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Abstract—We present the firefly machine, an evolving hard-
ware system, demonstrating that “evolving ware,” evolware,
can be attained. The system is based on the cellular program-
ming approach, in which parallel cellular machines evolve
to solve computational tasks. The firefly system operates
with no reference to an external device, such as a computer
that carries out genetic operators, thereby exhibiting online
autonomous evolution.

I. Introduction

The idea of evolving machines, whose origins can be
traced to the cybernetics movement of the 1940s and the
1950s, has recently resurged in the form of the nascent field
of bio-inspired systems and evolvable hardware [1]. Most
work carried out to date under this heading involves the
application of evolutionary algorithms to the synthesis of
digital or analog systems. From this perspective, evolv-
able hardware is simply a sub-domain of artificial evolu-
tion, where the final goal is the synthesis of an electronic
circuit [2, 3]. However, several researchers have set more
far-reaching goals for the field as a whole.

Current and (possible) future evolving hardware systems
can be classified according to two distinguishing character-
istics. The first involves the distinction between offline ge-
netic operations, carried out in software, and online ones,
which take place on an actual circuit. The second charac-
teristic concerns open-endedness. When the fitness crite-
rion is imposed by the user in accordance with the task to
be solved (currently the rule with artificial-evolution tech-
niques), one attains a form of guided evolution. This is
to be contrasted with open-ended evolution occurring in
nature, which admits no externally-imposed fitness crite-
rion, but rather an implicit, emergent, dynamical one (that
could arguably be summed up as survivability). In view of
these two characteristics, one can define the following four
categories of evolvable hardware [2, 3]:

• The first category can be described as evolutionary

circuit design, where the entire evolutionary process
takes place in software, with the resulting solution pos-
sibly loaded onto a real circuit. Though a potentially
useful design methodology, this falls completely within
the realm of traditional evolutionary techniques, as
noted above. As examples one can cite the works of
Refs. [4–7].

• The second category involves systems in which a real
circuit is used during the evolutionary process, though
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most operations are still carried out offline, in soft-
ware. As examples one can cite Refs. [8–11], where
fitness calculation is carried out on a real circuit.

• In the third category one finds systems in which all

operations (selection, crossover, mutation), as well as
fitness evaluation, are carried out online, in hardware.
The major aspect missing concerns the fact that evo-
lution is not open ended, i.e., there is a predefined goal
and no dynamic environment to speak of. An example
is the firefly machine described in this paper [12,13].

• The last category involves a population of hardware
entities, evolving in an open-ended environment.

It has been argued that only systems within the last cat-
egory can be truly considered evolvable hardware, a goal
which still eludes us at present [2, 3]. We point out that a
more correct term would probably be evolving hardware.
A natural application area for such systems is within the
field of autonomous robots, which involves machines capa-
ble of operating in unknown environments without human
intervention [14]. A related application domain is that
of controllers for noisy, changing environments. Another
interesting example would be what has been dubbed by
Ref. [2] “Hard-Tierra.” This involves the hardware imple-
mentation of the Tierra “world,” which consists of an open-
ended environment of evolving computer programs [15]. A
small-scale experiment along this line was undertaken by
Ref. [16]. The idea of Hard-Tierra is interesting since it
leads us to the observation that open-endedness does not
necessarily imply a real, biological environment. The fire-
fly machine, belonging to the third category, demonstrates
that complete online evolution can be attained, though not
in an open-ended environment. This latter goal remains a
prime target for future research.
In this paper we present the firefly machine, an on-

line, evolving hardware system, thus demonstrating that
“evolving ware,” evolware, can be attained [12, 13, 17, 18].
Section II presents cellular automata (CA), the machine
model used in our project, as well as the synchronization
problem, which we set out to solve via evolution. Sec-
tion III delineates the cellular programming algorithm, by
which CAs are evolved to perform computational tasks.
In Section IV we briefly present large-scale programmable
circuits, specifically concentrating on Field-Programmable
Gate Arrays (FPGA). An FPGA can be programmed “on
the fly,” thus offering an attractive technological platform
for realizing, among others, evolware. In Section V we de-
scribe the FPGA-based firefly machine. Evolution takes
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place on-board, with no reference to or aid from any ex-
ternal device (such as a computer that carries out genetic
operators), thus attaining online autonomous evolware. Fi-
nally, some concluding remarks are presented in Section VI.

