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Abstract—We present EvoMCTS, a genetic programming
method for enhancing level of play in games. Our work focuses on
the zero-sum, deterministic, perfect-information board game of
Reversi. Expanding on our previous work on evolving board-state
evaluation functions for alpha-beta search algorithm variants,
we now evolve evaluation functions that augment the MTCS
algorithm. We use strongly typed genetic programming, explicitly
defined introns, and a selective directional crossover method. Our
system regularly evolves players that outperform MCTS players
that use the same amount of search. Our results prove scalable
and EvoMCTS players whose search is increased offline still
outperform MCTS counterparts. To demonstrate the generality
of our method we apply EvoMCTS successfully to the game of
Dodgem.

I. INTRODUCTION

Developing players for board games has been part of
AI research for decades. Board games have precise, easily
formalized rules that render them easy to model in a pro-
gramming environment. In this work we will focus on perfect-
information, deterministic, zero-sum board games.

We apply tree-based Genetic Programming (GP) to evolv-
ing players for Reversi. Our guide in developing our algorithm
parameters, aside from previous research into games and GP, is
nature itself. Evolution by natural selection is first and foremost
nature’s algorithm, and as such will serve as a source for ideas.
Though it is by no means assured that an idea that works in
the natural world will work in our synthetic environment, we
see it as evidence that it is more likely to. We are mindful
of evolutionary theory, particularly as pertaining to the gene-
centered view of evolution. This view, presented by Williams
[32] and expanded by Dawkins [14], focuses on the gene as the
unit of selection. It is from this point of view that we consider
how to adapt the ideas borrowed from nature into our synthetic
GP environment.

In much of the work on games the focus is on a sin-
gle game, the goal being to reach a high level of play,
using techniques such as opening books [19] and endgame
databases [29, 30]. Conversely, our focus has been on multi-
game generality [5–7]. Using our game system, which we have
demonstrated to be flexible and easily applicable to multiple
games, we choose to avoid using specialized techniques and
expert domain knowledge in favor of generic, easily transfer-
able evolutionary tecniques. It is with this view in mind that we

present EvoMCTS, a new method for enhancing Monte-Carlo
Tree Search (MCTS) game players.

Section II contains some basic information on Reversi.
Section III is a short presentation of MCTS and the UCT
algorithm. Section IV presents previous work related to ours.
Section V explains the genetic programming system we use
and how we apply it to games. In Section VI we present
the results of our evolutionary runs and in Section VII we
demonstrate their scalability. In section VIII we demonstrate
the flexibility and generality of our method by showing how
the whole process can be repeated for the very different
board game of Dodgem. Section IX contains conclusions and
discussion of results.

II. REVERSI

Reversi, also known as Othello, is a popular game with a
rich research history [1, 10, 24, 27]. The most popular Reversi
variant is a board game played on an 8x8 board. Reversi is a
piece-placing game, meaning that moves are made by placing
a new piece on the board rather than by moving existing pieces
around as in games such as Chess and Checkers. The players
place their pieces on the board in turns, attempting to capture
and convert opponent pieces by locking them between friendly
pieces. In Reversi, the number of pieces on the board increases
during play, rather than decrease as it does in Chess and
Checkers. This fact makes endgame databases all but useless
for Reversi. On the other hand, the number of moves (not
counting the rare pass moves) in Reversi is limited by the
board’s size, making it a short game. There is also 10x10
variant of Reversi, which is quite popular. In this paper we
focus on the 8x8 version.

III. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a general method for
making decisions in a given domain, initially proposed and
developed by multiple research groups [12, 13, 23]. The idea
of MCTS is to gradually build the domain search-tree by way
of performing successive random playouts. In games, a game-
tree is built one game-state at a time, with the next state to
be expanded and added to the game tree chosen according
to the results of past random playouts (i.e., the partial game-
tree is biased towards moves that yielded better results). This
approach has proved useful in generating effective board game
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players and is responsible for the great improvement in level
of play seen in games with a high branching factor such as
Go [18] and Hex [2]. MCTS is also the leading approach in
the field of general game playing [9, 16].

