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The Preservation of Favoured Building Blocks in
the Struggle for Fitness: The Puzzle Algorithm
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Abstract—The Shortest Common Superstring (SCS) prob-
lem, known to be NP-Complete, seeks the shortest string
that contains all strings from a given set. In this paper
we present a novel coevolutionary algorithm—the Puzzle
Algorithm—where a population of building blocks coevolves
alongside a population of solutions. We show experimen-
tally that our novel algorithm outperforms a standard ge-
netic algorithm (GA) and a benchmark greedy algorithm on
instances of the SCS problem inspired by DNA sequencing.
We next compare our previously presented cooperative co-
evolutionary algorithm [1] with the Co-Puzzle Algorithm—the
Puzzle Algorithm coupled with cooperative coevolution—
showing that the latter proves to be top gun. Finally, we
discuss the benefits of using our puzzle approach in the gen-
eral field of evolutionary algorithms.
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mon Superstring Problem; Cooperative Coevolution; Ge-
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I. Introduction

In recent years we have been witness to the application
of bio-inspired algorithms to the solution of a plethora of
hard problems in computer science [2]. One such popular
bio-inspired methodology is evolutionary algorithms, which
we apply herein to the NP-Complete problem known as the
Shortest Common Superstring (SCS).

The SCS problem seeks the shortest string that contains
all strings from a given set. Finding the shortest com-
mon superstring has applications in data compression [3],
because data may be stored efficiently as a superstring.
SCS also has important applications in computational bi-
ology [4], where the DNA-sequencing problem is to map
a string of DNA. Laboratory techniques exist for reading
relatively short strands of DNA. To map a longer sequence,
many copies are made, which are then cut into smaller over-
lapping sequences that can be mapped. A typical approach
is to reassemble them by finding a short (common) super-
string. The input domain used throughout this article was
inspired by this process.

The SCS problem, which is NP-Complete [5], is also
MAX-SNP hard [6]. The latter means that if P 6= NP no
polynomial-time algorithm exists, which can approximate
the optimum to within a given (constant) factor.

In this paper we present a novel coevolutionary
algorithm—the Puzzle Algorithm—wherein a population of
building blocks coevolves alongside a population of candi-
date solutions. We show that the addition of a building-
blocks population to a standard evolutionary algorithm re-
sults in notably improved performance on the hard SCS
problem. We compare the performance of five algorithms
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on finding solutions to the SCS problem, on an input do-
main inspired by DNA sequencing: a standard genetic al-
gorithm (GA), a cooperative coevolutionary algorithm, a
benchmark greedy algorithm, the Puzzle Algorithm, and
a combination of cooperative coevolution and the Puzzle
Algorithm—Co-Puzzle—the latter of which is shown to
produce the best results for large input sets.

This paper is organized as follows: In the next section we
present previous work on the SCS problem and on coop-
erative coevolution, describe the input domain, and delin-
eate the experimental design for all our experiments. Sec-
tion III describes the Puzzle Algorithm and compares it
with a standard GA. In Section IV we present the Co-
Puzzle Algorithm—the Puzzle Algorithm combined with
cooperative coevolution—and compare it with a cooper-
ative coevolutionary algorithm. Section V discusses the
advantages of cooperation and the Puzzle approach in the
general field of evolutionary algorithms. Section VI pro-
poses a possible future extension of the Puzzle Algorithm
based on messy genetic algorithms. Finally, we present
concluding remarks and suggestions for additional future
work in Section VII.

II. Background and Previous Work

A. The shortest common superstring (SCS) problem

Let S = {s1, ..., sn} be a set of strings (denoted blocks)
over some alphabet Σ. Without loss of generality, we as-
sume that the set S is “substring-free” in that no string
si ∈ S is a substring of any other sj ∈ S. A superstring
of S is a string s such that each si ∈ S is a substring of
s. A trivial (and usually not the shortest) solution is the
concatenation of all blocks, namely, s1 · · · sn.

For two strings u and v let overlap(u, v) be the maximum
overlap between u and v, i.e., the longest suffix of u (in
terms of characters) that is a prefix of v; let prefix(u, v) be
the prefix of u obtained by removing its overlap with v;
let merge(u, v) be the concatenation of u and v with the
overlap appearing only once.

As an example, consider the following (simple) case:

• Given:
– Alphabet Σ = {a, b, c}.
– Set of strings S = {cbcaca, cacac}.
• Shortest common superstring (SCS) of S: cbcacac.
• A longer superstring: cacacbcaca.
• The following relations hold:
– overlap(cbcaca, cacac) = caca.
– overlap(cacac, cbcaca) = c.
– prefix(cbcaca, cacac) = cb.
– merge(cbcaca, cacac) = cbcacac.
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Note that, in general, overlap(A,B) 6= overlap(B,A)
(the same holds for prefix and merge).

Given a list of blocks s1,s2,...,sn, we define the super-
string s = 〈s1, s2, ..., sn〉 to be the string prefix(s1, s2) ·
prefix(s2, s3)....prefix(sn, s1)·overlap(sn, s1). To wit, su-
perstring is the concatenation of all strings, “minus” the
overlapping duplicates.

Each superstring of a set of strings defines a permutation
of the set’s elements (the order of their appearance in the
superstring), and every permutation of the set’s elements
corresponds to a single superstring (derived by applying
the superstring operator).

A number of linear approximations for the SCS problem
have been described in the literature. Blum et al. [6] were
the first to introduce an approximation algorithm that pro-
duces a solution within a factor of 3 of the optimum (i.e.,
the superstring found is at most 3 times the length of the
shortest common superstring). The factor has been suc-
cessively improved to 2 8

9 , 2 5
6 , 2 50

63 , 2 3
4 , 2 2

3 , and 2.596 (see,
respectively, [7–12]). The best factor currently known is
2 1

2 , and was achieved by Sweedyk [13].
A simple greedy algorithm—denoted GREEDY—is

probably the most widely used heuristic in DNA sequencing
(our domain of predilection). GREEDY repeatedly merges
pairs of distinct strings with maximal overlap until a single
string remains (see Figure 1 for the formal pseudocode). It
is an open question as to how well GREEDY approximates
the shortest common superstring, although a common con-
jecture states that the algorithm produces a solution within
factor 2 of the optimum [6, 13, 14] (Blum et al. [6] proved
the factor-4-ness of GREEDY).
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GREEDY(S)

parameter(s): S – set of blocks

output: superstring of set S

while ‖S‖ > 1

do

{
choose s1, s2 ∈ S such that overlap(s1, s2) is maximal
S ← (S \ {s1, s2}) ∪ {merge(s1, s2)}

return (remaining string in S)

Fig. 1. Pseudocode of GREEDY algorithm.

