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EvoMCTS: A Scalable Approach for

General Game Learning
Amit Benbassat and Moshe Sipper

Abstract—We present the application of genetic programming
as a generic game learning approach to zero-sum, deterministic,
full-knowledge board games by evolving board-state evaluation
functions to be used in conjunction with Monte Carlo Tree
Search (MCTS). Our method involves evolving board-evaluation
functions that are then used to guide the MCTS playout strategy.
We examine several variants of Reversi, Dodgem, and Hex using
strongly typed genetic programming, explicitly defined introns,
and a selective directional crossover method. Our results show
a proficiency that surpasses that of baseline handcrafted players
using equal and in some cases a greater amount of search,
with little domain knowledge and no expert domain knowledge.
Moreover, our results exhibit scalability.

Index Terms—Genetic programming, Board Games, Monte
Carlo Methods, Search

I. INTRODUCTION

DEVELOPING players for board games has been part

of AI research for decades. Board games have precise,

easily formalized rules that render them easy to model in

a programming environment. We apply tree-based genetic

programming (GP) to evolve players for a number of games.

Our guide in developing our design, aside from previous

research into games and GP, is nature itself. Evolution by

natural selection is first and foremost nature’s algorithm and as

such will serve as a source for ideas. Though it is by no means

assured that an idea that works in the natural world will work

in our synthetic environment, it can be seen as evidence that it

might. We are mindful of evolutionary theory, particularly as

pertaining to the gene-centered view of evolution. This view,

presented by Williams [50] and expanded by Dawkins [23],

focuses on the gene as the unit of selection. It is from this point

of view that we consider how to adapt the ideas borrowed from

nature into our synthetic GP environment.

In much of the work on games the focus is on a single

game, the goal being to reach a high level of play. In such

research much effort goes into integrating domain-specific

expert knowledge into the system in order to get the best

possible player. For many games, opening books of game-

specific strong opening moves are created offline and used

in order to give the player an edge over a less-prepared

rival [31]. In Checkers, a game with only two piece types,

with the number of pieces on the board tending to drop

towards the end, endgame databases are often used to allow the

player to “know” which moves lead to victory from numerous

precomputed positions [48, 49]. This trend culminated in the

construction of a database of all possible 3.9 × 1013 game
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states in American Checkers that contain at most 10 pieces on

the board [49].

In this paper our goal is entirely different. We do not

aim to use a learning technique to master a single game but

rather to present a flexible, generic tool that allows us to

learn to play any member of a group of games possessing

certain characteristics with as much—or as little—domain-

specific knowledge at our disposal. In previous research we

applied our generic evolutionary approach to multiple full-

knowledge, deterministic, zero-sum board games, focusing on

evolving players that use the alpha-beta search algorithm [10–

13]. In this work we expand the applicability of our system by

evolving players that use the MCTS search algorithm, which is

a strong choice for use in games that alpha-beta is impractical

for [3, 4, 30]. MCTS is also the leading approach in general

game playing [15, 25].

Currently, our system can be applied to zero-sum, determin-

istic, full-knowledge games. Our system can in principle be

adjusted to other types of games as well. We provide evidence

for the effectiveness of our approach by using our system to

learn multiple games. Our aim is to show that we can improve

the play level through evolution, from total incompetence to

competent play, even with little or no prior expert knowledge

of the game domain. We also view this work as a possible

stepping stone on the way to General Game Learning where,

given a game and time to examine it, a learning algorithm can

gradually evolve a search strategy well-suited to that game.

In Section II we present the various games we explored,

including Reversi, Dodgem, and Hex variants. Section III

is a short presentation of MCTS and the UCT algorithm.

Section IV describes the benchmark players we devised,

against which our evolving players compete. In Section V

we discuss past research into MCTS as well as the different

variants of games that we explored. Section VI contains a

detailed description of the flexible system we designed to

explore board games with GP. Our approach was used to

evolve board-evaluation functions that augment MCTS

and guide the search by changing the algorithm’s playout

strategy. We implemented a strongly typed GP framework

that supports the use of multiple trees, and two different

search algorithms both of which can be tuned with runtime

parameters. We also implemented several types of genetic

operators on top of the typical GP crossover and mutation

operator. Section VII contains the results of our evolutionary

runs and in Section VIII we demonstrate their scalability. In

Section IX we expound our conclusions and insights on using

GP to learn board games.
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Fig. 1. Possible starting position in Reversi Plus. 16 pieces are randomly set
up in the middle area of the board. 20 corner adjacent squares (blackened)
are blocked and not in play.

II. THE GAMES

The games we explore in this work are: Two Reversi

variants, 5x5 Dodgem, and Hex on different board sizes. They

are all zero-sum, deterministic, full-knowledge, two-player

board games, played on an n× n board for some given n.

A. Reversi

Reversi, also known as Othello, is a popular game with a

rich research history [34, 37, 41, 45, 46]. The most popular

Reversi variant is a board game played on an 8x8 board. The

players place their pieces on the board, attempting to capture

and convert opponent pieces by locking them between friendly

pieces. In Reversi the number of pieces on the board increases

during play, rather than decrease as it does in other popular

games (e.g., Checkers and Chess). This fact makes endgame

databases all but useless for Reversi. On the other hand, the

number of moves (not counting the rare pass moves) in Reversi

is limited by the board’s size, making it a short game. The

10x10 variant of Reversi is also quite popular. International

tournaments are held for both variants.

B. Reversi Plus

We also investigate a variant of Reversi of our own making

dubbed Reversi Plus. This variant has the same basic rules

and goal as Reversi but its starting position is different. This

game is played on a 10x10 board; 20 squares on the board are

blocked and no piece can be placed on them; and the 4 by 4

area in the middle of the board is initialized with a randomly

generated pattern of 8 black pieces and 8 white pieces (we

randomly select the 8 pieces on the left side of the area, and

then create the opposite pattern on the right, in order to prevent

any one of the players from having a structural advantage in

the starting position). Figure 1 shows one possible Reversi

Plus starting position.

Fig. 2. 5x5 Dodgem. The board is initially set up with n − 1 black cars
along the left edge and n−1 white cars along the top edge, the top left square
remaining empty. Players alternate turns, each allowed to move his vehicle
forward or sideways. Cars may not move onto occupied spaces. They may
leave the board, but only by a forward move. A car that leaves the board is
out of the game. The winner is the player who first has no legal move on
their turn because all their cars are either off the board or blocked in by their
opponent.