The MCTS algorithm can be seen as comprised of 3 steps
that are repeated over and over again as many times as the
time constraints allow:

1) Descend down the game tree using statistics recorded
in the tree from previous playouts until an unvisited
node N is encountered and added to the tree.

2) Evaluate node N by preforming a quick simulation
(or playout) and recording the result.

3) Update the statistics of N and all of its ancestors in
the tree in accordance with the result.

See MCTS steps in Figure 1 below.

A. The UCT Algorithm

One of the better-known variants of MCTS is the Upper
Confidence Bounds applied to Trees (UCT) algorithm [23].
UCT uses the following formula:

sq(c) =
W (c)

n(c)
+ C

�
log(N(q))

n(c)
(1)

where:

• sq(c) is the score of child c of node q.

• n(c) is the number of simulations of move c.

• N(q) is the number of simulations of state q.

• W (n) is the sum of scores for simulations of node n
(in games this is often the number of won simulations).

• the constant C controls the compromise between ex-
ploitation of good moves and exploration of new
moves

In order to choose a move from game state q UCT preforms
an argmax operation as follows:

argmax
c∈children(q)

sq(c) (2)

IV. RELATED WORK

There has not been much work on evolving players that
use MCTS. This is probably due in part to the fact that this
algorithm is relatively new. Another possible reason may be
the tendency to use MCTS with a high number of playouts
to tackle long games with high branching factors in which
traditional search algorithms fail. This results in slow search
algorithms and makes the prospect of evolving players seem
a very time consuming task. Cazenave [11] used a limited
Genetic Programming (GP) approach in order to evolve players
for Go on small (7 × 7 and 9 × 9) boards that use an
evolved formula to select nodes in the game tree. Cazenave’s
results improve on standard UCT and can be combined with
other algorithmic improvements such as RAVE to generate
competitive Go players on small boards.

TABLE I. BASIC TERMINAL NODES. F: FLOATING POINT, B: BOOLEAN.

Node name Return type Return value

ERC() F Ephemeral Random Constant

False() B Boolean false value

One() F 1

True() B Boolean true value

Zero() F 0

Gauci and Stanley [17] used the HyperNEAT system to
evolve Artificial Neural Networks (ANNs) that act as search
guides for the Cake American Checkers engine, resulting in
an improved player. Our own work on evolving heuristic
evaluation functions for Reversi and other games [7] has led us
to explore the possibility of evolving search in Reversi based
on the traditional alpha-beta search algorithm by limiting the
breadth of the search tree [5]. An encouraging side effect of
these results is that fast players evolved with highly restricted
search-tree branching factors can be improved by removing re-
strictions offline (i.e., the results scale as search-tree branching
factor is increased).

Though we have not found any attempt in the literature to
evolve a method to bias the playouts in MCTS, it is quite
common to use domain knowledge in order to do so. In
designing MoGo, Gelly et al. [18] use 3× 3 patterns to guide
to playouts. The MoHex Hex program also uses partial board
patterns to decide on playout choices [3].

V. EVOLUTIONARY SETUP

In our basic system the individuals in the population act
as board-evaluation functions, to be combined with a standard
game-search algorithm—in our case MCTS. The value an in-
dividual returns for a given board state is seen as an indication
of how good that board state is for the player whose turn it
is to play. In this work the evaluation functions are used to
choose between possible moves in the playouts that MCTS
performs.

We chose to implement a strongly typed GP framework
[26] supporting a boolean type and a floating-point type. The
original setup is detailed in [5–7]. Its main points along with
recent updates and novel results are detailed in this paper. To
achieve good results in reasonable time our system has the
ability to run in parallel multiple threads.

A. Basic Terminal Nodes

Several basic domain-independent terminal nodes were
implemented. These nodes are presented in Table I.

The ERC (Ephemeral Random Constant) returns a value
in the range [−5, 5) that is set at random when the node is
created.

B. Domain-Specific Terminal Nodes

The domain-specific terminal nodes are listed in two tables:
Table II shows nodes describing characteristics that have to
do with the board in its entirety, and Table III shows nodes
describing characteristics of a certain square on the board.