Frieze and Szpankowski [15] proved that when the input
set comprises independently generated random blocks (re-
sulting in very little inter-block overlap), some greedy-type
algorithms are asymptotically optimal. However, where
DNA sequencing is concerned (the motivation for the in-
put set we study herein), blocks are not created indepen-
dently, and inter-block overlap is large (see Section II-C
for details). Indeed, GREEDY is known to be non-optimal
where real DNA sequencing is concerned.

So, which of the above algorithms is best? This question
is highly relevant, as it pertains directly to the choice of
algorithm(s) with which to compare our novel approaches.
Indeed, reviewers of our previous paper [1] were somewhat
critical of our finally choosing GREEDY as the sole bench-
mark (a choice we repeat herein). Why not use the factor-

3 or factor-2 1
2 algorithms? Because, we argue, the proven

bounds do not relate directly to their (actual) relative per-
formance (at least on the input domain which interests us):

1. Counter examples given by Blum et al. [6] show that
neither their algorithm nor GREEDY is ultimately
The Best.

2. We compared the performance of GREEDY and Blum
et al.’s factor-3 algorithm on our input domain, our
results showing that both algorithms perform similarly
with a slight advantage for GREEDY.

3. The fact that GREEDY is by far the most popular
algorithm used by DNA sequencers, and the widely
accepted conjecture regarding its factor-2-ness speak
loudly in favor of GREEDY.

4. We believe that in designing his algorithm Sweedyk
was mainly interested in improving the theoretical up-
per bound rather than in designing a truly workable
algorithm of practical relevance.

5. The use of GREEDY in this paper is mostly as a
yardstick conforming to that used by us in [1]. Our
main point herein is the added power of the Puzzle
approach vis-a-vis a standard GA.

Due to the above reasons, and since Sweedyk’s factor-
2 1

2 algorithm is much more complicated to implement with
little to no practical benefit, simple GREEDY (Figure 1)
is quite sufficient for our purposes.

B. Cooperative coevolution

Coevolution refers to the simultaneous evolution of two or
more species with coupled fitness. Such coupled evolution
favors the discovery of complex solutions whenever com-
plex solutions are required [16]. Simplistically speaking,
one can say that coevolving species either compete [17,18],
or cooperate, the cooperative type being of interest to us
herein.

Cooperative (also called symbiotic) coevolutionary algo-
rithms involve a number of independently evolving species,
which together form complex structures, well-suited to
solving a problem. The idea is to use several indepen-
dently maintained populations (species), each specialized
to a niche of the complete problem, with the fitness of
an individual depending on its ability to collaborate with
individuals from other species to construct a global solu-
tion (no individual within a single species comprises a solu-
tion to the problem at hand—all species must cooperate).
A number of cooperative coevolutionary algorithms have
been presented in recent years [16, 19–23].

Potter [19] and Potter & De Jong [24] developed a model
in which a number of populations explore different decom-
positions of the problem. Below we detail their framework
as we build upon it later in the article.

In Potter’s & De Jong’s system, each species represents
a subcomponent of a potential (global) solution. Complete
solutions are obtained by assembling representative mem-
bers of each of the species (populations). The fitness of each
individual depends on the quality of (some of) the com-
plete solutions it has participated in, thus measuring how
well it cooperates to solve the problem. The evolution of
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each species is controlled by a separate, independent evolu-
tionary algorithm. Figure 2 shows the general architecture
of Potter’s & De Jong’s cooperative coevolutionary frame-
work, and the manner in which each evolutionary algorithm
computes the fitness of its individuals by combining them
with selected representatives from the other species. Rep-
resentatives are usually selected via a greedy strategy as
the fittest individuals from the last generation.

Species 2

representatives

Population

E A

representatives

E A

Species 3

Population

E A

representatives

Population

Species 4

representatives

Population

Species 1

E A

fitness
evaluation

Merge

evaluated

fitness

Individual
to be

Fig. 2. Potter’s & De Jong’s cooperative coevolutionary system. The
figure shows the evolutionary process from the perspective of Species
1. The individual being evaluated is combined with one or more rep-
resentatives of the other species so as to construct several solutions
which are tested on the problem. The individual’s fitness depends on
the quality of these solutions.

Results presented by Potter and De Jong [24] show that
their approach addresses adequately issues like problem
decomposition and interdependencies between subcompo-
nents. The cooperative coevolutionary approach performs
as good as, and often better than, single-population evolu-
tionary algorithms. Finally, cooperative coevolution usu-
ally requires less computation than single-population evo-
lution because the populations involved are smaller, and
convergence—in terms of number of generations—is faster.

C. The input domain

The input domain of interest to us herein is inspired by
the field of DNA sequencing. All experiments were per-
formed by comparing the performance of different algo-
rithms on this input domain.

The input strings used in the experiments were generated
in a manner similar to the one used in DNA sequencing
(Section I): A random binary string of fixed length is
generated, duplicated a predetermined number of times,
whereupon the copies are randomly divided into blocks of
size within a given range. The set of all these blocks is
the input to the SCS problem. The process is shown in
Figure 3. Note that the SCS of such a set is not necessarily
the original string (it may be shorter), though it is likely to
be very close to it due to the original string’s randomness.
(On large problem instances, with very high probability the
SCS is precisely the original string). The hardness of the
SCS problem is retained even under this input restriction.

We chose to generate such inputs for a number of rea-
sons. First, our interest in a real-world application, namely,

DNA sequencing. Second, this input domain is interesting
because there are many large overlapping blocks, thus ren-
dering difficult the decision of choosing and ordering the
blocks needed to construct a short superstring. Lastly, the
length of a SCS of a set of blocks drawn from this par-
ticular input domain is with very high probability, simply
the length of the initial string (in the input generation pro-
cess). This enables us to generate many different problems,
all with a predetermined SCS length.
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�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

2.

3.

4.

1.

Fig. 3. The input-generation procedure. (1) A random string is gener-
ated. (2) The string is duplicated a predetermined number of times
(three, in the above example). (3) Each copy is partitioned into non-
overlapping blocks of random size between Minimal block size (20, in
our case) and Maximal block size (30, in our case). (4) The resulting
set of blocks is the input set. (Note that while blocks produced from
the same copy are non-overlapping, large overlaps can—and do—exist
between blocks derived from different copies.)