C. Dodgem

Dodgem is an abstract strategy game played on an n × n

board with n−1 cars for each player (Figure 2). Dodgem was

first introduced as a 3x3 game by [14]. In spite of the small

board size Dodgem is not a trivial game for human players.

desJardins [24] proved, using exhaustive search, that though

the first player can force a win in the 3x3 variant, the 4x4 and

5x5 variants are draw games assuming perfect play. desJardins

also postulated that Dodgem is a draw game for any board size

n > 3. In this work we explore the variant played on a 5x5

board.

D. Hex

Hex is a game played on a board shaped like a rhombus

made of hexagons (easily converted into an n × n square

board). Hex was invented by Danish mathematician Piet Hein

in 1942 and then independently re-invented by American

mathematician John Nash in 1947. It is typically played on an

11x11 or 19x19 board, with each of two players taking turns

placing pieces on the board. The goal is to form a connected

path of pieces linking the opposing sides of the board marked

by one’s colors, before one’s opponent connects her sides in

a similar fashion. Figure 3 shows the Hex starting position on

an 11x11 board.

Along with Go, Hex serves as a classic example of high-

branching-factor games where the traditional minmax-based

approach fails to deliver and MCTS-based computer players

outperform all other programs [4].

III. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a general method for

making decisions in a given domain, initially proposed and

developed by multiple research groups [18, 22, 35]. The idea

of MCTS is to gradually build the domain search-tree by way

of performing successive random playouts. In games, a game-

tree is built one game-state at a time, with the next state to
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Fig. 3. 11x11 Hex. The board is initially empty. Players alternate turns
placing pieces on the board. The black player’s (gray player’s) goal is to
connect the two black (gray) sides of the board with black (gray) pieces.

be expanded and added to the game tree chosen according

to the results of past random playouts (i.e., the partial game-

tree is biased towards moves that yielded better results). This

approach has proved useful in generating effective board game

players and is responsible for the great improvement in level

of play seen in games with a high branching factor such as Go

[28, 30] and Hex [3]. MCTS is also the leading approach in the

field of general game playing [15, 25]. For further references

of MCTS research we recommend the survey paper by Browne

et al. [16].

The MCTS algorithm can be seen as comprised of 3 steps

that are repeated as many times as the time constraints allow

(Figure 4):

1) Descend down the game tree using statistics recorded in

the tree from previous playouts until an unvisited node

N is encountered and added to the tree.

2) Evaluate node N by performing a quick simulation (or

playout) and record the result.

3) Update the statistics of N and all of its ancestors in the

tree in accordance with the result.

One of the better-known variants of MCTS is the Upper

Confidence Bounds applied to Trees (UCT) algorithm [35].

UCT uses the following formula:

sq(c) =
W (c)

n(c)
+ C

√

log(N(q))

n(c)
(1)

where:

• sq(c) is the score of child c of node q.

• n(c) is the number of simulations of move c.

• N(q) is the number of simulations of state q.

• W (c) is the sum of scores for simulations of node c (in

games this is often the number of won simulations).

• The constant C controls the compromise between ex-

ploitation of good moves and exploration of new moves

In order to choose a move from game state q, UCT performs

an argmax operation as follows to select a child c for which

the value of sq(c) is maximal:

argmax
c∈children(q)

sq(c) (2)

TABLE I
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK PLAYERS IN

REVERSI. HERE AND IN TABLES II, III, AND IV: EACH LINE IN THE

TABLE REPRESENTS A 10,000 GAME MATCH BETWEEN MCTS PLAYERS

USING A DIFFERENT NUMBER OF PLAYOUTS. THE FIRST COLUMN

REPRESENTS THE NUMBER OF PLAYOUTS USED BY BOTH PLAYERS. THE

SECOND COLUMN IS THE WIN RATIO FOR THE FIRST PLAYER (E.G., A

RATIO OF 0.6 MEANS 6,000 WINS). A DRAW COUNTS AS HALF A WIN.

Match First player
win Ratio

100 playouts vs 50 playouts 0.6996

200 vs 100 0.73055

400 vs 200 0.6781

800 vs 400 0.6529

1000 vs 400 0.6879

2000 vs 1000 0.6279

TABLE II
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK PLAYERS IN

REVERSI PLUS.

Match First player
win Ratio

100 vs 50 0.67725

200 vs 100 0.7023

400 vs 200 0.7173

800 vs 400 0.71535

1000 vs 400 0.76395

2000 vs 1000 0.69775

IV. BENCHMARK PLAYERS

In order to test the quality of evolved players we need

benchmark opponents. In this work we used standard MCTS

players that used the UCT formula. We set the UCB constant

to C = 0.7 and in all cases made sure that the baseline UCT

player used to assess the value of evolved players employed

the same parameters and optimizations as the evolved players

(except for the evolved evaluation function, as described

below). Before beginning the evolutionary experiments, we

first evaluated our MCTS benchmark players by testing them

against each other in matches of 10,000 games (with players

alternating between playing either side). Tables I, II, III, and

IV show the relative strengths of the different Reversi, Reversi

Plus, 5 × 5 Dodgem, and 6 × 6 Hex players, respectively.

As expected, MCTS players improve in level of play as the

number of playouts increases.

We also conducted tests, omitted here for brevity’s sake, to

verify that our MCTS algorithm behaves similarly on Dodgem

and Hex variants with larger boards.

TABLE III
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK PLAYERS IN

5× 5 DODGEM.

Match First player
win Ratio

100 vs 50 0.7333

200 vs 100 0.7380

400 vs 200 0.7137

800 vs 400 0.6785

2000 vs 800 0.6899

4000 vs 2000 0.5956
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MCTS tree Descent and tree expansion Playout Nodes update

Fig. 4. An overview of Monte Carlo Tree Search.

TABLE IV
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK PLAYERS IN

6× 6 HEX.

Match First player
win Ratio

100 vs 50 0.7102

200 vs 100 0.6235

400 vs 200 0.6763

800 vs 400 0.7759

1000 vs 400 0.8273

2000 vs 1000 0.6867

V. PREVIOUS WORK

Games attract considerable interest from AI researchers,

with the field of evolutionary algorithms being no exception

to this rule. Over the years many games have been tackled

with the evolutionary approach. Artificial Neural Networks

(ANN)-based American Checkers players were evolved by

Chellapilla and Fogel [19, 20] using an evolutionary algorithm,

their long runs resulting in expert-level play. GP was used

by Azaria and Sipper [6] to evolve a strong Backgammon

player. GP research by Hauptman and Sipper produced both

competent players for Chess endgames [32] and an efficient

solver for the Mate-in-N problem in Chess [33]. Our own work

explored the applicability of GP to evolving players that use

the alpha-beta search algorithm [10, 11], as well as evolving

those players’ search behavior [12, 13]. Gauci and Stanley

[27] used the HyperNEAT system to evolve ANNs that act

as search guides for the Cake American Checkers engine,

resulting in an improved player. In our most recent work we

expanded these results to MCTS [8]. Baier and Winands

[7] explored Monte-Carlo Tree Search and a Minimax

Hybrid algorithm for the board games of Connect-4 and

Breakthrough.

