
The Flowering of Fuzzy CoCo: Evolving Fuzzy Iris Classifiers

Carlos Andrés Peña-Reyes and Moshe Sipper1

Abstract

Combining the search power of coevolutionary com-

putation with the expressive power of fuzzy sys-

tems, we present Fuzzy CoCo: Fuzzy Coopera-

tive Coevolution. We demonstrate the efficacy of

our algorithm by applying it to a hard problem—

flower classification—obtaining the best classifi-

cation performance to date, coupled with high

human-interpretability.

1. Introduction

Fuzzy logic is a computational paradigm that pro-

vides a mathematical tool for representing and ma-

nipulating information in a way that resembles hu-

man communication and reasoning processes [1].

Fuzzy modeling is the task of identifying the param-

eters of a fuzzy inference system so that a desired

behavior is attained [1]. This task becomes difficult

when the available knowledge is incomplete or when

the problem space is very large, thus motivating the

use of automatic approaches to fuzzy modeling—

such as evolutionary algorithms. In this paper

we apply coevolutionary fuzzy modeling to a well-

known benchmark classification problem: Fisher’s

iris data.

2. Fuzzy CoCo: A Cooperative Coevolution-

ary Approach to Fuzzy Modeling

Fuzzy CoCo is a Cooperative Coevolutionary ap-

proach to fuzzy modeling, wherein two coevolving

species are defined: database (membership func-

tions) and rule base. This approach is based pri-

marily on the framework defined by Potter [2].

In Fuzzy CoCo, the fuzzy modeling problem is
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solved by two coevolving cooperative species. In-

dividuals of the first species encode values which

define completely all the membership functions for

all the variables of the system. Individuals of the

second species define a set of rules of the form:

if (v1 is A1) and . . . (vn is An) then (output is C),

where the term Av indicates which one of the lin-

guistic labels of fuzzy variable v is used by the rule.

The two evolutionary algorithms used to control the

evolution of the two populations are instances of a

simple genetic algorithm. The genetic algorithms

apply fitness-proportionate selection to choose the

mating pool, and apply an elitist strategy with an

elitism rate Er to allow a given proportion of the

best individuals to survive into the next generation.

Standard crossover and mutation operators are ap-

plied with probabilities Pc and Pm, respectively.

An individual undergoing fitness evaluation estab-

lishes cooperations with one or more representatives

of the other species, i.e., it is combined with individ-

uals from the other species to construct fuzzy sys-

tems. The fitness value assigned to the individual

depends on the performance of the fuzzy systems

it participated in. Representatives, or cooperators,

are selected both fitness-proportionally and ran-

domly from the last generation since they have al-

ready been assigned a fitness value. In Fuzzy CoCo,

Ncf cooperators are probabilistically selected ac-

cording to their fitness, usually the fittest individ-

uals, thus favoring the exploitation of known good

solutions. The other Ncr cooperators are selected

randomly from the population to represent the di-

versity of the species, maintaining in this way ex-

ploration of the search space. For a more detailed

exposition of Fuzzy CoCo see [3].

3. Applying Fuzzy CoCo to Fisher’s iris data

Fisher’s iris data, wherein iris flowers are classi-

fied according to external features, has been widely
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used to test classification and modeling algorithms,

recently including fuzzy models [4–8]. We pro-

pose herein two types of fuzzy logic-based systems

to solve the iris data classification problem: (1)

fuzzy controller-type (as used by Shi et al. [4] and

Russo [5]), and (2) fuzzy classifier-type (as used by

Hong and Chen [6], Wu and Chen [7], and Hung

and Lin [8]). Both types consist of a fuzzy infer-

ence subsystem whose output is fed to a selection

unit.

In the fuzzy controller the fuzzy subsystem com-

putes a single continuous value estimating the class

to which the input vector belongs. Note that each

class is assigned a numeric value: based on the iris

data distribution, we assigned values 1, 2, and 3 to

the classes setosa, versicolor, and virginica, respec-

tively (such an assignment makes sense only under

the assumption that versicolor is an intermediate

species in between setosa and virginica). The se-

lection unit approximates this value to the nearest

class value using a stair function.

In the fuzzy classifier the fuzzy inference subsys-

tem computes a continuous membership value for

each of the three output classes. The selection

unit chooses the most active class, provided that its

membership value exceeds a given threshold (which

we set to 0.5).

The two fuzzy subsystems thus differ in the num-

ber of output variables: a single output (with val-

ues {1,2,3}) for the controller-type and three out-

puts (with values {0,1}) for the classifier-type. In

general, controller-type systems take advantage of

data distribution while classifier-type systems offer

higher interpretability because the output classes

are independent; these latter systems are harder to

design.

Fuzzy CoCo searches for four parameters: input

membership-function values, relevant input vari-

ables, and antecedents and consequents of rules.