D. Previous evolutionary approaches to the SCS problem

To the best of our knowledge, we were the first to apply
an evolutionary approach to solve the SCS problem. In [1]
we presented two GAs for the SCS problem: a standard
GA and a cooperative coevolutionary algorithm. We briefly
describe them below.

The members (strings, or blocks) of the input set are
atomic components as far as the GA is concerned, namely,
there is no change—either via crossover or mutation—
within a block, only between blocks (i.e., their order
changes).

In the standard GA, an individual in the population is a
candidate solution to the SCS problem, its genome repre-
sented as a sequence of blocks. An individual may contain
missing blocks or duplicate copies of the same block—thus,
this is not a permutation-based representation.

At first glance a permutation-based representation would
seem more natural since the problem is in actuality a per-
mutation problem. The reason for eschewing such a repre-
sentation stems from the fact that where our chosen in-
put domain is concerned, not all blocks are necessarily
required to construct a short superstring. Indeed, only
a small portion of blocks is usually needed to construct
the SCS. Moreover, we performed some preliminary exper-
iments that showed that permutation-based GAs perform
very badly.

The chosen representation has a few additional advan-
tages:

1. This representation enables the use of simple ge-
netic operators similar to the ones used in binary
based-representation GAs, e.g., two-point crossover
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(which allows both growth and reduction in individual
genome lengths), and flipping-block mutations, with-
out the need to preserve the permutation property.

2. The flexibility of the genome length allows the pro-
gressive construction of better global solutions.

Each individual derives a corresponding superstring by
applying the superstring relation (Subsection II-A) on the
blocks within the genome (this is called the derived string).
The fitness of an individual is a function of two parameters:
length of derived string (shorter is better), and number of
blocks it contains (more is better); thus, the goal is to max-
imize the number of blocks “covered” and to minimize the
length of the derived string. When the derived string does
not cover all blocks, the remaining blocks are concatenated
(without overlaps) to the back end of the derived string
(hence increasing its size). See Figure 4 for the formal
pseudocode.
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GA(S)

parameter(s): S – set of blocks

output: superstring of set S

Initialization :
t← 0
Initialize Pt to random individuals from S∗

EVALUATE-FITNESS-GA(S, Pt)

while termination condition not met

do





Select individuals from Pt (fitness proportionate)
Recombine individuals
Mutate individuals
EVALUATE-FITNESS-GA(S,modified individuals)
Pt+1 ← newly created individuals
t← t+ 1

return (superstring derived from best individual in Pt)

procedure EVALUATE-FITNESS-GA(S, P )
S − set of blocks
P − population of individuals

for each individual i ∈ P

do





generate derived string s(i)
m← all blocks from S that are not covered by s(i)
s′(i)← concatenation of s(i) and m
fitness(i)← 1

‖s′(i)‖2

Fig. 4. Pseudocode of the standard genetic algorithm (GA).

The cooperative coevolutionary GA usually evolves two
species simultaneously [1] (although a single population
may also be used [25]). The first contains prefixes of can-
didate solutions to the SCS problem at hand, while the
second species contains candidate suffixes. The fitness of
an individual in each of the species depends on how well it
collaborates with representatives from the other species to
construct the global solution (Subsection II-B).

Each species nominates its fittest individual as the repre-
sentative. When computing the fitness of an individual in
the prefix (suffix) population, its genome is concatenated
with the representative of the suffix (prefix) population, to
construct a full-blown candidate solution to the SCS prob-
lem at hand. This solution is then evaluated in the same

manner as in the standard GA. See Figure 5 for the formal
pseudocode.
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Cooperative coevolutionary GA(S)

parameter(s): S – set of blocks

output: superstring of set S

Initialization :
t← 0
for each species g ∈ G

do Initialize Pt(g) to random individuals from S∗

for each species g ∈ G
do EVALUATE-FITNESS-COCO(S, Pt(g), G)

while termination condition not met

do





for each species g ∈ G

do





Select individuals from Pt(g) (fitness
proportionate)

Recombine individuals
Mutate individuals
EVALUATE-FITNESS-COCO(S,modified

individuals,G)
Pt+1(g)← newly created individuals

t← t+ 1
for each species g ∈ G

do get best individual from Pt(g)
return (superstring derived from best individuals of species)

procedure EVALUATE-FITNESS-COCO(S, P,G)
S − set of blocks
P − population of individuals
G− all species

for each individual i ∈ P

do





c← ∅
for each species g ∈ G

do if g 6= species of individual i
then c← c ∪ representative(g)
else c← c ∪ i

j ← ordered concatenation of c
generate derived string s(j)
m← all blocks from S that are not covered by s(j)
s′(j)← concatenation of s(j) and m
fitness(i)← 1

‖s′(j)‖2

Fig. 5. Pseudocode of the cooperative coevolutionary genetic algorithm
with two species: G = {G1, G2}. G1: population of prefixes, G2:
population of suffixes.

In most cooperative coevolutionary algorithms presented
to date the (usually two) species are predefined by the de-
signer and no single species contains individuals that sin-
glehandedly solve the problem. It is interesting to note that
in our case both species start out with random individuals
composed of blocks, these individuals comprising possible
(albeit bad) problem solutions in full. The division to pre-
fixes and suffixes is not fixed in advance but rather comes
about dynamically, and may thus be regarded as a form of
speciation.

Our experiments compared the performance of both evo-
lutionary algorithms and GREEDY (Subsection II-A), with
cooperative coevolution proving to be best, surpassing in
performance both the GA and GREEDY [1].

To summarize, standard GAs experience difficulties with
large problem instances, especially when there are interde-
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pendencies among the components. We believe the main
reason behind the cooperative coevolutionary algorithm’s
success is that it automatically and dynamically decom-
poses a hard problem into a number of easier problems,
with less interdependencies, which are then each solved ef-
ficiently using a standard GA.

E. Experimental design

For comparative purposes, in all experiments performed
we used exactly the same problem instances as in [1], where
two series of experiments were performed differing only in
the initial-string length. The parameters used in the input-
generation phase were:
• Size of random string: 250 (50-block experiment), 400

(80-block experiment)1

• Minimal block size: 20 bits
• Maximal block size: 30 bits
• Number of duplicates created from random string: 5
Note that increasing the number of blocks (through

whichever parameter change) results in exponential growth
of the problem’s complexity.