Reversi has received its fair share of research attention.

Early landmark work by Rosenbloom [46] yielded IAGO, an

expert-level Reversi program. Subsequent work by Lee and

Mahajan [37] greatly improved on IAGO’s level of play by

utilizing Bayesian learning to improve the player’s evaluation

function. The evolutionary approach was applied to Reversi by

several researchers. A genetic algorithm (GA) with genomes

representing ANNs was used in 1995 by Moriarty and Mi-

ikkulainen [41] to tackle the game of Reversi, resulting in a

competent player that employed sophisticated mobility play.

Chong et al. [21] presented a program using shallow search

with evolved feed-forward ANNs encoded with board-spatial

features as its board evaluation function. Hingston and Masek

[34] presented an initial attempt at exploring the applicability

of MCTS to Reversi in 2007, and also evolved MCTS Reversi

players. In 2011 we expanded on our previous work and

evolved strong board evaluation functions for 8x8 Reversi [11].

There has not been much work on evolving players that

use MCTS. This is probably due in part to the fact that this

algorithm is relatively new. Another possible reason may be

the tendency to use MCTS with a high number of playouts

to tackle long games with high branching factors in which

traditional search algorithms fail. This results in slow search

algorithms and makes the prospect of evolving players seem

a very time-consuming task. Cazenave [17] used a limited

Genetic Programming (GP) approach in order to evolve play-

ers for Go on small (7 × 7 and 9 × 9) boards that use an

evolved formula to select nodes in the game tree. Cazenave’s

results improve on standard UCT and can be combined with

other algorithmic improvements such as RAVE to generate

competitive Go players on small boards. We first presented

the approach in our own previous work [8], which includes

some results in Reversi and Dodgem. Alhejali and Lucas [1]

used GP to evolve decision trees for the simulation stage of

MCTS-based MS Pac-Man players. Powley et al. [43, 44]

presented work on agents that use heuristic planning as well

as MCTS with macro-actions to skillfully navigate in the

Physical Traveling Salesman Problem (PTSP).

Besides its original presentation by Berlekamp et al. [14]

we found little reference to Dodgem in the peer-reviewed

scientific literature, other than results reported by [9]. 3x3

Dodgem was also implemented in GAMESMAN, presented

by Garcia [26].

Hex serves as a good example of a game with a high

branching factor in which the traditional search approach fails

to deliver. Much research has gone into Hex and trying to

create strong Hex-playing programs (e.g., [2, 51]). Currently,

the dominant Hex player is MCTS based and uses board

patterns to aid in the default search behavior [3, 4].

VI. EVOLUTIONARY SETUP

The individuals in the population act as board-evaluation

functions, to be combined with a standard game-search al-

gorithm. The value they return for a given board state is

seen as an indication of how good that board state is for the
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TABLE V
BASIC TERMINAL NODES. F: FLOATING POINT, B: BOOLEAN. AN ERC

RETURNS A VALUE THAT IS CHOSEN RANDOMLY (IN OUR CASE FROM THE

RANGE [−5, 5)) WHEN THE NODE IS CREATED.

Node name Return type Return value

ERC() F Ephemeral Random Constant (ERC)

False() B Boolean false value

One() F 1

True() B Boolean true value

Zero() F 0

TABLE VI
GAME-ORIENTED TERMINAL NODES THAT DEAL WITH BOARD

CHARACTERISTICS.

Node name Type Return value

EnemyManCount() F The enemy’s man count

FriendlyManCount() F The player’s man count

FriendlyPieceCount() F The player’s piece count

ManCount() F FriendlyManCount() –
EnemyManCount()

Mobility() F The number of moves available
to the player

player whose turn it is to play. The evolutionary algorithm was

written in Java. We chose to implement a strongly typed GP

framework [40] supporting a Boolean type and a floating-point

type. Support for a multi-tree interface was also implemented.

On top of the basic crossover and mutation operators described

by Koza [36], another form of crossover was implemented—

which we designated “selective crossover”—as well as a local

mutation operator. The original setup is detailed in [10].

Its main points and recent updates are detailed below. To

achieve good results on multiple games using deeper search

we enhanced our system with the ability to run in parallel

multiple threads.

A. Basic terminal nodes

Several basic domain-independent terminal nodes were im-

plemented. These nodes are presented in Table V.

B. Game-oriented terminal nodes

The game-oriented terminal nodes are listed in several

tables. Table VI shows nodes defining characteristics that have

to do with the board in its entirety, and Table VII shows nodes

defining characteristics of a certain square on the board. We

originally created this setup for Lose Checkers (see Benbassat

and Sipper [10]), but many of the domain terminals we used

for Checkers variants also proved useful for several other

games—a point which is at the heart of our approach.

TABLE VII
GAME-ORIENTED TERMINAL NODES THAT DEAL WITH SQUARE

CHARACTERISTICS. THEY RECEIVE TWO PARAMETERS—X AND Y—THE

ROW AND COLUMN OF THE SQUARE, RESPECTIVELY.

Node name Type Return value

IsEmptySquare(X,Y) B True if square empty

IsFriendlyPiece(X,Y) B True if square occupied by
friendly piece

IsManPiece(X,Y) B True if square occupied by man

TABLE VIII
REVERSI-SPECIFIC TERMINAL NODES.

Node name Type Return value

FriendlyCornerCount() F Number of corners in friendly
control

EnemyCornerCount() F Number of corners in enemy
control

CornerCount() F FriendlyCornerCount()

– EnemyCornerCount()

TABLE IX
DODGEM-SPECIFIC TERMINAL NODES.

Node name Type Return value

FriendlyPosCount() F Distance measure from victory for
friendly player

EnemyPosCount() F Distance measure from victory for
enemy player

PosCount() F FriendlyPosCount() –
EnemyPosCount()

A man-count terminal returns the number of men the

respective player has, or a difference between the two players’

man counts. The mobility node was a late addition that greatly

increased the playing ability of the fitter individuals in the

population. This terminal allowed individuals to more easily

adopt a mobility-based, game-state evaluation function.