A man-count terminal returns the number of pieces (or
“men”) the respective player has, or a difference between the
two players’ man counts. The mobility terminal node allows
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Fig. 1. Tree expansion steps of the MCTS algorithm, shown left to right. The leftmost tree is a game tree before expansion. In the second tree a new node has
been added. The third tree shows a simulation from the new node. In the fourth, rightmost tree all the statistics of the relevant nodes have been updated.

TABLE II. DOMAIN-SPECIFIC TERMINAL NODES THAT DEAL WITH
BOARD CHARACTERISTICS.

Node name Type Return value

EnemeyManCount() F The enemy’s man count

FriendlyManCount() F The player’s man count

ManCount() F FriendlyManCount()

– EnemeyManCount()

Mobility() F
The number of plies available to the

player

FriendlyCornerCount() F Number of corners in friendly control

EnemyCornerCount() F Number of corners in enemy control

CornerCount() F FriendlyCornerCount()

– EnemyCornerCount()

TABLE III. DOMAIN-SPECIFIC TERMINAL NODES THAT DEAL WITH
SQUARE CHARACTERISTICS. THEY ALL RECEIVE TWO PARAMETERS—X

AND Y—THE ROW AND COLUMN OF THE SQUARE, RESPECTIVELY.

Node name Type Return value

IsEmptySquare(X,Y) B True iff square empty

IsFriendlyPiece(X,Y) B
True iff square occupied by friendly

piece

IsManPiece(X,Y) B True iff square occupied

individuals to more easily adopt a mobility-based, game-state
evaluation function.

The square-specific nodes all return boolean values. They
are very basic, and encapsulate no expert human knowledge
about the game. In general, one could say that the domain-
specific nodes use little human knowledge about the game of
Reversi. This goes against what has traditionally been done
when GP is applied to board games [4, 20, 21, 31]. This is
partly due to the difficulty in finding useful board attributes for
evaluating game states in some games (Benbassat and Sipper
[6] deals with a game that is a perfect example of this)—but
there is another, more fundamental, reason. Not introducing
game-specific expert knowledge into the domain-specific nodes
means the GP algorithm defined is itself not game specific, and
thus more flexible.

C. Function Nodes

We use several domain-independent functions. These are
presented in Table IV. No domain-specific functions were
defined.

The functions implemented include logic functions, basic
arithmetic functions, one relational function, and one condi-
tional statement. The conditional expression renders natural
control flow possible and allows us to compare values and
return a value accordingly. In Figure 2 we see an example

TABLE IV. FUNCTION NODES. Fi : FLOATING-POINT PARAMETER, Bi :
BOOLEAN PARAMETER.

Node name Type Return value

AND(B1,B2) B Logical AND of parameters

LowerEqual(F1,F2) B True iff F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters

NOR(B1,B2) B Logical NOR of parameters

NOTG(B1,B2) B Logical NOT of B1

OR(B1,B2) B Logical OR of parameters

IfTrue(B1,F1,F2) F F1 if B1 is true and F2 otherwise

Minus(F1,F2) F F1 − F2

MultERC(F1) F F1 multiplied by preset random number

NullJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

of a GP tree containing a conditional expression. The subtree
depicted in the figure returns 0 if the friendly corners count is
less than double the number of enemy men on the board, and
the number of enemy men plus 3.4 otherwise.
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Fig. 2. Example of a subtree in our setup.

D. Selective Crossover

One-way crossover, as opposed to the typical two-way
version, does not consist of two individuals swapping parts
of their genomes, but rather of one individual inserting a copy
of part of its genome into another individual, without receiving
any genetic information in return. This can be seen as akin to
an act of “aggression”, where one individual pushes its genes
upon another, as opposed to the generic two-way crossover
operators that are more cooperative in nature. In our case, the
one-way crossover is done by randomly selecting a subtree
in both participating individuals, and then inserting a copy of
the selected subtree from the first individual in place of the
selected subtree from the second individual.