The evolutionary parameters used for all experiment
were as follows:
• Population size: 500
• Number of generations: 5000
• crossover rate: 0.8
• mutation rate: 0.03
• unique problem instances per experiment: 50
The experiments described in the next two sections each

compares the performance of a number of algorithms on
a set of 50 different problem instances of given problem
size. On each problem instance each type of evolutionary
algorithm was executed twice and the better run of the two
was used for statistical purposes. (As argued by Sipper [26]
what ultimately counts when solving a truly hard problem
by an evolutionary algorithm is the best result.)

The evolutionary algorithms considered in this paper
are much slower than non-evolutionary ones (including
GREEDY, Blum et al. [6], and Sweedyk [13]). An evo-
lutionary run takes 1-3 hours on a run-of-the-mill PC, as
opposed to a few seconds for non-evolutionary runs. Hence,
if you are looking for a fast algorithm—use GREEDY (see
Subsection II-A). However, if you wish to drastically im-
prove performance—and are willing to exercise patience—
then, as we shall shortly show, our evolutionary algorithms
are best. (For this reason we provide no time comparisons
with GREEDY and the like as we forfeit in this domain a
priori.)

III. The Puzzle Algorithm

Theoretical evidence accumulated to date suggests that
the success of GAs stems from their ability to combine
quality sub-solutions (building blocks) from separate in-
dividuals in order to form better global solutions. This

1This may be deemed rather small, but since our input is gener-
ated with much inter-block overlap (see paragraph on Frieze and Sz-
pankowski in Subsection II-A), larger sizes might possibly be mapped
to smaller ones.

conclusion presupposes that most problems in nature have
an inherent structural design. Even when the structure is
not known explicitly GAs detect it implicitly and gradually
enhance good building blocks.

Nonetheless, there are many problems that standard
GAs fail to solve, even though a solution can be attained
through the juxtaposition of building blocks. This phenom-
ena is widely studied and is known as the Linkage Problem.

The Puzzle Algorithm is an extension of the standard GA
motivated by the desire to address the linkage problem. It
should especially improve a GA’s performance on relative-
ordering problems, such as the SCS problem (where the
order between genes is crucial, and not their global locus in
the genome).

The main idea is to preserve good building blocks found
by the GA, an idea put into practice by placing constraints
on the choice of recombination loci, such that good sub-
solutions have a higher probability of “surviving” recom-
bination. This process should promote the assembly of
increasingly larger good building blocks from different in-
dividuals. Reminiscent of assembling a puzzle by combin-
ing individual pieces into ever-larger blocks, our novel ap-
proach has been named the Puzzle Algorithm.

Apparently, Nature, too, does not “choose” recombina-
tion loci at random. Experimental results suggest that hu-
man DNA can be partitioned into long blocks, such that
recombinants within each block are rare or altogether non-
existent [27, 28].

Added to the standard GA’s population of candidate
solutions is a population of candidate building blocks co-
evolving in tandem. Interaction between solutions and
building blocks is through the fitness function, while inter-
action between building blocks and solutions is through
constraints on recombination points. Figure 6 shows the
general architecture of the Puzzle Algorithm.

Fitness

Recombination loci

Candidate
Solutions

blocks
building

Candidate

Fig. 6. The puzzle algorithm’s general architecture involves two coevolv-
ing species (populations): candidate solutions and candidate building
blocks. The fitness of an individual in the building-blocks population
depends on individuals from the solutions population. The choice of
recombination loci in the solutions species is affected by individuals
from the building-blocks population.

The solutions population is identical to that of a stan-
dard GA (Subsection II-D): representation, fitness evalu-
ation, and genetic operators. The single—but crucial!—
difference is the selection of the recombination points,
which is influenced by the building-blocks population.

A building-block individual is represented as a sequence
of blocks. The initial population comprises random pairs of
blocks, each appearing as a subsequence of at least one in-
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dividual from the solutions population. Fitness of an indi-
vidual depends entirely on the solutions population, and is
the average fitness of the solutions that contain its genome.

Individuals from the building-blocks population are “uni-
sex,” i.e., no recombination is performed. Rather, the fol-
lowing two modification operators are defined:

1. Expansion: An addition of another block to increase
the individual’s genome length by one block. The
added block is selected in such a way that the genome
will still be a subsequence of at least one candidate so-
lution. This operator is applied with with high proba-
bility (set to 0.8 in our experiments), its purpose being
to construct larger and fitter building blocks.

2. Exploration: With much lower probability (set to 0.1
in our experiments) an individual may “die” and be
re-initialized as a new, two-block individual. This op-
erator acts as a mutative force within the building-
blocks population, injecting noise and thus promoting
exploration of the huge building-blocks search space.

Selection of recombination loci. The selection of
recombination loci within an individual of the solutions
population depends on individuals from the building-blocks
population. Our goal is that a good section of the individ-
ual not be destroyed in the process of mating, hence, each
possible recombination point is assigned with the maximal
fitness of an individual from the other species that corre-
sponds to that point. The higher the fitness, the lower the
probability that the point will be selected in the recombi-
nation process.

Each individual from the solutions population maintains
an additional recombination-aid vector (of size genome-
length + 1), whose value at position i represents the like-
lihood of choosing locus i as a crossover point (a higher
value entails a lower probability of being chosen).

During evaluation of the building-blocks population,
each of its individuals is assigned a fitness value based on
the average fitness of all solutions that contain its genome
(as described earlier).

Each building-block individual updates all recombination
– aid vectors of individuals within the solutions population
that contain its genome as part of their genome: the in-
dividual scans each solution genome. Whenever a match
is found between the building block and a solution-genome
segment, each locus i corresponding to the building block
(which is several blocks long, and thus spans several loci) in
the recombination-aid vector is updated thus: if the fitness
of the building-blocks individual is greater than locus i’s
current value, that value is replaced with this new fitness;
otherwise, no change is effected.

After this process is repeated for all building blocks, each
locus value in the recombination-aid vector of a solutions
individual equals the fitness of the fittest building block
that “covers” that locus. The border positions (left and
right) in each vector are assigned their neighbor’s value.
Notice that this process does not involve any fitness evalu-
ations. Figure 7 shows this process.