The square-specific nodes all return Boolean values. They

are very basic, and encapsulate no expert human knowledge

about the games. We believe that the domain-specific nodes

discussed below also use little in the way of human knowledge

about the games. This goes against what has traditionally been

done when GP is applied to board games [6, 32, 33]. This is

partly due to the difficulty in finding useful board attributes

for evaluating game states for some board games, but there

is another, more fundamental, reason: Not introducing game-

specific knowledge into the domain-specific nodes means the

GP setup defined is itself not game specific, and thus more

flexible.

1) Reversi-specific terminal nodes: Reversi-specific termi-

nals, shown in Table VIII, essentially deal with corners. These

terminals constitute use of domain knowledge—but at a very

basic level. Any human playing Reversi quickly realizes that

the corner squares are highly significant.

For Reversi Plus we used the same terminal nodes except

we counted all the 12 corners in the Reversi Plus board. We

did this because we had a general feeling that the corners

might still be somewhat important in Reversi Plus.

2) Dodgem-specific terminal nodes: Dodgem-specific ter-

minals, shown in Table IX, essentially return a distance mea-

sure from victory for the players. As each player in Dodgem

is attempting to move her pieces from one side of the board

to the other, a natural metric for measuring a board state is to

check how close the pieces are to the target edge of the board.

Again, the level of domain knowledge is very basic.

3) Hex-specific terminal nodes: In Hex the evolved board-

state evaluators do not evaluate the entire board but rather

just the square being considered for the current move and its

2-neighborhood. We chose this approach in order to evolve

evaluation functions that work independently of board size.

This attribute affects the way the general terminals behave in
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TABLE X
HEX-SPECIFIC TERMINAL NODES. X AND Y STAND FOR A BOARD SQUARE

IN THE 2-NEIGHBORHOOD OF THE CURRENTLY CONSIDERED MOVE.

Node name Type Return value

IsEnemyContact() B True if current move position
is a contact position for enemy
player

IsFriendlyContact() B True if current move position is
a contact position for friendly
player

IsEmptySquare(X,Y) B True if square empty

IsFriendlyPiece(X,Y) B True if square occupied by
friendly piece

IsEnemyPiece(X,Y) B True if square occupied by en-
emy piece

IsManPiece(X,Y) B True if square occupied by man

TABLE XI
FUNCTION NODES. Fi : FLOATING-POINT PARAMETER, Bi : BOOLEAN

PARAMETER.

Node name Type Return value

AND(B1,B2) B Logical AND of parameters

LowerEqual(F1,F2) B True if F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters

NOR(B1,B2) B Logical NOR of parameters

NOTG(B1,B2) B Logical NOT of B1

OR(B1,B2) B Logical OR of parameters

IfT(B1,F1,F2) F F1 if B1 is true and F2 otherwise

Minus(F1,F2) F F1 − F2

MultERC(F1) F F1 multiplied by preset random
number

NullJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

the Hex game (e.g., the counting terminals only count pieces

in the 2-neighborhood of the current move location). There

are also some square-specific terminal nodes (see Table X).

C. Function nodes

We defined several basic domain-independent functions,

presented in Table XI, and no domain-specific functions.

The functions implemented include logic functions, basic

arithmetic functions, one relational function, and one condi-

tional statement. The conditional expression renders natural

control flow possible and allows us to compare values and

return a value accordingly. In Figure 5 we see an example

of a Reversi GP tree containing a conditional expression. The

subtree depicted in the figure returns 0 if the friendly corners

count is less than double the number of enemy men on the

board, and the number of enemy men plus 3.4 otherwise (3.4

is an ERC terminal as defined in Table V).

D. Selective crossover

One-way crossover, as opposed to the typical two-way

version, does not consist of two individuals swapping parts

of their genomes, but rather of one individual inserting a copy

of part of its genome into another individual, without receiving

any genetic information in return. This can be seen as akin to

an act of “aggression”, where one individual pushes its genes

upon another, as opposed to the generic two-way crossover

operators that are more cooperative in nature. In our case,

one-way crossover is done by randomly selecting a subtree

Enemy

ManCount
Friendly

CornerCount

IFT

Zero
<=

MultERC[2.0]

Enemy

ManCount

+

ERC[3.4]

Fig. 5. Example of a subtree for the game of Reversi.

Fig. 6. One-way crossover: Subtree T2 in donor tree (left) replaces subtree
T4 in receiver tree (right). The donor tree remains unchanged.

in both participating individuals, and then inserting a copy

of the selected subtree from the first individual in place of

the selected subtree from the second individual. An example

is shown in Figure 6. This type of crossover is similar to

the asymmetric single-parent crossover operator defined by

Ashlock and Ashlock [5] except that in the case of the single-

parent operator the donated genetic information comes from

an archive of unchanging individuals and not from cohorts in

the population.

This type of crossover operator is uni-directional, with a

donor and a receiver of genetic material. This directionality

can be used to make one-way crossover more than a random

operator. In this work, the individual with higher fitness was

always chosen to act as the donor in one-way crossover. This

sort of nonrandom genetic operator favors the fitter individuals

as they have a better chance of surviving it. Algorithm 1 shows

the pseudocode representing how crossover is handled in our

system. As can be seen, one-way crossover is expected to be
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chosen at least half the time, giving the fitter individuals a

survival advantage, but the fitter individuals can still change

due to the standard two-way crossover. The algorithm can be

seen as describing a new genetic operator, which we dub selec-

tive crossover, since it exerts selective pressure because less-fit

individuals are more likely to receive genetic information from

fitter ones than vice versa.

Algorithm 1 Selective crossover.

Randomly choose two different previously unselected indi-

viduals from population for crossover: I1 and I2
if I1.F itness ≥ I2.F itness then

Perform one-way crossover with I1 as donor and I2 as

receiver

else

Perform two-way crossover with I1 and I2
end if

Using the vantage point of the gene-centered view of evolu-

tion it is easier to see the logic of crossover in our system. In a

gene-centered world we look at genes as competing with each

other, the more effective ones out-reproducing the rest. This,

of course, should already happen in a framework using the

generic two-way crossover alone. Using selective crossover, as

we do, just strengthens this trend. When selective crossover

applies one-way crossover, the donor individual pushes a copy

of one of its genes into the receiver’s genome at the expense

of one of the receiver’s own genes. The individuals with high

fitness that are more likely to get chosen as donors in one-

way crossover are also more likely to contain more good

genes than the less-fit individuals that get chosen as receivers.

The selective crossover operator thus causes an increase in the

frequency of the genes that lead to better fitness.

Both basic types of crossover used have their roots in

nature. Two-way crossover is often seen as analogous to sexual

reproduction. One-way crossover also has an analog in nature

in the form of lateral gene transfer that exists in bacteria.