This type of crossover operator is uni-directional, with a
donor and a receiver of genetic material. This directionality
can be used to make one-way crossover more than a random
operator. In this work, the individual with higher fitness was
always chosen to act as the donor in one-way crossover. This
sort of nonrandom genetic operator favors the fitter individuals
as they have a better chance of surviving it. Algorithm 1 shows
the pseudocode representing how crossover is handled in our
system. As can be seen, one-way crossover is expected to be
chosen at least half the time, giving the fitter individuals a
survival advantage, but the fitter individuals can still change
due to the standard two-way crossover. The algorithm can be
seen as describing a new genetic operator, which we dub selec-
tive crossover, since it exerts selective pressure because less-fit
individuals are more likely to receive genetic information from
fitter ones than vice versa.

Algorithm 1 Selective crossover.

Randomly choose two different previously unselected indi-
viduals from population for crossover: I1 and I2
if I1.F itness ≥ I2.F itness then
Perform one-way crossover with I1 as donor and I2 as
receiver

else
Perform two-way crossover with I1 and I2

end if

Using the vantage point of the gene-centered view of
evolution it is easier to see the logic of crossover in our system.
In a gene-centered world we look at genes as competing
with each other, the more effective ones out-reproducing the
rest. This, of course, should already happen in a framework
using the generic two-way crossover alone. Using selective
crossover, as we do, just strengthens this trend. When selective
crossover applies one-way crossover, the donor individual
pushes a copy of one of its genes into the receiver’s genome at
the expense of one of the receiver’s own genes. The individuals
with high fitness that are more likely to get chosen as donors in
one-way crossover are also more likely to contain more good
genes than the less-fit individuals that get chosen as receivers.
The selective crossover operator thus causes an increase in the
frequency of the genes that lead to better fitness.

Both basic types of crossover used have their roots in
nature. Two-way crossover is often seen as analogous to sexual
reproduction. One-way crossover also has an analog in nature
in the form of lateral gene transfer that exists in bacteria.

E. Local Mutation

It is difficult to define an effective local mutation operator
for tree-based GP. Any change, especially in a function node
that is not part of an intron, is likely to radically change
the individual’s fitness. In order to afford local mutation
with limited effect, we changed the GP setup. To each node
returning a floating-point value we added a floating-point
variable (initialized to 1) that served as a factor. The return
value of the node was the normal return value multiplied by
this factor. A local mutation would then be a small change in
the node’s factor value.

Whenever a node returning a floating-point value was
chosen for mutation, a decision had to be made on whether to

activate the traditional tree-building mutation operator, or the
local factor mutation operator. Toward this end we designated
a run parameter that determined the probability of opting for
the local mutation operator.

F. Explicitly Defined Introns

Our system also incorporates Explicitly Defined Introns
(EDIs) that appear under each NullJ and NotG. Introns in
GP are comprised of code that has no effect on overall fitness.
EDIs are introns that have been designed to be introns, and
therefore can be safely ignored when compiling the program,
thus saving runtime. Luke [25] discusses introns in some detail.
For more discussion of introns in our system see Benbassat and
Sipper [6].

G. Fitness Calculation

Fitness calculation was carried out in the fashion described
in Algorithm 2. Though our system supports various methods
of fitness evaluation, in the evolutionary runs described in this
paper fitness is decided by having evolving players face their
own cohorts in the population. This method of evaluation is
known as coevolution [22, 28], and is referred to below as the
coevolution round.

Algorithm 2 Fitness evaluation

Every individual in the population plays CoPlayNum games
as Black against CoPlayNum random opponents in the
population and as a result also plays CoPlayNum games
as White.
Assign 1 point per every game won by the individual, and
0.5 points per drawn game

In a Coevolution round, each member of the population in
turn played Black in a number of games equal to the parameter
CoP layNum against CoP layNum random opponents from
the population playing White. The opponents were chosen in
a way that ensured that each individual also played exactly
CoP layNum games as White. This was done to make sure
that no individuals received a disproportionately high fitness
value by being chosen as opponents more times than others.
When playing a game, each player in the population received
1 point added to its fitness for every win, and 0.5 points for
every draw.

