second parent and cross over trees

3 Results

3.1 Linear

It turned out that evolving a linear-time search algorithm was quite easy with
the function and terminal sets we designed. We performed 50 runs, 46 of which
(92%) produced solutions with a perfect fitness of 0, also passing with flying
colors the generality test, exhibiting no errors up to length 500. In fact, our
representation rendered the problem easy enough for a perfect individual to
appear in the randomly generated generation 0 in three of the runs.

An example of an evolved solution is shown in Fig. 2, along with the equiv-
alent Java code. When plugged into the template of Fig. 1, we observe a linear-
time search algorithm that proceeds as follows: As long as KEY is not in location
INDEX, INDEX is incremented by one along with ITER. From the index wherein the
key is found (i.e., Array[INDEX] = KEY), INDEX is no longer modified, preserving
the correct value until the end of the algorithm’s execution. An irrelevant setting
of M1 to [M0+M1]/2 takes place, but does not have any effect on the returned
index.

� �
(I f (= Array [INDEX] KEY)

(M1:= [M0+M1]/2)
(INDEX:= ITER))� �

(a)

� �
i f (a r r [INDEX] == KEY)

M1 = (M0+M1)/2 ;
else

INDEX = ITER;� �
(b)

Fig. 2. An evolved linear-time search algorithm. (a) LISP genotype. (b) Equivalent
JAVA code, which, when plugged into the full-program template (Fig. 1), forms the
complete algorithm. (Note: the actual code contains an additional check when executing
the arr[INDEX] instruction; if the value of INDEX is within [0, arr.length− 1] return
arr[INDEX], otherwise, return 0.)

3.2 Sublinear

The sublinear search problem proved (unsurprisingly) a greater challenge for
evolution. We performed 50 runs, 35 of which (70%) produced perfect solutions,
exhibiting no errors up to length 5000. The solutions emerged in generations
22 to 3632, and their sizes varied between 42 and 244 nodes. Seven runs (14%)
produced near-perfect solutions, which failed on a single key in the input arrays,
usually either the first or last key (scoring 99.96% hits on the generality test).

A simplified version of one of the evolved solutions is given in Fig. 3, along
with the equivalent Java code. The solution was simplified by hand from a tree of
50 nodes down to 14, and it turns out to be an implementation of the well-known
binary search.

� �
(PROGN2

(INDEX:= [M0+M1]/2)
(i f (> KEY Array [INDEX])

(PROGN2
(M0:= [M0+M1]/2)
(INDEX:= M1))

(M1:= [M0+M1] / 2))))� �
(a)

� �
INDEX = (M0+M1)/2 ;
i f (KEY > ar r [INDEX]) {

M0 = (M0+M1)/2 ;
INDEX = M1;

}
else

M1 = (M0+M1)/2 ;� �
(b)

Fig. 3. An evolved sublinear-time search algorithm (simplified). Evolved solution re-
veals itself as a form of binary search. (a) LISP genotype. (b) Equivalent JAVA code,
which, when plugged into the full-program template (Fig. 1), forms the complete algo-
rithm.

4 Less Knowledge—More Automation

Re-examining the representation used until now (Table 1), we note that most
terminals and functions are either general-purpose ones (e.g., conditional and
predicates), or ones that represent a very basic intuition about the problem to
be solved (e.g., the straightforward need to access INDEX and KEY). However, one
terminal—[M0+M1]/2—stands out, and might be regarded as our “intervening”
too much with the course of evolution by providing insight born of our famil-
iarity with the solution. In this section we remove this terminal and augment
the evolutionary setup with the mechanism of automatically defined functions
(ADFs) [6]. (Note on terminology: We use the term main tree rather than result-
producing branch (RPB) [6], since the tree does not actually produce a result:
The behavior of the program is mainly determined by the side effects of functions
in the tree, e.g., INDEX:= changes the value of INDEX.)

Specifically, the terminal [M0+M1]/2 was removed from the terminal set, with
the rest of the representation remaining unchanged from Table 1. We added an
ADF—ADF0—affording evolution the means to define a simple mathematical
function, able to use the variables M0 and M1. The evolved function receives no
arguments, and has at its disposal arithmetic operations, integer constants, and
the values of the global variables, as detailed in Table 3.

The evolutionary setup was modified to incorporate the addition of ADFs.
The main program tree and the ADF tree could not be mixed because the
function sets are different, so crossover was performed per tree type (main or
ADF). We noticed that mutation performed better than crossover, especially in
the ADF tree. We increased the array-length parameters to minN = 200 and
maxN = 300, upon observing a tendency for non-general solutions to emerge
with arrays shorter than 200 in the training set. The rest of the GP parameters
are summarized in Table 4.

The sublinear search problem with an ADF naturally proved more difficult
than with the [M0+M1]/2 terminal. We performed 50 runs with ADFs, 12 of
which (24%) produced perfect solutions. The solutions emerged in generations
54 to 4557, and their sizes varied between 53 and 244 nodes, counting the sum
total of nodes in both trees.

Table 3. Terminal and function sets for the automatically defined function ADF0.