The genomes of the two species are constructed as

follows:

• Species 1: Membership functions. There are

four input variables (SL, SW , PL, and PW ),

each with three parameters P1, P2, and P3,

defining the membership-function edges (Fig-
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Fig. 1: Fuzzy variable Petal Length.

ure 1).

• Species 2: Rules (Controller-type systems).

The i-th rule has the form:

if (SL is Ai
SL) and . . . and (PW is Ai

PW )

then (output is Ci),

Ai
j can take on the values: 1 (Low), 2

(Medium), 3 (High), or 0 (Other). Ci can

take on the values: 1 (setosa), 2 (versicolor),

or 3 (virginica).

• Species 2: Rules (Classifier-type systems).

The i-th rule has the form:

if (SL is Ai
SL) and . . . and (PW is Ai

PW )

then {(setosa is Ci
set), (versicolor is Ci

ver),

(virginica is Ci
vir)},

Ai
j can take on the values: 1 (Low), 2

(Medium), 3 (High), or 0 (Other). Ci
j can

take on the values: 0 (No), or 1 (Yes).

Table 1 delineates the parameter encoding for both

species’ genomes, which together describe an entire

fuzzy system. Table 2 delineates values and ranges

of values of the evolutionary parameters.

Table 1: Genome encoding.
Species 1: Membership functions

Parameter Values Bits Qty Total
bits

Pi [Vmn − Vmx] 5 3 × 4 60

Species 2: Rules (Controller-type)
Parameter Values Bits Qty Total

bits

A {0,1,2,3} 2 4 × Nr 8 × Nr

C {1,2,3} 2 Nr + 1 2×(Nr+1)
Total Genome Length 10×Nr +2

Species 2: Rules (Classifier-type)
Parameter Values Bits Qty Total

bits

A {0,1,2,3} 2 4 × Nr 8 × Nr

C {0,1} 1 3×(Nr+1) 3×(Nr+1)
Total Genome Length 11×Nr +3

Table 2: Fuzzy CoCo set-up.
Parameter Values

Population size Np {60,70}
Maximum generations Gmax 500 + 100 × Nr

Crossover probability Pc 1
Mutation probability Pm {0.02,0.05,0.1}
Elitism rate Er {0.1,0.2}
“Fit” cooperators Ncf 1
Random cooperators Ncr {1,2}
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Our fitness function combines three criteria: (1) Fc:

classification performance, computed as the per-

centage of cases correctly classified; (2) Fmse: a

value dependent on the mean square error (mse),

measured between the continuous values of the out-

puts and the correct classification given by the iris

data set (Fmse = 1−mse); and (3) Fv: a rule-length

dependent fitness with value 0 when the average

number of variables per active rule is maximal and

equal to 1 in the hypothetical case of zero-variable

rules. The fitness function combines these three

measures:

F =

{

Fc × F β
mse if Fc < 1

(Fc − αFv) × F β
mse if Fc = 1,

where α = 1/150 and β = 0.3.

4. Results

In this section we present the fuzzy systems evolved

using Fuzzy CoCo for the two setups described

above. We compare our systems with those pre-

sented in recently published articles, and detail two

high-performance systems obtained.

4.1. Controller-type systems

We performed a total of 145 evolutionary runs,

searching for controller-type systems with 2, 3, and

4 rules, all runs of which found systems whose

classification performance exceeds 97.33% (i.e., the

worst system misclassifies only 4 cases). The av-

erage classification performance of these runs was

98.98%, corresponding to 1.5 misclassifications. 121

runs led to a fuzzy system misclassifying 2 or less

cases, and of these, 4 runs found perfect classifiers.

Table 3 compares our best controller-type sys-

tems with the top systems obtained by two other

evolutionary fuzzy modeling approaches. Shi et

al. [4] used a simple genetic algorithm with adaptive

crossover and adaptive mutation operators. Russo’s

FuGeNeSys method [5] combines evolutionary algo-

rithms and neural networks to produce fuzzy sys-

tems. The main drawback of these two methods is

the low interpretability of the generated systems.

As they do not define constraints on the input

membership-function shapes, almost none of the

semantic criteria favoring interpretability are re-

spected [9]. As evident in Table 3, the evolved fuzzy

Table 3: Comparison of results. Parentheses show
average number of variables per rule.