H. Selection and Procreation

The change in population from one generation to the
next was divided into two stages: A selection stage and a
procreation stage. In the selection stage we used tournament
selection to select the parents of the next generation from the
population according to their fitness. In the procreation stage,
genetic operators were applied to the parents in order to create
the next generation.

Selection was done by the following simple method: Of
several individuals chosen at random, copies of a subset of
fitter individuals was selected as parents for the procreation
stage. The pseudocode for the selection process is given in
Algorithm 3.



Algorithm 3 Selection(TourSize,WinTourSize)

repeat
Randomly choose TourSize different individuals from
population : { I1 . . . ITourSize }
Select a copy of { J1 . . . JWinTourSize }, the subset
of { I1 . . . ITourSize } containing the WinTourSize
individuals with the highest fitness scores, for parent
population.

until number of parents selected is equal to original popu-
lation size

Two more parameters are crossover and mutation proba-
bilities, denoted pxo and pm, respectively. Every individual
was chosen for crossover (with a previously unchosen indi-
vidual) with probability pxo and self-replicated with proba-
bility 1 − pxo. The implementation and choice of specific
crossover operator was as in Algorithm 1. After crossover
every individual underwent mutation with probability pm (an-
other parameter, plm, denotes the probability of the algorithm
choosing to perform local mutation). There is a slight break
with traditional GP structure, where an individual goes through
either mutation or crossover but not both. However our system
is in line with the GA tradition where crossover and mutation
act independently of each other.

I. EvoMCTS Players

Our evolutionary system evolves GP players that use the
MCTS algorithm. We implemented a UCT variant of MCTS.
The parameters we can tune control the number of playouts
used before each move, the initial value of unexplored nodes in
the game tree (in the standard MCTS this value is 0, leading to
unexplored game states always being favored), the C constant
from the UCT formula (Equation 1), and a parameter used
to enhance search by having players remember the search
tree from previous turns (this way MCTS gains some of
the playouts from its previous turns “for free”). We decided
on values for these parameters empirically in order to get
better players. Based on this we can define handcrafted MCTS
players to be used as yardsticks to test evolved players against.

In this paper we shall refer to MCTS players evolved
using our system as EvoMCTS players. The EvoMCTS players
use the same MCTS parameters as the handcrafted player.
Instead of using random playouts, the players use evolved
board evaluation functions in the following fashion: An addi-
tional parameter dubbed playoutBranchingFactor is used in the
EvoMCTS players. Before each simulated move in the playout,
the players evaluate playoutBranchingFactor randomly cho-
sen legal moves and select the move evaluated as best by
the evolved evaluation function. Algorithm 4 describes how
EvoMCTS players’ playouts work in our system. In order to
allow even the moves evaluated as bad a chance to be selected,
playoutBranchingFactor is a maximum value of moves to be
considered. With a low probability the algorithm can choose
the same move more than once, thus allowing even the move
evaluated as worst a chance to be chosen. We did this because
of the inherent limitation of even the best fast evaluation
functions that sometimes fail to correctly asses the value of
a board state.

In our system, the runtime of a single turn of an EvoMCTS

Algorithm 4 Evo Playout(Node,playoutBranchingFactor)

repeat
VAL ← −∞
for i ← 1 to playoutBranchingFactor do
Select at random a move r from game-state Node.
// EvoEval() is the evolved evaluation function.
if EvoEval(r) > VAL then
VAL ← EvoEval(r)
ChosenMove ← r

end if
end for
Node ← ChosenMove

until Node is a final game-state
// GameResult() returns information about game winner
return GameResult(Node)

player is similar to that of the standard MCTS player using
the same number of playouts. This stems from the fact that
EvoMCTS players spend the majority of computation time
on tasks other than board-state evaluation, which the standard
MCTS players also perform. Ultimately, this behavior depends
upon implementation. In our case we focused on flexibility
and ease of transfer between games. It may be that in highly
specialized code the overhead of EvoMCTS board evaluation
will have a more significant cost in computation time relative
to the standard MCTS player.