E. Local mutation

It is difficult to define an effective local mutation operator

for tree-based GP. Any change, especially in a function node

that in many cases has an effect on the return value, is likely

to radically change the individual’s fitness. In order to afford

local mutation with limited effect we modified the GP setup

as follows: To each node returning a floating-point value we

added a floating-point variable (initialized to 1) that served as

a factor. The return value of the node was the normal return

value multiplied by this factor. A local mutation would then

be a small change in the node’s factor value.

Whenever a node returning a floating-point value was cho-

sen for mutation, a decision had to be made on whether to

activate the traditional tree-building mutation operator, or the

local factor mutation operator. Toward this end we designated

a run parameter that determined the probability of opting for

the local mutation operator.

F. Explicitly defined introns

In natural living systems not all DNA has phenotypic effect.

This non-coding DNA, sometimes referred to as junk DNA,

is prevalent in virtually all eukaryotic genomes. In GP, so-

called introns are areas of code that do not affect survival and

reproduction (usually this can be replaced with “do not affect

fitness”). In the context of tree-based GP the term “areas of

code” applies to subtrees.

Introns occur naturally in GP, provided that the function

and terminal sets allow for it. As bloat progresses, the number

of nodes that are part of introns tends to increase. Luke [39]

distinguished two types of subtrees that are sometimes referred

to as introns in the literature:

• Unoptimized code: Areas of code which can be trivially

simplified without modifying the individual’s operation,

but not just replaced with anything.

• Inviable code: Subtrees which cannot be replaced by any-

thing that can possibly change the individual’s operation.

Luke focused on inviable introns and we will do the same

because unoptimized code seems to cast too wide a net to

be of much use in our case, and also wanders too far from

the original meaning of the term “intron” in biology. We also

make another distinction between two types of inviable code

introns:

• Live-code introns: Subtrees which cannot be replaced

by anything that can possibly change the individual’s

operation, but may still generate code that will run at

some point.

• Dead-code introns: Subtrees whose code is never run.

Figure 7 exemplifies our definitions of introns in GP: T1
is a live-code intron, while T3 and T5 are dead-code introns.

T1 is calculated when the individual is executed, but its return

value is not relevant because the logical OR with a true value

always returns a true value. T3, on the other hand, never gets

calculated because the IFT function node above it always

turns to T2 instead. T3 is thus dead code. Similarly, T5 is

dead code because the NullJ function returns a value that is

independent of its second parameter.

(a) Live-code in-
tron

(b) Implicit dead-code intron (c) Explicitly de-
fined dead-code in-
tron

Fig. 7. Examples of different types of introns in GP trees.

Explicitly defined introns (EDIs) in GP are introns that

reside in an area of the genome specifically designed to hold

introns. As the individual runs it will simply ignore these

introns. In our system EDIs exist under every NullJ and

NotG node. In both functions the rightmost subtree does not
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affect the return value in any way. This means that every

instance of one of these function nodes in an individual’s tree

defines an intron, which is always of the dead-code type. In

Figure 7, T5 differs from T3 in that T5 is known to be an

intron the moment NullJ is reached, and therefore the system

can take this into account. In our system, when converting

individuals into C code the EDIs were simply ignored, a feat

that could be accomplished with ease as they were dead-code

introns that were easy to find.

Nordin et al. [42] explored EDIs in linear GP, finding

that they tended to improve fitness and shorten runtime, as

EDIs allow the evolutionary algorithm to protect important

functional genes and save runtime used by live-code introns.

Earlier work showed that using introns was also helpful in GAs

[38]. Our search of the literature discovered no exploration of

EDIs in tree-based GP prior to [10], but the prevalence of

explicit introns in EA research as well as in junk DNA in

nature suggested that this is an avenue worth exploring.

G. Fitness calculation

Fitness calculation in our system is carried out in the fashion

described in Algorithm 2. Evolving players face two types of

opponents: external “guides” (described below) and their own

cohorts in the population. The latter method of evaluation is

known as coevolution [47], and is referred to below as the

coevolution round. While in our previous work we used both

guides and coevolution, herein we used coevolution alone to

evaluate fitness.

Algorithm 2 Fitness evaluation

// Parameter: GuideArr—array of guide players

for i← 1 to GuideArr.length do

for j ← 1 to GuideArr[i].NumOfRounds do

Every individual in population deemed fit enough plays

GuideArr[i].roundSize games against guide i

end for

end for

Every individual in the population plays CoPlayNum games

as black against CoPlayNum random opponents in the

population

Assign 1 point per every game won by the individual, and

0.5 points per drawn game

Our evaluation method requires some parameter setting,

including the number of guides, their designations, the number

of rounds per guide, and the number of games per round, for

the guides array GuideArr (players played X rounds of Y

games each). The algorithm also needs to know the number

of co-play opponents for the coevolution round. In addition, a

parameter for game point value for different guides, as well as

for the coevolutionary round, was also required. This allowed

us to ascribe greater significance to certain rounds than to

others. Tweaking these parameters allows for different setups.

Guide-Play Rounds. We implemented several types of

guides, including a random player and different search-based

players. The random player chose a move at random and was

used to test initial runs. The search-based players used a hand-

coded search-based approach. To save time, not all individuals

were chosen for each game round. We defined a cutoff for

participation in a guide-play round. Before every guide-play

round began, the best individual in the population—according

to partial fitness values from games already played—was

found. Only individuals whose fitness trailed that of the best

individual by no more than the cutoff value got to play. When

playing against a guide each player in the population received

1 point added to its fitness for every win, and 0.5 points for

every draw.

Coevolution Rounds. In a co-play round, each member of

the population in turn played Black in a number of games

equal to the parameter CoP layNum against CoP layNum

random opponents from the population playing White. The

opponents were chosen in a way that ensured that each

individual also played exactly CoP layNum games as White.

This was done to make sure that no individuals received

a disproportionately high fitness value by being chosen as

opponents more times than others. When playing a co-play

game, as when playing against a guide, each player in the

population received 1 point added to its fitness for every win,

and 0.5 points for every draw.

H. Selection and procreation

The change in population from one generation to the

next was divided into two stages: A selection stage and a

procreation stage. In the selection stage we used tournament

selection to select the parents of the next generation from the

population according to their fitness. In the procreation stage,

genetic operators were applied to the parents in order to create

the next generation.

Selection was done as follows: Of several individuals chosen

at random, copies of a subset of fitter individuals were selected

as parents for the procreation stage. The pseudocode for the

selection process is given in Algorithm 3.

