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Evolutionary Design of FreeCell Solvers

Achiya Elyasaf, Ami Hauptman, and Moshe Sipper

Abstract—We evolve heuristics to guide staged deepening
search for the hard game of FreeCell, obtaining top-notch
solvers for this human-challenging puzzle. We first devise several
novel heuristic measures using minimal domain knowledge and
then use them as building blocks in two evolutionary setups
involving a standard genetic algorithm and policy-based, genetic
programming. Our evolved solvers outperform the best FreeCell
solver to date by three distinct measures: 1) number of search
nodes is reduced by over 78%; 2) time to solution is reduced
by over 94%; and 3) average solution length is reduced by over
30%. Our top solver is the best published FreeCell player to
date, solving 99.65% of the standard Microsoft 32K problem set.
Moreover, it is able to convincingly beat high-ranking human
players.

Fig. 1. A FreeCell game configuration. Cascades: Bottom & pHeun-
Index Terms—Evolutionary Algorithms, Genetic Algorithms,  dations: 4 upper-right piles: Free cells: 4 upper-leftxeNote that cascades

Genetic Programing, Heuristic, Hyper Heuristic, FreeCell are not arranged according to suits, but foundations argallmoves for the
current configuration: 1) movingé from the leftmost cascade to either the
pile fourth from the left (on top of th&<), or to the pile third from the right

|. INTRODUCTION (on top of the8Y); 2) moving the6<> from the right cascade to the left one
(on top of the7&); and 3) moving any single card on top of a cascade onto
ISCRETE puzzles, also known as single-player-gamese empty free cell.

are an excellent problem domain for artificial intelligence
research, because they can be parsimoniously described yet

are often hard to solve [1]. As such, puzzles have been t8|s or cascades. Legal move destinations include: a home
focus of substantial research in Al during the past decad@éundation) cell, if all previous (i.e., lower) cards afecady
(e.g., [2], [3]). Nonetheless, quite a few NP-Complete e&Z there: empty free cells; and, on top of a next-highest card of
have remained relatively neglected by academic reseachghposite color in a cascade (Figure 1). FreeCell was proven
(see [4] for a review). by Helmert [5] to be NP-complete. In his paper, Helmert
Search algorithms for puzzles (as well as for other types @kplains that the hardness of the domain is not (or at least
problems) are strongly based on the notion of approximatipgt exclusively) due to the difficulty in allocating free isel
the distance of a given configuration @iete to the problem’s: or empty pile positions, but rather due to the choice of which
solution (orgoal). Such approximations are found by meangard to move on top of a pile when there are two possible
of a computationally efficient function, known ashauristic choices. Computational complexity aside, even in its kit
function By applying such a function to states reachable froﬁbpular version (described below) many (oft-frustratagtnan
the current one considered, it becomes possible to sele&tm@|ayers (including the authors) will readily attest to there’s
promising alternatives earlier in the search process,ilplgss hardness. The attainment of a competent machine playedwoul
reducing the amount of search effort (typically measured {fhdoubtedly be considered a human-competitive result.
number of nodes expanded) required to solve a given problemg,qo |l remained relatively obscure until it was included
The putative reduction is strongly tied to the quality of the the Windows 95 operating system (and in all subsequent
heuristic function used: employing a perfect function ”’Ear\‘/ersions), along with 32,000 problems—known Microsoft
simply “strolling” onto the solution (i.e., no search detflc 35k 41" solvable but one (this latter, game #11982, was
while using a bad function could render the search Iesg, en to be unsolvable [6]). Due to Microsoft's move, Free-
efficient than totally unlr_1formed search, such as breads-fi~o|| has been claimed to be one of the world’s most popular
search (BFS) or depth-first search (DFS). _games [7]. The Microsoft version of the game comprises a

A well-known, highly popular example within the domainganqard deck of 52 cards, 8 cascades, 4 foundations, and 4
of discrete puzzles is the card game of FreeCell. Startirly Wkree cells. Though limited in size, this FreeCell versioitl st

aII'car.ds randomly divi.ded int& piles (calledcascadekg Fhe requires an enormous amount of search, due both to long
objective of the game is to move all cards onto four differen, sions and to large branching factors. Thus it remainsbu
piles (calledfoundationy—one per suit—arranged upwardggach for optimal heuristisearch algorithms, such as A* and
from the ace to the king. Additionally, there are |n|F|aII15npty iterative deepening A* [8], [9], both considered standaretim
cells (calledfree celly, whose purpose is to aid V\_/lth moving 4s for solving difficult single-player games (e.g., [LAL].

the cards. Only exposed cards can be moved, either from ftg& ¢ ce|| remains intractable even when powerful enhaneeme