Name Arguments Return
Type

Description

TERMINALS

M0, M1 none int Getters to global variables

0, 1, 2 none int Integer constants

FUNCTIONS

+, −, × int, int int Standard arithmetic functions, returning the
addition, subtraction, and multiplication of two
integers

/ int, int int Protected integer division. Returns the first ar-
gument divided by the second, truncated to in-
teger. If the second argument is 0, returns 1

Table 4. GP parameters for ADF runs. (Parameters not shown are identical to those
of Table 2).

Function and Ter-
minal sets

As detailed above in this section

Initial Population Created using ramped-half-and-half, with a maximum depth of 6
for main tree and 2 for ADF

Max tree depth main tree: 10; ADF tree: 4

Crossover Standard subtree exchange from same tree (main or ADF) in both
parents

Genetic Operator
Probabilities

On the selected parent individual: with probability 0.1 copy to
next generation (reproduction); with probability 0.25 mutate indi-
vidual’s main tree; with probability 0.4 mutate individual’s ADF
tree; with probability 0.2, select a second parent and cross over
main trees; with probability 0.05, select a second parent and cross
over ADF trees

Analysis revealed all perfect solutions to be variations of binary search. The
algorithmic idea can be deduced by inspecting the ADFs, all eleven of which
turned out to be equivalent to one of the following: (M0+M1)/2, (M0+M1+ 1)/2,
or (M0/2 + (M1 + 1)/2) (all fractions truncated); to wit, they are reminiscent of
the original [M0+M1]/2 terminal we dropped. We then simplified the main tree of
some individuals and analyzed them. A simplified version of one of the evolved
solutions is given in Fig. 4, along with the equivalent Java code. The solution
was simplified by hand from 58 nodes down to 26.

5 Related Work

We performed an extensive literature search, finding no previous work on evolv-
ing list search algorithms, for either arrays or lists of elements. The “closest”
works found were ones dealing with the evolution of sorting algorithms, a prob-
lem that can be perceived as being loosely related to array search. Note that

� �
(PROGN2

(PROGN2
(i f (< Array [INDEX] KEY)

(INDEX:= ADF0)
NOP)

(i f (< Array [INDEX] KEY)
(M0:= INDEX)
(M1:= INDEX)))

(INDEX:= ADF0)))

ADF0:
(/ (+ (+ 1 M0) M1) 2)� �

(a)

� �
i f (a r r [INDEX] < KEY)

INDEX = ((1+M0)+M1)/2 ;
i f (a r r [INDEX] < KEY)

M0 = INDEX;
else

M1 = INDEX;
INDEX = ((1+M0)+M1)/2 ;� �

(b)

Fig. 4. An evolved sublinear-time search algorithm with ADF (simplified). Evolved
solution is another variation of binary search. (a) LISP genotype. (b) Equivalent JAVA
code, which, when plugged into the full-program template (Fig. 1), forms the complete
algorithm.

both problems share the property that a solution has to be 100% correct to be
useful.

Like search algorithms, the problem of rearranging elements in ascending
order has been a subject of intensive study [7]. Most works to date were able to
evolve O(n2) sorting algorithms, and only one was able to reach into the more
efficient O(n log n) class, albeit with a highly specific setup.

The problem of evolving a sorting algorithm was first tackled by Kinnear [5,
8], who was able to evolve solutions equivalent to the O(n2) bubble-sort algo-
rithm. Kinnear compared between different function sets, and showed that the
difficulty in evolving a solution increases as the functions become less problem-
specific. He also noted that adding a parsimony factor to the fitness function
not only decreased solution size, but also increased the likelihood of evolving a
general algorithm.

The most recent work on evolving sorting algorithms is that of Withall et
al. [9]. They developed a new GP representation, comprising fixed-length blocks
of genes, representing single program statements. A number of list algorithms,
including sorting, were evolved using problem-specific functions for each algo-
rithm. A for loop function was defined, along with a double function, which
incorporated a highly specific double-for nested loop. With these specialized
structures Withall et al. evolved an O(n2) bubble-sort algorithm.

An O(n log n) solution was evolved by Agapitos et al. [10, 11]. The evolution-
ary setup was based on their object-oriented genetic programming system. In [10]
the authors defined two configurations, one with a hand-tailored filter method,
the second with a static ADF. The former was used to evolve an O(n log n) so-
lution, and the latter produced an O(n2) algorithm. Runtime was evaluated
empirically as the number of method invocations. In [11] an Evolvable Class was
defined, which included between one and four Evolvable Methods that could call
each other. This setup increased the search space and produced O(n2) modular
recursive solutions to the sorting problem. Agapitos et al. noted that mutation
performed better than crossover in their problem domain, a conclusion we also

reached regarding our own domain of evolving search algorithms with ADFs
(Section 4). Other interesting works on evolving sorting algorithms include [12–
15], not detailed herein due to space limitations.

Another related line of research is that of evolving iterative programs.
Koza [16] defined automatically defined iterations (ADIs) and Kirshenbaum [17]
defined an iteration schema for GP. These constructs iterate over an array or a
list of elements, executing their body for each element, an thus cannot be used
for sublinear search, as their inherent runtime is Ω(n).