Algorithm 3 Selection(TourSize,WinTourSize)

repeat

Randomly choose TourSize different individuals from

population : { I1 . . . ITourSize }
Select a copy of { J1 . . . JWinTourSize }, the subset

of { I1 . . . ITourSize } containing the WinTourSize

individuals with the highest fitness scores, for parent

population.

until number of parents selected is equal to original popu-

lation size

Two more parameters are crossover and mutation proba-

bilities, denoted pxo and pm, respectively. Every individual

was chosen for crossover (with a previously unchosen indi-

vidual) with probability pxo and self-replicated with proba-

bility 1 − pxo. The implementation and choice of specific

crossover operator was as in Algorithm 1. After crossover

every individual underwent mutation with probability pm (an-

other parameter, plm, denotes the probability of the algorithm

choosing to perform local mutation). There is a slight break
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with traditional GP structure, where an individual goes through

either mutation or crossover but not both. However, our system

is in line with the GA tradition where crossover and mutation

act independently of each other.

I. EvoMCTS Players

Our system supports several kinds of GP players (see

[9, 10]). The results we present in this paper involve evolved

players that use MCTS as their basic search algorithm. We

dubbed the players evolved using our system EvoMCTS play-

ers and refer to them thus henceforth.

Our evolutionary system evolves GP players that use the

MCTS algorithm. We implemented a UCT variant of MCTS.

The parameters we can tune control the number of playouts

used before each move, the initial value of unexplored nodes

in the game tree (in our implementation of the standard MCTS

this value is 0, leading to unexplored game states always being

favored; tuning this parameter is akin to using a limited version

of First Play Urgency as defined by Gelly and Wang [29]),

the C constant from the UCT formula (Equation 1), and a

parameter used to enhance search by having players remember

the search tree from previous turns (this way MCTS gains

some of the playouts from its previous turns “for free”). We

decided on values for these parameters empirically in order to

define better players. Based on this we can define handcrafted

MCTS players to be used as yardsticks to test evolved players

against.

The EvoMCTS players use the same MCTS parameters

as the handcrafted player. Instead of using random playouts,

the players use evolved board evaluation functions in the

following fashion: An additional parameter dubbed playout-

BranchingFactor is used in the EvoMCTS players. Before

each simulated move in the playout, the players evaluate play-

outBranchingFactor randomly chosen legal moves and select

the move evaluated as best by the evolved evaluation function.

Algorithm 4 describes how EvoMCTS players’ playouts work

in our system. In order to allow even the moves evaluated

as bad a chance to be selected, playoutBranchingFactor is

a maximum value of moves to be considered. With a low

probability the algorithm can choose the same move more than

once, thus allowing even the move evaluated as worst a chance

to be chosen. We did this because of the inherent limitation

of even the best fast evaluation functions that sometimes fail

to correctly assess the value of a board state.

J. Summary of Run Parameters

• Number of generations: 100

• Population size: 120

• Value of CoPlayNum in fitness calculation: 25

• Crossover probability: 0.8

• Mutation probability: 0.2

• Local mutation ratio: 0.5

• Selection Method: Tournament selection with tournament

size 2 and 1 tournament winner

• Maximum depth of GP tree: 15

• Number of playouts used by evolved players: 50, 100, or

200

Algorithm 4 Evo Playout(Node,playoutBranchingFactor)

repeat

VAL← −∞
for i← 1 to playoutBranchingFactor do

Select at random a move r from game-state Node.

// EvoEval() is the evolved evaluation function.

if EvoEval(r) > VAL then

VAL← EvoEval(r)
ChosenMove← r

end if

end for

Node← ChosenMove

until Node is a final game-state

// GameResult() returns information about game winner

return GameResult(Node)

TABLE XII
REVERSI: RESULTS OF TOP RUNS. EvoMCTS Player USES MCTS WITH

100 PLAYOUTS COUPLED WITH EVOLVED EVALUATION FUNCTION, WHILE

Benchmark Opponents USE STANDARD MCTS. HERE AND IN THE

SUBSEQUENT TABLES: MCTSi REFERS TO A STANDARD MCTS PLAYER

USING i PLAYOUTS; BENCHMARK SCORES ARE THE NUMBER OF WINS OUT

OF 1000 GAMES (A DRAW COUNTS AS HALF A WIN).

Run Benchmark Score Benchmark Score
identifier vs MCTS100 vs MCTS200

172 759.0 521.5

173 701.5 522.5

176 717.0 482.5

177 730.0 505.0

178 727.0 530.0

179 719.0 529.0

• UCT parameter C: 0.7

• Runs use the option of remembering relevant parts of the

game tree from previous moves (except in Hex)

• Number of evaluated moves in playout: 4 or 5

VII. RESULTS

In all evolutionary Reversi and Reversi Plus runs that follow

we used 14–16 cores (depending on availibiliy) of 3 IBM

x3550 M3 servers with 2 Quad Core Xeon E5620 2.4GHz

SMT processors with 12MB L3 cache and 24GB RAM. Runs

took 3–5 days. In all evolutionary Dodgem and Hex runs

that follow we used a personal computer with an ASUS

SABERTOOTH 990FX board with an AMD Phenom II X6

1100T @ 3400MHz 6-core processor with 6MB L3 cache and

16GB RAM. Runs took 1–2 days.

The results we show in this section are from runs conducted

after some manual parameter tuning. We only show results

from runs we conducted after this tuning. We refer to these

runs as the “best runs”. Other runs with unsuccessful param-

eter setups are not reported here.

Table XII shows the results from some of our best Reversi

runs. The table clearly demonstrates that our players not only

beat the Standard MCTS player that uses the same number

of playouts, but also hold their own against a much stronger

MCTS player that uses twice as many playouts. Table XIII

shows 95% confidence intervals for the benchmark scores in

Table XII.
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TABLE XIII
REVERSI: 95% CONFIDENCE INTERVALS FOR BENCHMARK SCORES.

Run vs vs
identifier MCTS100 MCTS200

172 718.0–800.0 477.0–566.0

173 659.0–744.0 478.0–567.0

176 675.0–759.0 438.0–527.0

177 688.0–772.0 461.0–549.0

178 685.0–769.0 486.0–574.0

179 677.0–761.0 485.0–573.0

TABLE XIV
REVERSI PLUS: RESULTS OF TOP RUNS. EvoMCTS Player USES MCTS
WITH 50 PLAYOUTS COUPLED WITH EVOLVED EVALUATION FUNCTION,

WHILE Benchmark Opponents USE STANDARD MCTS.