II. Cellular automata and the synchronization

task

The machine model we employ is based on the cellu-
lar automata (CA) model. CAs are dynamical systems in
which space and time are discrete. A cellular automaton
consists of an array of cells, each of which can be in one of a
finite number of possible states, updated synchronously in
discrete time steps, according to a local, identical interac-
tion rule. The state of a cell at the next time step is deter-
mined by the current states of a surrounding neighborhood
of cells; this transition is usually specified in the form of a
rule table, delineating the cell’s next state for each possi-
ble neighborhood configuration [19,20]. The cellular array
(grid) is n-dimensional, where n = 1, 2, 3 is used in prac-
tice. In this work we shall concentrate on one-dimensional
grids, with two possible states per cell, denoted 0 and 1. In
such CAs each cell is connected to r local neighbors (cells)
on either side, as well as to itself, where r is a parameter
referred to as the radius (thus, each cell has 2r + 1 neigh-
bors).
CAs exhibit three notable features, namely, massive par-

allelism, locality of cellular interactions, and simplicity of
basic components (cells), rendering them ideal for our stud-
ies. The machine model we employ is an extension of
the original CA model, termed non-uniform cellular au-

tomata [21]. Such automata function in the same way as
uniform ones, the only difference being in the local cellular
interaction rules that need not be identical for all cells. A
major problem common to such local, parallel systems, is
the painstaking task one is faced with in designing them
to exhibit a specific behavior or solve a particular prob-
lem. This results from the local dynamics of the system,
which renders the design of local interaction rules to per-
form global computational tasks extremely arduous. In
recent years evolutionary techniques have been employed
to evolve CAs.
The application of genetic algorithms to the evolu-

tion of uniform cellular automata was studied by Refs.
[22–25]. We have applied cellular programming, described
in the next section, to the evolution of non-uniform CAs
[12,13,17,18,26–31]. One of the computational tasks stud-
ied is known as synchronization: given any initial config-
uration, the CA must reach a final configuration, within
M time steps, that oscillates between all 0s and all 1s on
successive time steps (Figure 1). The term configuration

refers to an assignment of states to cells in the grid. As
noted by Ref. [24], this is perhaps the simplest, non-trivial
synchronization task, since oscillation is a global property
of a configuration, whereas a small-radius CA employs only
local interactions.

time
↓

Fig. 1. The one-dimensional synchronization task: Operation of a coe-
volved, non-uniform, 2-state CA. The connectivity radius is r = 1, mean-
ing that each cell has two neighbors, one to its immediate left and one
to its immediate right. Grid size is N = 149. White squares represent
cells in state 0, black squares represent cells in state 1. The pattern of
configurations is shown through time (which increases down the page).
The initial configuration was randomly generated.

III. The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell
may contain a different rule. A cell’s rule table is encoded
as a bit string, known as the “genome,” containing the
next-state (output) bits for all possible neighborhood con-
figurations, listed in lexicographic order; e.g., for CAs with
r = 1, the genome consists of 8 bits, where the bit at posi-
tion 0 is the state to which neighborhood configuration 000
is mapped to and so on until bit 7, corresponding to neigh-
borhood configuration 111. Rather than employ a popu-

lation of evolving, uniform CAs, as with genetic-algorithm
approaches, our algorithm involves a single, non-uniform
CA of size N , with cell rules initialized at random.2 Initial
configurations are then generated at random, and for each
one the CA is run for M time steps (in our simulations
we used M ≈ N so that computation time is linear with
grid size). Each cell’s fitness is accumulated over C = 300
initial configurations, where a single run’s score is 1 if the
cell is in the correct state after M + 4 iterations, and 0
otherwise. The (local) fitness score for the synchronization
task is assigned to each cell by considering the last four
time steps (i.e., [M + 1..M + 4]): if the sequence of states
over these steps is precisely 0 → 1 → 0 → 1 (i.e., an al-
ternation of 0s and 1s, starting from 0), the cell’s fitness
score is 1, otherwise this score is 0. After every C con-
figurations evolution of rules occurs by applying crossover
and mutation. This evolutionary process is performed in a
completely local manner, where genetic operators are ap-
plied only between directly connected cells. It is driven by
nfi(c), the number of fitter neighbors of cell i after c config-
urations. The pseudo-code of our algorithm is delineated