J. Summary of Run Parameters

• Number of generations: 100

• Population size: 120

• Value of CoPlayNum in fitness calculation: 25

• Crossover probability: 0.8

• Mutation probability: 0.2

• Local mutation ratio: 0.5

• Selection Method: Tournament selection with tourna-
ment size 2 and 1 tournament winner

• Maximum depth of GP tree: 15

• Number of playouts used by evolved players: 100

• UCT parameter C used: 0.7

• Runs use the option of remembering relevant parts of
the game tree from previous moves

• Number of evaluated moves in playout: 4

VI. RESULTS

In order to test the quality of evolved players we need
to test them against some sort of benchmark opponent—in
this work we used standard MCTS players that used the UCT
formula. Before beginning the evolutionary experiments, we
first evaluated our MCTS benchmark players by testing them
against each other in matches of 10,000 games (with players
alternating between playing either side). Table V shows the
relative strengths of the different Reversi players. As expected,



TABLE V. RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK

PLAYERS IN REVERSI. EACH LINE IN THE TABLE REPRESENTS A 10,000
GAME MATCH BETWEEN MCTS PLAYERS USING A DIFFERENT NUMBER OF

PLAYOUTS. THE FIRST COLUMN REPRESENTS THE NUMBER OF PLAYOUTS

USED BY BOTH PLAYERS. THE SECOND COLUMN IS THE WIN RATIO FOR

THE FIRST PLAYER (E.G., A RATIO OF 0.6 WOULD MEAN 6,000 WINS). A
DRAW COUNTS AS HALF A WIN.

Match First player

win Ratio

100 vs 50 0.6996

200 vs 100 0.73055

400 vs 200 0.6781

800 vs 400 0.6529

1000 vs 400 0.6879

2000 vs 1000 0.6279

TABLE VI. REVERSI: RESULTS OF TOP RUNS. EvoMCTS Player USES
MCTS WITH 100 PLAYOUTS COUPLED WITH EVOLVED EVALUATION

FUNCTION, WHILE Benchmark Opponents USE STANDARD MCTS. HERE
AND IN THE SUBSEQUENT TABLES: MCTSi REFERS TO A STANDARD MCTS
PLAYER USING i PLAYOUTS; BENCHMARK SCORES ARE THE NUMBER OF

WINS OUT OF 1000 GAMES (A DRAW COUNTS AS HALF A WIN)

Run Benchmark Score Benchmark Score

identifier vs MCTS100 vs MCTS200

172 759.0 521.5

173 701.5 522.5

176 717.0 482.5

177 730.0 505.0

178 727.0 530.0

179 719.0 529.0

MCTS players improve in level of play as number of playouts
increase.

In all evolutionary Reversi runs that follow we used 16
cores of 3 IBM x3550 M3 servers with 2 Quad Core Xeon
E5620 2.4GHz SMT processors with 12MB L3 cache and
24GB RAM. Runs took 3–5 days.

We performed several evolutionary runs, experimenting
with various parameters, in order to find a suitable parameter
setup. Table VI shows the results from some of our best Reversi
runs. The table clearly demonstrates that our players not only
beat the Standard MCTS player that uses the same number
of playouts, but also hold their own against a much stronger
MCTS player that uses twice as many playouts.

VII. SCALABILITY OF RESULTS

Using MCTS with 100 playouts is fine if what one wants is
a fast player with basic game proficiency. But to obtain strong
players more playouts are needed. Just as the standard MCTS
players can be tuned and improved by increasing the number of
playouts (see Table V) so can our evolved players. Tables VII
and VIII show how two top evolved players maintain their
advantage when the number of playouts is scaled up.