Run Benchmark Score Benchmark Score
identifier vs MCTS50 vs MCTS100

186 693.5 521.5

187 652.0 485.5

188 731.5 564.5

189 668.0 486.5

Table XIV shows the results from some of our best Reversi

Plus runs. Once again the table demonstrates that our players

beat the Standard MCTS player that uses the same number of

playouts and hold their own against a much stronger MCTS

player that uses twice as many playouts. Table XV shows 95%

confidence intervals for the benchmark scores in Table XIV.

Table XVI shows the results from some of our best Dodgem

runs. The table demonstrates that EvoMCTS Dodgem players

outperform both the MCTS player that uses the same number

of playouts, and the much stronger MCTS player that uses

twice as many playouts, by a wide margin. Table XVII

shows 95% confidence intervals for the benchmark scores in

Table XVI.

Table XVIII shows the results from some of our best Hex

runs. The table demonstrates that EvoMCTS Hex players

outperform the MCTS player that uses the same number of

playouts playing Hex on a 6x6 board. Table XIX shows 95%

confidence intervals for the benchmark scores in Table XVIII.

TABLE XV
REVERSI PLUS: 95% CONFIDENCE INTERVALS FOR BENCHMARK SCORES.

Run vs vs
identifier MCTS50 MCTS100

186 651.0–736.0 477.0–566.0

187 609.0–695.0 441.0–530.0

188 690.0–773.0 520.0–609.0

189 625.0–711.0 442.0–531.0

TABLE XVI
DODGEM: RESULTS OF TOP RUNS. EvoMCTS Player USES MCTS WITH

100 PLAYOUTS COUPLED WITH EVOLVED EVALUATION FUNCTION, WHILE

Benchmark Opponents USE STANDARD MCTS.

Run Benchmark Score Benchmark Score
identifier vs MCTS100 vs MCTS200

180 865.0 731.0

181 920.0 822.0

182 880.0 745.0

183 920.0 821.0

184 814.0 634.0

185 884.0 773.0

TABLE XVII
DODGEM: 95% CONFIDENCE INTERVALS FOR BENCHMARK SCORES.

Run vs vs
identifier MCTS100 MCTS200

180 828.0–902.0 689.0–773.0

181 887.0–953.0 783.0–861.0

182 844.0–916.0 704.0–786.0

183 887.0–953.0 782.0–860.0

184 775.0–853.0 590.0–678.0

185 848.0–920.0 732.0–814.0

TABLE XVIII
6× 6 HEX: RESULTS OF TOP RUNS. EvoMCTS Player USES MCTS WITH

200 PLAYOUTS COUPLED WITH EVOLVED EVALUATION FUNCTION, WHILE

Benchmark Opponent USES STANDARD MCTS.

Run Benchmark Score
identifier vs MCTS200

192 609.0

193 710.0

194 679.0

195 636.0

VIII. SCALABILITY OF RESULTS

Using MCTS with 50–200 playouts is fine if what one wants

is a fast player with basic game proficiency. It is also necessary

to limit the number of playouts when evolving players play

thousands of games in every generation. But to obtain strong

players more playouts are needed. Just as the standard MCTS

players can be tuned and improved by increasing the number

of playouts (see Table I) so too can our evolved players.

Table XX shows how a top evolved Reversi player maintains

its advantage when the number of playouts is scaled up post-

evolutionarily.

Table XXI shows how a top evolved Reversi Plus player

maintains its advantage when the number of playouts is scaled

up.

Table XXII shows how a top evolved Dodgem player

maintains a clear advantage when the number of playouts is

scaled up.

Table XXIII shows how a top evolved Hex player maintains

a clear advantage when the number of playouts is scaled up.

In the case of Hex we also scaled the board size. Hex isn’t

often played on a 6x6 board by humans, but our choice of

local domain terminals makes our evolved evaluation functions

oblivious to the size of the board, and potentially renders

the EvoMCTS players scalable to larger boards. Table XXIV

shows how the same top evolved Hex player maintains its

advantage when the board size is increased post-evolutionarily.

TABLE XIX
6× 6 HEX: 95% CONFIDENCE INTERVALS FOR BENCHMARK SCORES.

Run vs
identifier MCTS200

192 565.0–653.0

193 668.0–752.0

194 636.0–722.0

195 593.0–679.0
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TABLE XXIV
EVOMCTS HEX PLAYER OF TABLE XXIII EVOLVED WITH 200 PLAYOUTS ON A 6× 6 BOARD, PLAYING ON LARGER BOARD SIZES AGAINST STANDARD

MCTS USING THE SAME NUMBER OF PLAYOUTS. THE FIRST COLUMN REPRESENTS THE NUMBER OF PLAYOUTS USED BY THE EVOMCTS PLAYER. THE

SECOND COLUMN REPRESENTS THE NUMBER OF PLAYOUTS USED BY THE MCTS BENCHMARK PLAYER. THE THIRD COLUMN REPRESENTS THE SIZE OF

THE BOARD.

No. Playouts No. Playouts Board EvoMCTS Player 95% confidence
EvoMCTS Player MCTS Player Size Benchmark Score interval

1000 1000 6x6 716.0 674.0–758.0

1000 1000 8x8 723.0 681.0–765.0

1000 1000 11x11 692.0 649.0–735.0

1000 1000 14x14 630.0 586.0–674.0

TABLE XX
AN EVOMCTS REVERSI PLAYER (RUN NO. 172) USING DIFFERENT

PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS USING EITHER

THE SAME NUMBER OF PLAYOUTS OR TWICE AS MANY PLAYOUTS. NOTE

THAT EVOMCTS EVOLVED WITH ONLY 100 PLAYOUTS. HERE AND IN

TABLES XXI, XXII, AND XXIII: THE FIRST COLUMN REPRESENTS THE

NUMBER OF PLAYOUTS USED BY THE EVOMCTS PLAYER. THE SECOND

COLUMN REPRESENTS THE NUMBER OF PLAYOUTS USED BY THE MCTS
BENCHMARK PLAYER.

No. Playouts No. Playouts Benchmark 95% confidence
EvoMCTS Player MCTS Player Score interval

100 100 759.0 718.0–800.0

100 200 521.5 477.0–566.0

200 200 755.0 714.0–796.0

200 400 628.5 585.0–672.0

400 400 747.0 706.0–788.0

400 800 665.0 622.0–708.0

1000 1000 781.0 741.0–821.0

1000 2000 662.5 619.0–706.0

TABLE XXI
AN EVOMCTS REVERSI PLUS PLAYER (RUN NO. 188) USING DIFFERENT

PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS USING EITHER

THE SAME NUMBER OF PLAYOUTS OR TWICE AS MANY PLAYOUTS.
EVOMCTS EVOLVED WITH ONLY 50 PLAYOUTS.