When recombination occurs the selection of crossover
loci is done using the recombination-aid vector. The prob-

0 0 0 0 0 00
 vectorRecombination−aid

Solution’s genome

  fitness=0.3
building block #1 building block #2

   fitness= 0.4
building block #3
   fitness= 0.6

(a)

0 00
 vectorRecombination−aid

Solution’s genome

  fitness=0.3
building block #1 building block #2

   fitness= 0.4
building block #3
   fitness= 0.6

0.3 0.3 0.4 0.6

(b)

 vectorRecombination−aid

Solution’s genome

  fitness=0.3
building block #1 building block #2

   fitness= 0.4
building block #3
   fitness= 0.6

0.30.3 0 0.4 0.6 0.60.3

(c)

Fig. 7. The recombination-aid vector update procedure per a specific so-
lutions individual, based upon fitness values (obtained before) of the
building-block population: (a) before updating, (b) after all build-
ing blocks have performed an update, (c) border updating is done by
duplicating values of neighboring cells.

ability of a specific locus within an individual solution to
be chosen depends directly upon the value that is stored in
the recombination-aid vector’s corresponding position.

Two alternatives for recombination exist: with low prob-
ability (set to 0.3 in our experiments) the standard random
2-point crossover operator is applied (without resorting to
the recombination-aid vector); for the rest of the cases (i.e.,
0.7 in our experiments) the 2 points for crossover are the
two loci with the minimal values among the recombination-
aid vector positions (ties are broken arbitrarily).

Other possibilities for choosing recombination loci also
come to mind, e.g., fitness-proportionate within the
recombination-aid vector (herein, we did not test this). Fig-
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 vectorRecombination−aid
0.60.60.40.30.6 0.3 0

Solution genome

Fig. 8. Choosing recombination loci using the recombination-aid vector.
The two loci chosen are those that are least destructive, in that good
(higher fitness) building blocks are preserved.

ure 8 shows the usage of the recombination-aid vector dur-
ing recombination. Figure 9 formally presents the pseu-
docode of the Puzzle Algorithm.

The DevRev algorithm. Recently, de Jong [29] and
de Jong and Oates [30] presented what they called the
DevRev algorithm, wherein modules are developed (coe-
volved) alongside assemblies (solutions). The DevRev al-
gorithm uses recursive module formation—leading to hier-
archy, and uses Pareto-coevolution for module evaluation.

De Jong’s and Oates’s motivation stems from the desire
to incrementally build hierarchical solutions from primi-
tives. Their primitives are essentially building blocks, al-
beit in a more restricted sense. Under their scheme the
most frequent pair of modules (or building blocks) in the
assemblies population is considered for addition to the
building-blocks population (this latter can only grow, as
opposed to our approach which is more dynamic). The
combined pair of modules is accepted as a new module
only if it passes a stringent test (to avoid the formation of
spurious building blocks), a method which has a number of
drawbacks (including suitability for specific problems, the
difficulty with which new building blocks are added, and
the inability to remove added building blocks).

In their work, assemblies are constructed from fixed-
length sequences of building blocks. Our approach seems
to be more flexible in that the inter-population interac-
tions and the evolutionary operators allow for more com-
plex evolutionary dynamics, resulting in better problem-
solving capabilities. The choice of sample problem also
reflects the difference in motivation between our work and
theirs: de Jong and Oates applied their method to pattern-
recognition tasks and hierarchical test problems, stemming
from their interest in hierarchical problem solving, whereas
we have tackled a standard NP-Complete problem, repre-
senting our interest in general problem solving via building-
block manipulation.

A. Experimental results: Standard GA versus Puzzle Algo-
rithm

One can understand the Puzzle Algorithm in two equiv-
alent ways: as an addition of a building-blocks population
to a standard GA, or as a novel and complex recombina-
tion operator used in a standard GA. Under both points of

�




�

	

Puzzle(S)

parameter(s): S – set of blocks

output: superstring of set S

Initialization :
t← 0
Initialize SOt to random individuals from S∗

for each i ∈ SOt
do initialize recombination− aid vector(i) to zeros

EVALUATE-FITNESS-GA(S, SOt)
Initialize BBt to pairs extant in SOt
EVALUATE-FITNES-BB(BBt, SOt)
for each i ∈ SOt

do update recombination− aid vector(i)

while termination condition not met

do





Evolve solutions population :



Select individuals from SOt (fitness proportionate)
Recombine individuals based on

recombination− aid vector
Mutate individuals
EVALUATE-FITNESS-GA(S,modified individuals)
SOt+1 ← newly created individuals

Evolve building − blocks population :



EVALUATE-FITNESS-BB(BBt, SOt+1)
Select individuals from BBt (fitness proportionate)
Apply Expansion operator on individuals
Apply Exploration operator on individuals
EVALUATE-FITNESS-BB(modified individuals,

SOt+1)
BBt+1 ← newly created individuals

t← t+ 1
for each i ∈ SOt(G)

do update recombination− aid vector(i)
return (superstring derived from best individual in SOt)

procedure EVALUATE-FITNESS-BB(B,P )
B − population of candidate building blocks
P − population of candidate solutions

for each individual i ∈ B
do fitness(i)← average fitness of all individuals j ∈ P

such that building block i ⊆ solution j

Fig. 9. Pseudocode of the Puzzle Algorithm, at the heart of which lie
two coevolving populations: SO – candidate solutions, and BB –
candidate building blocks. EVALUATE-FITNESS-GA is the same as
in Figure 4. Figure 7 explains the particulars of the recombination-
aid vector. Note that during the evolution of the building-blocks
population EVALUATE-FITNESS-BB is applied twice: once at the
beginning (since the solutions population has just evolved) and then
again after Expansion and Exploration have been applied.

view the Puzzle Algorithm is an extension of the standard
GA and thus should be compared to it in order to test its
efficiency. Such a comparison focuses on the extra power
gained by selecting better recombination loci. We thus
leave the comparison with the cooperative coevolutionary
algorithm (Subsection II-D) for later.

The Puzzle Algorithm’s performance was compared with
the standard GA (Subsection II-D) and GREEDY (Subsec-
tion II-A) on sets of approximately 50 blocks, and sets of
approximately 80 blocks2, generated as explained in Sub-

2Since blocks are randomly created within a certain range (see Sub-
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section II-C. The only difference between the two series of
experiments is in the input-generation process, specifically,
in the length of the initial random generated string, which
entails a difference in the number of blocks given as input
to the algorithm.