VIII. USING EVOMCTS TO IMPROVE DODGEM PLAYERS

In order to demonstrate that our method is portable and
easy to use almost “as is” on any board game, we demonstrate
its use on the 5×5 variant of Dodgem. Dodgem is an abstract
strategy game played on an n × n board with n − 1 cars for
each player (Figure 3). The goal of the game is to remove
one’s own cars from the board via the side opposite to the
player’s starting side before the opponent has a chance to do
so. Dodgem was first introduced as a 3x3 game by [8]. In spite
of the small board size Dodgem is not a trivial game for human

TABLE VII. AN EVOLVED REVERSI PLAYER (RUN NO. 172) USING
DIFFERENT PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS USING
EITHER THE SAME NUMBER OF PLAYOUTS OR TWICE AS MANY PLAYOUTS.
THE FIRST COLUMN REPRESENTS THE NUMBER OF PLAYOUTS USED BY

THE EVOMCTS PLAYER. THE SECOND COLUMN REPRESENTS THE

NUMBER OF PLAYOUTS USED BY THE MCTS BENCHMARK PLAYER. NOTE
THAT EVOMCTS EVOLVED WITH ONLY 100 PLAYOUTS.

No. Playouts No. Playouts EvoMCTS Player

EvoMCTS Player MCTS Player Benchmark Score

100 100 759.0

100 200 521.5

200 200 755.0

200 400 628.5

400 400 747.0

400 800 665.0

1000 1000 781.0

1000 2000 662.5

TABLE VIII. ANOTHER EVOLVED REVERSI PLAYER (RUN NO. 178)
USING DIFFERENT PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS
USING EITHER THE SAME NUMBER OF PLAYOUTS OR TWICE AS MANY

PLAYOUTS. THE FIRST COLUMN REPRESENTS THE NUMBER OF PLAYOUTS

USED BY THE EVOMCTS PLAYER. THE SECOND COLUMN REPRESENTS

THE NUMBER OF PLAYOUTS USED BY THE MCTS BENCHMARK PLAYER.
NOTE THAT EVOMCTS EVOLVED WITH ONLY 100 PLAYOUTS.

No. Playouts No. Playouts EvoMCTS Player

EvoMCTS Player MCTS Player Benchmark Score

100 100 727.0

100 200 530.0

200 200 773.5

200 400 605.0

400 400 763.0

400 800 647.0

1000 1000 735.0

1000 2000 637.0

players. desJardins [15] proved, using exhaustive search, that
though the first player can force a win in the 3x3 variant, the
4x4 and 5x5 variants are draw games assuming perfect play.
desJardins also postulated that Dodgem is a draw game for any
board size n > 3. There has been little research or commercial
interest in Dodgem, meaning expert domain knowledge is hard
to come by.

Fig. 3. 5x5 Dodgem. The board is initially set up with n − 1 black cars
along the left edge and n − 1 white cars along the top edge, the top left
square remaining empty. Players alternate turns, each allowed to move his
vehicle forward or sideways. Cars may not move onto occupied spaces. They
may leave the board, but only by a forward move. A car which leaves the
board is out of the game. The winner is the player who first has no legal move
on their turn because all their cars are either off the board or blocked in by
their opponent.



TABLE IX. DODGEM-SPECIFIC TERMINAL NODES.

Node name Type Return value

FriendlyPosCount() F Distance-from-win measure for friendly

player

EnemyPosCount() F Distance-from-win measure for enemy

player

PosCount() F FriendlyPosCount()

– EnemyPosCount()

TABLE X. RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK

PLAYERS IN 5× 5 DODGEM. EACH LINE IN THE TABLE REPRESENTS A

10,000 GAME MATCH BETWEEN MCTS PLAYERS USING A DIFFERENT

NUMBER OF PLAYOUTS. THE FIRST COLUMN REPRESENTS NUMBER OF

PLAYOUTS USED BY BOTH PLAYERS. THE SECOND COLUMN IS THE WIN

RATIO OF THE FIRST PLAYER (E.G., A RATIO OF 0.6 MEANS 6,000 WINS).
A DRAW COUNTS AS HALF A WIN.