Many loop constructs were suggested, e.g., Koza’s automatically defined
loops (ADLs) [16], and the loops used to evolve sorting algorithms mentioned
above. But, as opposed to the research on sorting algorithms, herein we assume
that an external for loop exists, for the purpose of running our evolving solu-
tions. In the sorting problem, the O(n2) solutions requires nested loops, which
the language must support. The O(n log n) solution was developed in a language
supporting recursion. In linear and sublinear search algorithms, there will always
be a single loop (in non-recursive solutions), and the heart of the algorithm is
the body of the loop (which we have evolved in this paper).

In summary, our literature survey has revealed several related interesting
works on the evolution of sorting algorithms and on various forms of evolving
array iteration. There seems to be no work on the evolution of array search
algorithms.

6 Concluding Remarks and Future Work

We showed that algorithmic design of efficient list search algorithms is possible.
With a high-level fitness function, encouraging correct answers to the search calls
within a given number of iterations, the evolutionary process evolved correct
linear and sublinear search algorithms.

Knuth [7] observed that “Although the basic idea of binary search is com-
paratively straightforward, the details can be somewhat tricky, and many good
programmers have done it wrong the first few times they tried.” Evolution pro-
duced many variations of correct binary search, and some nearly-correct solutions
erring on a mere handful of extreme cases (which one might expect, according
to Knuth). Our results suggest that, in general, algorithms can be evolved where
needed, to solve hard problems.

Our work opens up a number of possible avenues for future research. We
would like to explore the coevolution of individual main trees and ADFs, as in
the work of Ahluwalia [18]. Our phenotypes are not Turing complete (TC) [19],
e.g., because they always halt. It would be interesting to use a Turing-complete
GP system to evolve search algorithms. Some of the evolved solutions are bloated.
It would be interesting to see how adding parsimony pressure affects evolution.

We also plan to delve into related areas, such as sorting algorithms, and show
evolutionary innovation in action. Ultimately, we wish to find an algorithmic
innovation not yet invented by humans.

Acknowledgment

We are grateful for the many helpful remarks of the anonymous referees. We also
thank Amit Benbassat for pointing us in an interesting direction.

References

1. Harel, D.: Algorithmics: The Spirit of Computing. Second edn. Addison-Wesley
Publishing Company, Readings, MA (1992)

2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

3. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation
3(2) (1995) 199–230

4. Luke, S., Panait, L.: A Java-based evolutionary computation research system.
Online (March 2004) http://cs.gmu.edu/~eclab/projects/ecj.

5. Kinnear, Jr., K.E.: Evolving a sort: Lessons in genetic programming. In: Pro-
ceedings of the 1993 International Conference on Neural Networks. Volume 2., San
Francisco, USA, IEEE Press (28 March-1 April 1993) 881–888

6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Pro-
gramms. MIT Press, Cambridge, MA (1994)

7. Knuth, D.E.: Sorting and Searching. Volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, Massachusetts (1975)

8. Kinnear, Jr., K.E.: Generality and difficulty in genetic programming: Evolving a
sort. In: Proceedings of the 5th International Conference on Genetic Algorithms,
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1993) 287–294

9. Withall, M.S., Hinde, C.J., Stone, R.G.: An improved representation for evolving
programs. Genetic Programming and Evolvable Machines 10(1) (2009) 37–70

10. Agapitos, A., Lucas, S.M.: Evolving efficient recursive sorting algorithms. In:
Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver,
IEEE Press (6-21 July 2006) 9227–9234

11. Agapitos, A., Lucas, S.M.: Evolving modular recursive sorting algorithms. In:
EuroGP. (2007) 301–310

12. O’Reilly, U.M., Oppacher, F.: A comparative analysis of GP. In Angeline, P.J.,
Kinnear, Jr., K.E., eds.: Advances in Genetic Programming 2. MIT Press, Cam-
bridge, MA, USA (1996) 23–44

13. Abbott, R., Guo, J., Parviz, B.: Guided genetic programming. In: The 2003 Inter-
national Conference on Machine Learning; Models, Technologies and Applications
(MLMTA’03), las Vegas, CSREA Press (23-26 June 2003)

14. Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution
of control. In: GECCO ’05: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, New York, NY, USA, ACM (2005) 1689–1696

15. Shirakawa, S., Nagao, T.: Evolution of sorting algorithm using graph structured
program evolution. In: SMC, IEEE (2007) 1256–1261

16. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman (April 1999)

17. Kirshenbaum, E.: Iteration over vectors in genetic programming. Technical Report
HPL-2001-327, HP Laboratories (December 17 2001)

18. Ahluwalia, M., Bull, L.: Coevolving functions in genetic programming. Journal of
Systems Architecture 47(7) (July 2001) 573–585

19. Woodward, J.: Evolving Turing complete representations. In Sarker, R., et al.,
eds.: Proceedings of the 2003 Congress on Evolutionary Computation CEC2003,
Canberra, IEEE Press (8-12 December 2003) 830–837