The standard GA’s setup is detailed in Subsection II-E.
As for the building-blocks population:

• Population size: 1000
• Selection: Fitness-proportionate, with elitism rate of 1
• Expansion rate: 0.8
• Exploration rate: 0.1

The results presented in Figure 10 show the average
length of the superstrings found for the 50-block input set.
The SCS of each of the problem instances is (with high
probability) of length 250 bits. The Puzzle Algorithm al-
most attains this optimum, generating an average super-
string of length 253 bits over the 50 problem instances. In
37 out of the 50 problem instances the Puzzle Algorithm
produced a superstring of length 250 bits.

The Puzzle Algorithm dramatically outperforms both
GREEDY (averaging a superstring of length 381 bits), and
the standard GA (averaging a superstring of length 280
bits). It even surpasses the cooperative coevolutionary al-
gorithm (averaging a superstring of length 275 bits), al-
though the two were not compared (as discussed above).
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Fig. 10. Experiment I: 50 blocks. (Average of) best superstrings as a
function of time (generations). Each point in the figure is the average
of the best superstring lengths (at the given time); this average is
computed over 50 runs on 50 different randomly generated problem
instances (for each such instance, two runs were performed—i.e., a
total of 100—the better of which was considered for statistical pur-
poses). Shown are results for three algorithms: Puzzle (PUZZLE), GA
(GENETIC), and GREEDY (GREEDY). The straight line for GREEDY is
shown for comparative purposes only (GREEDY involves no gener-
ations, and—as noted earlier—computes the answer rapidly).

The results presented in Figure 11 show the average
length of the superstrings found for the 80-block input set.
The SCS of each of the problem instances is (with high
probability) of length 400 bits.

Again, the Puzzle Algorithm emerges as the best, find-
ing an average superstring of length 571 bits. This is much
better than the standard GA (averaging a superstring of

section II-E) the block count is approximate.

length 685 bits), and is still better than GREEDY (averag-
ing a superstring of length 596 bits). Comparing distance-
from-optimum rather than absolute superstring length un-
derscores the Puzzle Algorithm’s victory: 171 bits from
optimum versus 285 bits of the standard GA.

The Puzzle Algorithm loses in this case to the cooper-
ative coevolutionary algorithm (which averages a super-
string of length 547 bits), but, again, we must not com-
pare the two. In the next section we will show how to
“beat” the cooperative coevolutionary algorithm using an
enhanced Puzzle Algorithm.
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Fig. 11. Experiment II: 80 blocks. Best superstring as a function of time.
Shown are results for three algorithms: puzzle algorithm (PUZZLE),
genetic algorithm (GENETIC), and GREEDY (GREEDY). Interpretation
of graphs is as in Figure 10.

IV. Adding Cooperative Coevolution

When comparing results obtained by the Puzzle Algo-
rithm with the cooperative coevolutionary algorithm pre-
sented in [1] we see that on small (50-block) problem in-
stances the Puzzle Algorithm is best, while on larger (80-
block) problem instances the cooperative coevolutionary
algorithm outshines its rival.

Since the Puzzle Algorithm, which contains a single so-
lutions population, dramatically surpasses the standard
(single-population) GA, and since cooperative coevolu-
tion has proven itself highly worthwhile, the next intu-
itive step is to combine the two approaches. The resulting
algorithm—Cooperative Coevolution + Puzzle—we denote
Co-Puzzle.

Co-Puzzle is identical to the cooperative coevolutionary
algorithm (Subsection II-D) with one difference: a Puz-
zle Algorithm evolves the prefixes and suffixes populations.
Thus, there are 4 populations in toto: (1) prefixes and (2)
suffixes (as in the cooperative algorithm), along with (3)
prefixes building blocks, and (4) suffixes building blocks,
the latter two guiding the selection of recombination loci
(detailed in Section III) . See Figure 12 for the formal
pseudocode.
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Co-Puzzle(S)

parameter(s): S – set of blocks

output: superstring of set S

Initialization :
t← 0
for each species g ∈ G

do

{
Initialize SOt(g) to random individuals from S∗

for each i ∈ SOt(g)
do initiate recombination− aid vector(i) to zeros

for each species g ∈ G

do





EVALUATE-FITNESS-COCO(S, SOt(g), G)
Initialize BBt(g) based on SOt(g)
EVALUATE-FITNES-BB(BBt(g), SOt(g))
for each i ∈ SOt(g)

do update recombination− aid vector(i)

while termination condition not met

do





for each species g ∈ G

do





Evolve solutions population :



Select individuals from SOt(g)
(fitness proportionate)

Recombine individuals based on
recombination− aid vector

Mutate individuals
EVALUATE-FITNESS-COCO(S,

modified individuals,G)
SOt+1(g)← newly created individuals

Evolve building − blocks population :



EVALUATE-FITNESS-BB(BBt(g),
SOt+1(g))

Select individuals from BBt(g)
(fitness proportionate)

Apply Expansion operator on individuals
Apply Exploration operator on individuals
EVALUATE-FITNESS-BB(modified

individuals, SOt+1(g))
BBt+1 ← newly created individuals

for each i ∈ SOt(g)
do update recombination− aid vector(i)

t← t+ 1
for each species g ∈ G

do get best individual from SOt(g)
return (superstring derived from best solutions of species)

Fig. 12. Pseudocode of Co-Puzzle. G, SO, and BB are as defined in Fig-
ures 5 and 9. EVALUATE-FITNESS-COCO is defined in Figure 5.
EVALUATE-FITNESS-BB is defined in Figure 9.

A. Experimental results: Cooperative coevolution versus
Co-Puzzle

The Co-Puzzle algorithm’s performance was compared
with the cooperative coevolutionary algorithm (Subsec-
tion II-D) and GREEDY (Subsection II-A) on the same
50-block and 80-block sets of Subsection III-A. The coop-
erative coevolutionary algorithm’s setup is detailed in Sub-
section II-E. The setup for the building-blocks population
is detailed in Subsection III-A.

The results presented in Figure 13 show the average
length of the superstrings found for the 50-block input set.
The SCS of each of the problem instances is (with high
probability) of length 250 bits. The Co-Puzzle algorithm
produces superstrings with average length of 268 bits. This
is slightly better than the cooperative coevolutionary al-

gorithm (averaging a superstring of length 275 bits), and
much better than GREEDY (averaging a superstring of
length 381 bits).