No. Playouts No. Playouts Benchmark 95% confidence
EvoMCTS Player MCTS Player Score interval

50 50 731.5 690.0–773.0

50 50 564.5 520.0–609.0

100 100 732.0 690.0–774.0

100 200 532.0 488.0–576.0

200 200 743.0 702.0–784.0

200 400 567.5 523.0–612.0

400 400 727.0 685.0–769.0

400 800 565.0 521.0–609.0

1000 1000 734.0 692.0–776.0

1000 2000 607.0 563.0–651.0

TABLE XXII
AN EVOMCTS DODGEM PLAYER (RUN NO. 181) USING DIFFERENT

PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS EITHER THE

SAME NUMBER OF PLAYOUTS OR TWICE AS MANY PLAYOUTS. EVOMCTS
EVOLVED WITH ONLY 100 PLAYOUTS.

No. Playouts No. Playouts Benchmark 95% confidence
EvoMCTS Player MCTS Player Score interval

100 100 920.0 887.0–953.0

100 200 822.0 783.0–861.0

200 200 905.0 871.0–939.0

200 400 807.0 768.0–846.0

400 400 879.0 843.0–915.0

400 800 777.0 737.0–817.0

2000 2000 756.0 715.0–797.0

2000 4000 649.5 606.0–693.0

TABLE XXIII
AN EVOMCTS HEX PLAYER (RUN NO. 193) USING DIFFERENT PLAYOUT

VALUES PLAYING AGAINST STANDARD MCTS USING THE SAME NUMBER

OF PLAYOUTS. EVOMCTS EVOLVED WITH ONLY 200 PLAYOUTS.

No. Playouts No. Playouts Benchmark 95% confidence
EvoMCTS Player MCTS Player Score interval

200 200 710.0 668.0–752.0

400 400 647.0 604.0–690.0

1000 1000 716.0 674.0–758.0

A. Comparing Evolved Players to Alpha-Beta Players

Since MCTS is not often the search algorithm used in

computer players for games with low branching factors we

decided to test our best evolved and scaled-up Reversi and

Dodgem players against handcrafted Alpha-Beta-based players

we used in previous research [8, 9]. In order to avoid a

technical difficulty that caused games to occasionally crash,

we chose to disable one of the optimizations in our EvoMCTS

players. In the results described below the EvoMCTS players

do not use the optimization that allows them to remember

relevant parts of the game tree from previous moves.

We pitted the evolved Reversi player scaled up in Table

XX to use 1000 playouts against an Alpha-Beta player that

looks 5 moves ahead. In a 1000-game match the EvoMCTS

player obtained a benchmark score of 883.5 (848.0–919.0 95%

confidence interval), clearly outperforming its opponent.

We pitted the evolved Reversi player scaled up in Table

XXII to use 2000 playouts against an Alpha-Beta player that

looks 5 moves ahead. In a 1000-game match the EvoMCTS

player obtained a benchmark score of 470.0 (426.0–514.0

95% confidence interval). This result shows that the evolved

player is competitive with the Alpha-Beta player, the two

playing at an approximately equal level. In a match against

an Alpha-Beta player that looks 3 moves ahead the EvoMCTS

player obtained a benchmark score of 948.0 (918.0–978.0 95%

confidence interval), clearly outperforming its opponent.

IX. CONCLUDING REMARKS

Guided by the gene-centered view of evolution, which

describes evolution as a process in which segments of self-

replicating units of information compete for dominance in their

genetic environment, we introduced several new ideas and

adaptations of existing ideas for augmenting the GP approach.

Having evolved successful players, we established that tree-

based GP is applicable to board-state evaluation in several

distinct nontrivial board games.
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We presented genetic programming as a tool for discovering

effective strategies for playing several zero-sum, deterministic,

full-knowledge board games using the MCTS search algo-

rithm, expanding on previous results with Alpha-Beta. As the

results show, using GP to evolve heuristic board evaluation

functions for playouts has proved useful in improving MCTS

players in several different game domains.

The scalability of results means that although time con-

straints render our evolutionary approach limited to producing

only very fast players, we can later improve those evolved

players offline by increasing the number of playouts employed

by the MCTS algorithm. Our choice to focus on local patterns

in Hex allowed us to scale the board size as well, having fast

players that evolved on a small board and played short games

then play well on larger board variants in which the games

are longer. This approach is in principle applicable to other

games, most notably Go.

In addition to being game-nonspecific, EvoMCTS is also

to a great degree algorithm-nonspecific within the MCTS

algorithm family. We used our method in conjunction with the

standard UCT algorithm (with an added enhancement of game-

tree memory) for which we hand-tuned some parameters. This

method can, however, be used together with a more specialized

game-specific version of MCTS that navigates the game tree

in any other way. As our method focuses on evolving playout

behavior it is indifferent to changes in the particulars of the

MCTS implementation.

Our approach now affords the evolution of players in a

variety of games using two very different approaches to

search. It is also search-algorithm flexible in that we can use

our system with another search algorithm (e.g., Expectimax,

Maxn).

With EvoMCTS being based on the search algorithm that is

currently the leading approach in General Game Playing, we

suggest that our system may be seen as something very close to

a General Game Learning system. By this we mean a system

that receives a game, and with some or no guidance from the

human developer can learn how to improve in said game. Any

two-player, zero-sum game can in principle be explored by our

system, as long as there is access to its game-state features.

Herein we tackled a plethora of board games because they

share many features, but our system can work on games with

no board. Though we dealt here with two-player, zero-sum

games our system can be adapted to deal with n-player and

nonzero-sum games.

Our work opens the door to further GP research involving

games and search. Below are some potential avenues for future

exploration:

1) Applying our system to other board games. The flexibil-

ity of the system makes it easy to learn how to play more

games, and since we do not require expert knowledge

new games can easily be accommodated.

2) Applying our system to non-zero game domains, and

thus exploring evolution’s ability to evolve complex

playing strategies in a non-zero sum environment.

3) Our system can also be applied to more-complicated

games that are not full-knowledge, or contain a stochas-

tic element, or are n-player games. This applies to

many turn-based computer strategy games, and is also a

better approximation of real-world problems. Along this

vein we are currently exploring the application of the

EvoMCTS approach to Backgammon.

There are many possibilities for further research. As long

as the strategies for solving the problem can be defined and

the quality of solvers can be evaluated in reasonable time,

there is an opening for using our system to evolve a strong

problem-solving program in a game environment.
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