Rules
per

Shi et

al. [4]
FuGeNeSys
[5]

Fuzzy CoCo

system best best average best

2 -- -- 98.71%

(1.9)

99.33%

(2)
3 -- -- 99.10%

(1.3)
100%
(1.7)

4 98.00%
(2.6)

-- 99.12%
(1.3)

100%
(2.5)

5 -- 100%
(3.3)

-- --

Database
SL SW PL PW

P1 5.68 3.16 1.19 1.55
P2 6.45 3.16 1.77 1.65
P3 7.10 3.45 6.03 1.74

Rule base
Rule 1 if (PL is High) then (output is virginica)
Rule 2 if (SW is Low) and (PW is Low) then

(output is virginica)
Rule 3 if (SL is Medium) and (PW is Medium)

then (output is setosa)
Default else (output is setosa)

Fig. 2: The best evolved, controller-type system with
three rules. It exhibits a classification rate of
100%, and an average of 1.7 variables per rule.

systems described in this section surpass those ob-

tained by the two other approaches in terms of per-

formance, while maintaining high interpretability.

Our approach not only produces systems exhibit-

ing high performance, but also ones with less rules

and less antecedents per rule (which systems are

thus more interpretable).

Fuzzy CoCo found controller-type systems with 3

and 4 rules exhibiting perfect performance (no mis-

classifications). Among these, we consider as best

the system with fewest rules and variables. Fig-

ure 2 presents one such three-rule system, with an

average of 1.7 variables per rule.

4.2. Classifier-type systems

We performed a total of 144 evolutionary runs,

searching for controller-type systems with 2, 3, and

4 rules, all runs of which found systems whose

classification performance exceeds 95.33% (i.e., the

worst system misclassifies 7 cases). The average

classification performance of these runs was 97.40%,

corresponding to 3.9 misclassifications. 104 runs led

to a fuzzy system misclassifying 5 or less cases, and

of these, 13 runs found systems with a single mis-

classification.

Table 4 compares our best classifier-type systems

with the top systems obtained by three other fuzzy
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Table 4: Comparison of results. Parentheses show
average number of variables per rule.

Rules

per
system

Hong and

Chen [6]

Wu and

Chen [7]

Hung and

Lin [8]

Fuzzy CoCo

best average average average best

2 -- -- -- 96.47%

(2.1)

98.00%

(1.5)
3 -- 96.21%

(4)
-- 97.51%

(2.4)
99.33%
(2.3)

4 -- -- 97.40%
(4)

98.21%
(2.3)

99.33%
(2)

8 97.33%
(2)

-- -- -- --

modeling approaches. Hong and Chen [6] and Wu

and Chen [7] proposed sequential learning methods

to progressively construct fuzzy systems. These two

approaches are able to find systems with either a

few [7] or simple rules [6]. They do not, however,

constrain the input membership functions, thus

rendering the obtained systems less interpretable.

Hung and Lin [8] proposed a neuro-fuzzy hybrid

approach to learn classifier-type systems. As their

learning strategy hinges mainly on the adaptation

of the connection weights, their systems exhibit

low interpretability. The evolved fuzzy systems de-

scribed herein surpass those obtained by these three

approaches in terms of both performance and in-

terpretability. As evident in Table 4, our approach

not only produces systems exhibiting higher per-

formance, but also ones with less rules and less

antecedents per rule (which are thus more inter-

pretable).

Fuzzy CoCo found classifier-type systems with 3

and 4 rules exhibiting the highest classification per-

formance to date (i.e., 99.33%, corresponding to 1

misclassification). We consider as most interesting

the system with the smallest number of conditions

(i.e., the total number of variables in the rules).

Figure 3 presents one such three-rule system with

an average of 2.3 variables per rule, corresponding

to a total of 7 conditions.

5. Concluding remarks

We presented Fuzzy CoCo, a cooperative coevolu-

tionary approach to fuzzy modeling, and applied

it to Fisher’s iris data problem. Comparing our

results with other fuzzy-modeling approaches, we

conclude that our coevolved systems attain higher

classification performance and better interpretabil-

ity. These promising results have incited us to en-

Database
SL SW PL PW

P1 4.65 2.68 4.68 0.39
P2 4.65 3.74 5.26 1.16
P3 5.81 4.61 6.03 2.03

Rule base
Rule 1 if (PW is Low) then {(setosa is Yes),

(versicolor is No), (virginica is No) }
Rule 2 if (PL is Low) and (PW is Medium)

then{(setosa is No), (versicolor is Yes),
(virginica is No)}

Rule 3 if (SL is High) and (SW is Medium)
and (PL is Low) and (PW is High)
then{(setosa is No), (versicolor is Yes),
(virginica is No)}

Default else{(setosa is No), (versicolor is No),
(virginica is Yes)}

Fig. 3: The best evolved, classifier-type system with
three rules. It exhibits a classification rate of
99.33%, and an average of 2.3 variables per
rule.

gage in further investigation, specifically: (1) appli-

cation of Fuzzy CoCo to more complex problems,

and (2) improving and expanding upon the method-

ology presented herein. Our underlying goal is to

provide an approach for automatically producing

high-performance, interpretable fuzzy systems for

real-world problems.
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