2Note that our algorithm is not necessarily restricted to a single, non-
uniform CA since an ensemble of distinct grids can evolve independently
in parallel.



in Figure 2.

for each cell i in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }

end parallel for
c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
if cell i is in the correct final state then

fi = fi + 1
end if

end parallel for
c = c+ 1
if c mod C = 0 then { evolve every C configurations}
for each cell i do in parallel

compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter

neighboring rule, followed by mutation
else if nfi(c) = 2 then replace rule i with the

crossover of the two fitter neighboring
rules, followed by mutation

else if nfi(c) > 2 then replace rule i with the
crossover of two randomly chosen fitter
neighboring rules, followed by mutation
(this case can occur if r > 1)

end if
fi = 0

end parallel for
end if

end while

Fig. 2. Cellular programming pseudo-code.

Crossover between two rules is performed by selecting at
random (with uniform probability) a single crossover point
and creating a new rule by combining the first rule’s bit
string before the crossover point with the second rule’s bit
string from this point onward. Mutation is applied to the
bit string of a rule with probability 0.001 per bit.
As opposed to the standard genetic algorithm, where

a population of independent problem solutions globally

evolves [32, 33], our approach involves a grid of rules that
coevolves locally [12, 26]. The CA performs computations
in a completely local manner, each cell having access only
to its immediate neighbors’ states; in addition, the evolu-

tionary process in our case is local, since application of ge-
netic operators as well as fitness assignment takes place lo-
cally. This renders our approach more amenable to imple-
mentation as evolware, in comparison to other approaches,
such as the standard genetic algorithm.
Using the cellular programming algorithm we have

shown that non-uniform, r = 1 CAs can be evolved to suc-
cessfully solve the synchronization task. Furthermore, the
performance level attained by evolved, non-uniform, r = 1
CAs is better than any possible uniform, r = 1 CA, none
of which can solve the synchronization problem [12, 18].
Figure 1 demonstrates the operation of a coevolved CA.

IV. Large-scale programmable circuits

An integrated circuit is called programmable when the
user can configure its function by programming. The cir-
cuit is delivered after manufacturing in a generic state and

the user can adapt it by programming a particular func-
tion. The programmed function is coded as a string of bits,
representing the configuration of the circuit. In this paper
we consider solely programmable logic circuits, where the
programmable function is a logic one, ranging from simple
boolean functions to complex state machines.
The first programmable circuits allowed the implemen-

tation of logic circuits that were expressed as a logic sum
of products. These are the PLDs (Programmable Logic
Devices), whose most popular version is the PAL (Pro-
grammable Array Logic). More recently, a novel tech-
nology has emerged, affording higher flexibility and more
complex functionality: the Field-Programmable Gate Ar-
ray, or FPGA [34]. An FPGA is an array of logic cells
placed in an infrastructure of interconnections, which can
be programmed at three distinct levels (Figure 3): (1) the
function of the logic cells, (2) the interconnections between
cells, and (3) the inputs and outputs. All three levels are
configured via a string of bits that is loaded from an exter-
nal source, either once or several times. In the latter case
the FPGA is considered reconfigurable.

configurable
interconnections

configurable
functions

configuration string

logic cell I/O cell

Fig. 3. A schematic diagram of a Field-Programmable Gate Array
(FPGA). An FPGA is an array of logic cells placed in an infrastructure of
interconnections, which can be programmed at three distinct levels: (1)
the function of the logic cells, (2) the interconnections between cells, and
(3) the inputs and outputs. All three levels are configured via a config-
uration bit string that is loaded from an external source, either once or
several times.

FPGAs are highly versatile devices that offer the de-
signer a wide range of design choices. However, this poten-
tial power necessitates a suite of tools in order to design
a system. Essentially, these generate the configuration bit
string upon given such inputs as a logic diagram or a high-
level functional description.