In this case, overlaying Puzzle with Cooperative Co-
evolution slightly improves upon Cooperative Coevolution
alone but is degraded vis-a-vis Puzzle alone. This seems
strange, prima facie, since, separately, both cooperative co-
evolution and Puzzle each outperforms the standard GA.
We provide an explanation for this in Section V.
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Fig. 13. Experiment III: 50 blocks. Best superstring as a function of
time. Shown are results for three algorithms: combination of the
puzzle algorithm and cooperative coevolution(CO-PUZZLE), coopera-
tive coevolutionary algorithm (COOPERATIVE), and GREEDY (GREEDY).
Interpretation of graphs is as in Figure 10.

The results presented in Figure 14 show the average
length of the superstrings found for the 80-block input set.
The SCS of each of the problem instances is (with high
probability) of length 400 bits.

The Co-Puzzle algorithm discovers superstrings with av-
erage length of 482 bits—a distance of 82 bits from the
optimum. This is a 42% improvement over the coop-
erative coevolutionary algorithm, which produces super-
strings of length 547 bits (i.e., 147 bits from the optimum).
GREEDY comes last with 596 bit-long superstrings on av-
erage.

V. Discussion

Figure 15 shows the four GAs presented in this article,
along with the relations between them. In [1] we presented
the transformation from a simple GA to a cooperative GA
(bottom-left arrow in Figure 15). In this article we added
the other three arrows (transformations). These relations
are general, in the sense that the same transformational
diagram of Figure 15 applies not only to the SCS problem
but to a variety of different problem domains.

A summary of the results we obtained is given in Ta-
ble I. We note that on large (hence more difficult) problem
instances it “pays” for cooperative coevolution to coop-
erate with Puzzle: Cooperative coevolution automatically
decomposes the problem into a number of smaller subprob-
lems with good interactions (i.e., the decomposition is a
viable one); each subproblem is optimized using the Puz-
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Fig. 14. Experiment VI: 80 blocks. Best superstring as a function of
time. Shown are results for three algorithms: combination of the
puzzle algorithm and cooperative coevolution(CO-PUZZLE), coopera-
tive coevolutionary algorithm (COOPERATIVE), and GREEDY (GREEDY).
Interpretation of graphs is as in Figure 10.

Co−Puzzle

cooperation

pu
zzl

e

Cooperative

GA

Puzzle

pu
zzl

e

cooperation

Fig. 15. “Moving” between the algorithms presented in this paper.

zle Algorithm. The simultaneous process of decomposition
(cooperative coevolution) and optimization of the pieces
(Puzzle) ultimately improves global performance.

TABLE I

Best average results (along with bitwise distance from optimum in

parenthesis) obtained by the five algorithms presented in this article:

GREEDY, GA, cooperative coevolution, Puzzle, and Co-Puzzle. For

each of the fifty randomly generated problem instances each genetic

algorithm was run twice, the worse of the two discarded (average value

is thus computed over 50 runs).

Problem GREEDY GA Cooperative Puzzle Co-Puzzle
size

50 381 (131) 280 (30) 275 (25) 253 (3) 268 (18)
80 596 (196) 685 (285) 547 (147) 571 (171) 482 (82)

When the problem instance is small (hence easier), coop-
erative coevolution might actually prove deleterious. This
is because the decomposition it performs is reasonable but
not optimal. Hence, combining together the subproblem
solutions to construct a global solution involves the use

of a suboptimal decomposition. Since the problem is al-
ready easy as-is for the Puzzle Algorithm, adding coevolu-
tion only proves harmful.

To further assess our above conclusions concerning Co-
Puzzle’s behavior on large problem instances, we performed
a series of experiments on 90- and 100-block problems, the
SCS of each instance being (with very high probability) of
lengths 450 and 500 bits, respectively. The input set was
generated as described in Subsection II-C, using the setup
from Subsection II-E. The Co-Puzzle algorithm’s setup is
as detailed in Subsection IV-A.

The results, presented in Table II, show that while
GREEDY, cooperative coevolution, and Puzzle perform
similarly, at the end of the day the overall winner is still Co-
Puzzle: 25% better (considering distance from optimum)
than its competitors on the 90-block problems, and 13%
better on the 100-block problems.

TABLE II

Best average results (along with bitwise distance from optimum in

parenthesis) obtained by the four algorithms on 90-, and 100-block

problem instances: GREEDY, cooperative coevolution, Puzzle, and

Co-Puzzle. For each of the 20 randomly generated problem instances

each algorithm was run twice, the worse of the two discarded (average

value is thus computed over 20 runs).

Problem GREEDY Cooperative Puzzle Co-Puzzle
size

90 677 (227) 673 (223) 683 (233) 617 (167)
100 768 (268) 768 (268) 813 (313) 732 (232)

Our results show that on the 50-block SCS problems two
species are better than one with cooperative coevolution,
but when inserting the Puzzle approach, two species prove
harmful. We have not yet examined the issue of perfor-
mance as a function of number of species and problem size
(this is left for future work).

The Puzzle approach undoubtedly improves a simple
GA (at least for the SCS problem). There are numerous
other relative-ordering problems (some even of commer-
cial interest), including the Traveling Salesperson Problem
(TSP), and scheduling and timetabling problems. Most
such problems are permutation-based, and have much in
common with SCS. Therefore, the crucial idea of adding a
building-blocks population to the standard GA (the Puz-
zle Approach) may well prove beneficial for a whole slew
of problems. Moreover, from our experience the approach
is easy to implement and requires little programming.

In the Puzzle Algorithm a candidate building block is a
consecutive segment found in candidate solutions, hence, it
should perform well on problems with building-block genes
that are close together, i.e., tightly linked genes. When
building-block genes are farther away, we might recourse to
a “messier” mode of operation inspired by messy GAs [31,
32].
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VI. Proposal: The Messy Puzzle Algorithm

The following section discusses a possible future exten-
sion of the work presented herein, based on messy GAs.
We first present the latter and then present our proposed
extension.

A. A brief introduction to messy GAs

In this subsection, we briefly review the original messy
GA. Readers interested in more details should consult other
sources (Messy GAs [31], Fast Messy GAs [32]). Messy
GAs (mGAs) are a class of iterative optimization algo-
rithms that make use of a local search template, adaptive
representation, and a decision theoretic sampling strategy.
The work on mGAs was initiated in 1990 by Goldberg,
Korb, and Deb [31] to eliminate some major problems of
the standard GA. In [32], Goldberg et al. addressed a ma-
jor deficiency of mGAs, the initialization bottleneck. Dur-
ing the past decade, mGAs have been applied successfully
to a number of problem domains, including permutation-
based problems [33].