Match First player

win Ratio

100 vs 50 0.7333

200 vs 100 0.7380

400 vs 200 0.7137

800 vs 400 0.6785

2000 vs 800 0.6899

4000 vs 2000 0.5956

We chose to evolve players for Dodgem on a 5× 5 board.
Since as a piece-moving game a Dodgem game can in principle
go on on for an infinite number of moves, we limited playout
length to 100 moves, but otherwise the MCTS algorithm
remained unchanged. Table IX shows three terminal nodes
we used for Dodgem instead of the Reversi-specific corner
count nodes. The Dodgem-specific nodes essentially return a
distance-from-win measure for the players. As each player in
Dodgem is attempting to move her pieces from one side of
the board to the other, a natural metric for measuring a board
state is to check how close the pieces are to the target edge
of the board. Tables X and XI show relative levels of play
of benchmark players and level of play of EvoMCTS players,
respectively.

As Table XI shows, EvoMCTS Dodgem players outperform
both the MCTS player that uses the same number of playouts,
and the much stronger MCTS player that uses twice as many
playouts, by a wide margin.

Finally, in Table XII we see that the Dodgem results are
also scalable in a very convincing manner.

In all evolutionary Dodgem runs above we used a a
personal computer with an ASUS SABERTOOTH 990FX
board with an AMD Phenom II X6 1100T @ 3400MHz 6-
core processor with 6MB L3 cache and 16GB RAM. Runs
took 1–2 days.

TABLE XI. DODGEM: RESULTS OF TOP RUNS. EvoMCTS Player USES
MCTS WITH 100 PLAYOUTS COUPLED WITH EVOLVED EVALUATION

FUNCTION, WHILE Benchmark Opponents USE STANDARD MCTS.

Run Benchmark Score Benchmark Score

identifier vs MCTS100 vs MCTS200

180 865.0 731.0

181 920.0 822.0

182 880.0 745.0

183 920.0 821.0

184 814.0 634.0

185 884.0 773.0

TABLE XII. EVOMCTS DODGEM PLAYERS USING DIFFERENT

PLAYOUT VALUES PLAYING AGAINST STANDARD MCTS EITHER THE
SAME NUMBER OF PLAYOUTS OR TWICE AS MANY PLAYOUTS. THE FIRST

COLUMN REPRESENTS THE NUMBER OF PLAYOUTS USED BY THE

EVOMCTS PLAYER FROM RUN NUMBER 181 (EVOMCTS ORIGINALLY
EVOLVED WITH 100 PLAYOUTS). THE SECOND COLUMN REPRESENTS THE

NUMBER OF PLAYOUTS USED BY THE MCTS BENCHMARK PLAYER

No. Playouts No. Playouts EvoMCTS Player

EvoMCTS Player MCTS Player Benchmark Score

100 100 920.0

100 200 822.0

200 200 905.0

200 400 807.0

400 400 879.0

400 800 777.0

2000 2000 756.0

2000 4000 649.5

IX. CONCLUDING REMARKS

As the results show, using GP to evolve heuristic board
evaluation functions for playouts has proved useful in im-
proving MCTS players in two very different board games.
The scalability of results means that although time constraints
render our evolutionary approach limited to producing only
very fast players, we can later improve those EvoMCTS
players offline by increasing the number of playouts employed
by the MCTS algorithm.

In addition to being game nonspecific, our method is also
to a great degree algorithm nonspecific within the MCTS
algorithm family. We used our method in conjunction with the
standard UCT algorithm (with an added enhancement of game-
tree memory) for which we hand-tuned some parameters. This
method can, however, be used together with a more specialized
game-specific version of MCTS that navigates the game tree
in any other way. As our method focuses on evolving playout
behavior it is indifferent to changes in the particulars of the
MCTS implementation.

This work opens several avenues for future research.
Firstly, the EvoMCTS approach presented here can be ap-
plied to high branching-factor games for which MCTS-based
methods have proven especially effective (e.g., Go or Hex).
Evolving players for these “heavier” games may require more
computational resources, but we believe this goal is within
reach even with current available hardware. Another possible
avenue would be to expand EvoMCTS and have it evolve
algorithm behavior within the search tree itself. This may help
in improving on standard methods like UCT in domains where
a fine-tuned domain-specific implementation does not exist.
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