V. Implementing evolware

In this section we describe the firefly evolware machine,
an online implementation of the cellular programming al-
gorithm (see Refs. [12,13] for the relationship between the
synchronization problem and fireflies in nature). To fa-
cilitate implementation, the algorithm is slightly modified
(with no loss in performance): the two genetic operators,
one-point crossover and mutation, are replaced by a sin-
gle operator, uniform crossover. Under this operation, a



Fig. 4. The firefly evolware machine. The system is a one-dimensional, non-uniform, r = 1 cellular automaton that evolves via execution of the cellular
programming algorithm. Each of the 56 cells contains the genome representing its rule table; these genomes are randomly initialized, after which
evolution takes place. The board contains the following components: (1) LED indicators of cell states (top), (2) switches for manually setting the
initial states of cells (top, below LEDs), (3) Xilinx FPGA chips (below switches), (4) display and knobs for controlling two parameters (‘time steps’
and ‘configurations’) of the cellular programming algorithm (bottom left), (5) a synchronization indicator (middle left), (6) a clock pulse generator
with a manually-adjustable frequency from 0.1 Hz to 1 MHz (bottom middle), (7) an LCD display of evolved rule tables and fitness values obtained
during evolution (bottom right), and (8) a power-supply cable (extreme left). (Note that this is the system’s sole external connection.)

new rule, i.e., an “offspring” genome, is created from two
“parent” genomes (bit strings) by choosing each offspring
bit from one or the other parent, with a 50% probability
for each parent [32, 33]. The changes to the algorithm are
therefore as follows (refer to Figure 2):

else if nfi(c) = 1 then replace rule i with the fitter
neighboring rule, without mutation

else if nfi(c) = 2 then replace rule i with the
uniform crossover of the two fitter neighboring
rules, without mutation

The evolutionary process ends following an arbitrary deci-
sion by an outside observer (the ‘while not done’ loop of
Figure 2).
The cellular programming evolware is implemented on a

physical board whose only link to the “external world” is
the power-supply cable. The features distinguishing this
implementation from previous ones (described in Ref. [1])
are: (1) an ensemble of individuals (cells) is at work rather
than a single one, (2) genetic operators are all executed on-
board, rather than on a remote, offline computer, and (3)
the evolutionary phase does not necessitate halting the ma-
chine’s operation, but is rather intertwined with normal ex-

ecution mode. These features entail an online autonomous
evolutionary process.
The active components of the evolware board comprise

exclusively FPGA circuits, with no other commercial pro-
cessor whatsoever. An LCD screen enables the display of
information pertaining to the evolutionary process, includ-
ing the current rule and fitness value of each cell. The
parameters M (number of time steps a configuration is
run) and C (number of configurations between evolution-
ary phases, see Section III) are tunable through on-board
knob selectors; in addition, their current values are dis-
played. The implemented grid size is N = 56 cells, each
of which includes, apart from the logic component, a LED
indicating its current state (on=1, off=0), and a switch by
which its state can be manually set (this latter is used to
test the evolved system after termination of the evolution-
ary process, by manually loading initial configurations).
We have also implemented an on-board global synchroniza-
tion detector circuit, for the sole purpose of facilitating the
external observer’s task; this circuit is not used by the CA
in any of its operational phases. The machine is depicted
in Figure 4.



The architecture of a single cell is shown in Figure 5. The
binary state is stored in a D-type flip-flop whose next state
is determined either randomly, enabling the presentation of
random initial configurations, or by the cell’s rule table, in
accordance with the current neighborhood of states. Each
bit of the rule’s bit string is stored in a D-type flip-flop
whose inputs are channeled through a set of multiplexors,
according to the current operational phase of the system:

1. During the initialization phase of the evolutionary al-
gorithm, the (eight) rule bits are loaded with random
values. This is carried out once per evolutionary run.

2. During the execution phase of the CA, the rule bits
remain unchanged. This phase lasts a total of C ∗M
time steps (C configurations, each one run for M time
steps).

3. During the evolutionary phase, and depending on the
number of fitter neighbors, nfi(c) (Section III), the
rule is either left unchanged (nfi(c) = 0), replaced by
the fitter left or right neighboring rule (nfi(c) = 1),
or replaced by the uniform crossover of the two fitter
rules (nfi(c) = 2).