In general, mGAs evolve a single population of build-
ing blocks (NB: no coevolution with a solutions popula-
tion as in our case). During each iteration, a population
of building blocks of a predefined length k is initialized,
and a thresholding selection operator increases the number
of fitter building blocks while discarding those with poor
fitness. Then, cut and slice operators are applied to (hope-
fully) construct global solutions by combining good build-
ing blocks together. The best solution obtained is kept as
the competitive template for the next iteration. In the next
iteration the length of the building blocks is increased by
one (i.e., set to k+ 1). The mGA can be run level by level
(i.e., k by k) until a good-enough solution is obtained or
the algorithm may be terminated after a given stop criteria
is met.

Messy GAs relax the fixed-locus assumption of the stan-
dard GA. Unlike a standard GA, which uses a genome of
fixed length, a mGA represents the genome by variable
length genes. Each gene is an ordered pair of the form
< allele locus, allele value >. Thus, a “messy” genome
may be over-specified when more than one gene corresponds
to the same allele locus, or under-specified when certain
genes are missing. To evaluate over-specified genomes only
the first appearance of a gene is considered. When evalu-
ating under-specified genomes the missing genes are filled
with the corresponding values of a competitive template
which is a completely specified genome locally optimal for
the previous level. This representation allows the mGA to
find building blocks that include genes which are far-apart
in the genome by rearranging the genes of a building block
in close proximity to one another.

The messy GA is organized into two nested loops: the
outer loop and the inner loop. The outer loop iterates over
the length k of the processed building blocks. Each cycle
of the outer loop is denoted as an era. When a new era
starts the inner loop is invoked, which is divided into three
phases: 1) initialization phase, 2) primordial phase, and 3)
juxtapositional phase.

Initialization phase. Initialization in the original
mGA creates a population with a single copy of all sub-
strings of length k. This ensures that all building blocks
of the desired length are represented. The down side of
having all these building blocks is that each must be eval-
uated. Since the number of these building blocks is huge it
forms a bottle-neck for the mGA. In [32], Goldberg et al.
addressed this problem, presenting the Fast Messy GA.

Primordial phase. In this phase, thresholding selec-
tion alone is run repeatedly. Thresholding selection tries
to ensure that only building blocks belonging to a par-
ticular equivalence relation are compared with one another
together with selection of fitter building blocks for the next
phase. A similarity measure, θ, is used to denote the num-
ber of common genes among two building blocks. Two
building blocks are allowed to compete with each other
only if their θ is greater than some threshold value θ̄. This
method prevents the competition of building blocks be-
longing to different sub-functions. No fitness evaluation is
performed during the primordial phase.

Juxtapositional phase. After the population is rich
in copies of the best building blocks, processing proceeds
in a manner similar to a standard GA. During this phase
thresholding selection is applied together with the cut and
slice operators. Good building blocks are selected, cut, and
then sliced to generate better solutions. Evaluation of the
objective function values is required in every generation.

The cut operator breaks a messy genome into two parts
with a cut probability that grows as the genome’s length
increases. The cut position is randomly chosen along the
genome. The splice operator joins two genomes with a cer-
tain splice probability.

To conclude, the advantages of mGAs include:
• Obtaining and evaluating tight building blocks.
• Increasing proportions of the best building blocks.
• Better exchange of building blocks.
The mGA uses a building-blocks population along with

a single competitive template—the best solution obtained
so far. This is quite different than our approach where
two bona fide populations coevolve (thus solving, along the
way, the initialization problem). Nonetheless, the messy
approach might be combined with our own.

B. Messy GAs and the Puzzle Algorithm

Using “messy” genes may help generalize the Puzzle ap-
proach to fit problems where building-block genes are far
away from each other, i.e., loosely linked genes. This can
be done by defining a candidate building-block genome as
a sequence of “messy” genes that are all contained in at
least one candidate solution (instead of constraining the
sequence to be consecutive in the candidate solutions as
in the current Puzzle approach). Essentially, we are en-
hancing the definition of a building block to include non-
consecutive segments in the spirit of mGAs.

It should be interesting to compare the performance of
this modified Puzzle approach with the mGA. Instead of
trying to assemble together good building blocks explicitly
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(as in the mGA), it might be better to do the same thing in
a different (implicit) manner using the generalized Puzzle
approach.

Intuitively, the combined messy-puzzle approach may
provide benefits over Puzzle or mGA alone:

• Using a single, local-search, competitive template in
the evaluation process of the building blocks in an
mGA is problematic. In the Puzzle approach there is
no such single template, but many candidate solutions
from the other population.

• In the mGA one need define a similarity scale between
different candidate building blocks (in thresholding se-
lection during the primordial phase). Defining such a
scale is hard. In the Puzzle approach there is no need
to understand the relation between candidate build-
ing blocks since the mixing is done implicitly in the
solutions population.

Also, the dynamic nature of the building-blocks population
in the Puzzle approach might deal better with the explo-
ration of the huge building-blocks search space.

VII. Concluding Remarks and Future Work

In this article we presented two novel coevolutionary
algorithms—Puzzle and Co-Puzzle—and tested them on
the SCS problem. Both proved successful when compared
with previous approaches. By bringing to the fore the
building blocks—which are never dealt with directly in
most GAs—the Puzzle approach is a step forward in ad-
dressing the linkage problem.

Our work opens up several avenues for future research:

• The Messy Puzzle Algorithm (Subsection VI-B).
• Scaling analysis of cooperative coevolution. How ex-

actly a cooperative coevolutionary algorithm performs
as a function of the problem’s size and the number of
species coevolving. A good start can be with exper-
iments on the SCS problem. Also, the effects of the
Puzzle approach on the scaling behavior is quite inter-
esting.

• Tackling larger problem instances using the Co-Puzzle
algorithm with a mutable number of species. Toward
this end, finding the relation between problem size and
the optimized number of populations in the Co-Puzzle
algorithm should be automatic. This can be done by
the construction of new species on the fly as conver-
gence is encountered (as suggested by Potter and De
Jong [24]).

• We designed the Puzzle approach with relative-
ordering problems in mind (where the order between
genes is crucial, and not their absolute locus in the
genome). Testing the approach on other relative-
ordering problems and on problems from different do-
mains is an obvious path to follow.

• A hybrid GA, where Puzzle or Co-Puzzle searches for
a portion of the solution and a locally oriented greedy
algorithm fills in the rest.
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