RULE_0

RULE_6

USED
DURING
EVOLUTION RANDOM

LEFT_FITTER

RIGHT_FITTER

RIGHT_RULE_7

LEFT_RULE_7

RANDOM

RULE_7

D Q

11

01

10

00

LEFT_STATE

RANDOM

RIGHT_STATE

STATE

000

D

110

111

Q

Fig. 5. Circuit design of a cell. The binary state is stored in a D-type
flip-flop whose next state is determined either randomly, enabling the
presentation of random initial configurations, or by the cell’s rule table,
in accordance with the current neighborhood of states. Each bit of the
rule’s bit string is stored in a D-type flip-flop whose inputs are channeled
through a set of multiplexors, according to the current operational phase
of the system (initialization, execution, or evolution).

To determine the cell’s fitness score for a single initial
configuration, i.e., after the CA has been run for M + 4
time steps, a four-bit shift register is used. This register
continuously stores the states of the cell over the last four
time steps ([t+1..t+4]). An AND gate tests for occurrence
of the “good” final sequence (i.e., 0 → 1 → 0 → 1), pro-
ducing the HIT signal, signifying whether the fitness score
is 1 (HIT) or 0 (no HIT).
Each cell includes a fitness counter and two compara-

tors for comparing the cell’s fitness value with those of
its two neighbors. Note that the cellular connections are
entirely local, a characteristic enabled by the local opera-
tion of the cellular programming algorithm. In the interest
of cost reduction, a number of resources have been imple-
mented within a central control unit, including the random
number generator and the M and C counters. These are

implemented on-board and do not comprise a breach in the
machine’s autonomous mode of operation.
The random number generator is implemented with a

linear feedback shift register (LFSR), producing a random
bit stream that cycles through 232 − 1 different values (the
value 0 is excluded since it comprises an undesirable attrac-
tor). As a cell uses at most eight different random values
at any given moment, it includes an 8-bit shift register
through which the random bit stream propagates. The
shift registers of all grid cells are concatenated to form one
large stream of random bit values, propagating through
the entire CA. Cyclic behavior is eschewed due to the odd
number of possible values produced by the random number
generator (232− 1) and to the even number of random bits
per cell.

VI. Concluding remarks

In this paper we considered the general issue of evolv-
ing machines. We presented the cellular programming ap-
proach, in which parallel cellular machines evolve to solve
computational tasks, specifically focusing on the synchro-
nization problem. We described an FPGA-based imple-
mentation of the cellular programming algorithm, the fire-
fly machine, that exhibits complete online evolution, all
operators carried out in hardware, with no reference to an
external computer. Firefly thus belongs to the third cate-
gory of evolving hardware, described in Section I. The ma-
jor aspect missing concerns the fact that evolution is not
open ended, i.e., there is a predefined goal and no dynamic
environment to speak of. Open-endedness remains a prime
target for future research in the field. We note that the
machine’s construction was facilitated by the cellular pro-
gramming algorithm’s local dynamics, highlighting a major
advantage of such local evolutionary processes.
Evolware systems such as firefly enable enormous gains

in execution speed. The cellular programming algorithm,
when run on a high-performance workstation, executes
60 initial configurations per second.3 In comparison, the
firefly machine executes 13, 000 initial configurations per
second.4

The evolware machine was implemented using FPGA cir-
cuits, configured such that each cell within the system be-
haves in a certain general manner, after which evolution is
used to “find” the cell’s specific behavior, i.e., its rule table.
Thus, the system consists of a fixed part and an evolving
part, both specified via FPGA configuration strings (Fig-
ure 6). An interesting outlook on this setup is to consider
the evolutionary process as one where an organism evolves
within a given species, the former specified by the FPGA’s
evolving part, the latter specified by the fixed part. This
raises the interesting issue of evolving the species itself.

3This was measured using a grid of size N = 56, each initial configura-
tion being run for M = 75 time steps, with the number of configurations
between evolutionary phases C = 300.

4This is achieved when the machine operates at the current maximal
frequency of 1 MHz. In fact, this can easily be increased to 6 MHz,
thereby attaining 78, 000 configurations per second.
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Fig. 6. The firefly cell is hierarchically organized, consisting of two parts:
(1) the “organismic” level, comprising an evolving configuration string
that specifies the cell’s rule table, and (2) the “species” level, a fixed
(non-evolved) configuration string that defines the underlying FPGA’s
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