The authors are with the Department of Computer Science, Reioe teChniques are employed, such as transposition tables [12]
University, Beer-Sheva, Israel. Emaflachiya.e,amihau,sippg@gmail.com [13] and macro moves [14].
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Despite there being numerous FreeCell solvers available FreeCell, many of which could be applied to other
via the Web, few have been written up in the scientific domains and games.
literature. The best published solver to date is our own GA-3) We push the limit of what has been done with evolution
based solver [15], [16], [17]. Using a standard GA, we were  further, FreeCell being one of the most difficult single-
able to outperform the previous top gun—Heineman’s staged player domains (if not the most difficult) to which

deepening algorithm—uwhich is based on a hybrid A* / hill- evolutionary algorithms have been applied to date.
climbing search algorithm (henceforth referred to asH&bD 4) We perform a thorough analysis, applying nine different
algorithm). The HSD algorithm, along with a heuristic func- settings for learning hyper-heuristics to this difficult
tion, forms Heineman’s FreeCell solver (we shall distirsgui problem domain.

between the HSD algorithm, the HSD heuristic, and the HSD5) By devising novel heuristics and evolving them into
solver—which includes both). Heineman’s system exploits  hyper-heuristics, we present a new framework for solv-
several important characteristics of the game, elaborbéd ing many heuristic problems, which proved to be effi-
low. cient and successful.

In a previous work, we successfully applied genetic pro- The paper is organized as follows: In the next section we
gramming (GP) to evolve heuristic functions for the Rush Holéxamine previous and related work. In Section Ill we desgcrib
puzzle—a hard, PSPACE-Complete puzzle [18], [19]. Theur method, followed by results in Section IV. Next, we

evolved heuristics dramatically reduced the amount of 80dgiscuss our work in Section V. Finally, we end with concluglin
traversed by an enhanced “brute-force”, iterative-demmen remarks and future work in Sections VI.
search algorithm. Although from a computational-compiexi
point of view the Rush Hour puzzle is harder than FreeCell Il. PREVIOUS WORK
(unlessNP=PSPACE, search spaces mdyced bypical in- We hereby review the work done on FreeCell along with
stances of FreeCell tend to be substantially larger thaﬂethg5 everal related topics
of Rush Hour, and thus far more difficult to solve. This isS '
evidenced by the failure of standard search methods to solve .
FreeCell, as opposed to our success in solving all 6x6 Ru&h Generalized Problem Solvers
Hour problems without requiring any heuristics. Most reported work on FreeCell has been done in the
The approach we take in this paper falls within the hypecontext of automated planning, a field of research in which
heuristic framework, wherein the system is provided with generalized problem solvers (known pknning systemsr
set of predefined or preexisting heuristics for solving daéer plannerg are constructed and tested across various benchmark
problem, and it tries to discover the best manner in which puzzle domains. FreeCell was used as such a domain both in
apply these heuristics at different stages of the searatepso several International Planning Competitions (IPCs) (¢28]),
The aim is to find new, higher-level heuristics, or hyperand in many attempts to construct state-of-the-art planner
heuristics [20]. reported in the literature (e.g., [24], [25]), though in moases
Our main set of experiments focused on evolving conthe deck size was less than 52 cards [5]. The version of the
binations of handcrafted heuristics we devised specificaljame we solve herein, played with a full deck of 52 cards, is
for FreeCell. We used these basic heuristics as buildisgnsidered to be one of the most difficult domains for cladsic
blocks in a GP setting, where individuals were embodied gfanning [7], evidenced by the poor performance of general-
ordered sets of search-guiding rules (wlicieg, the parts purpose planners.
of which were GP trees. We also used a standard genetic
algorithm (GA) and standard, tree-based GP (i.e., withogt Domain-Specific Solvers

policies), both serving as yardsticks for assessing theeypol As stated above there are numerous solvers developed
approach’s performance (in addition to comparisons with th ™ . .
i b ( b ecifically for FreeCell available via the web, the best of

-evoluti h i . Wi I o . o
non-evolutionary methods mentioned above). We emp Oyév@uch is that of Heineman [6]. Although it fails to solve 4%

three different learning methods: Rosin-style coevolufial], : : . T
Hillis-style coevolution [22], and a novel method which WeOfM'CrOSOft 32K, Heineman's solver significantly outperivs

call gradual difficulty (described below). all otr_]er solver_s in terms of both space and time. We elaborat
We will show that not only do we solve 99.65% of the™" this solver in Section IIl-A.

Microsoft 32K problem set, a result far better than the best

solver on record, but we also do so significantly more ef. Evolving Heuristics for Planning Systems

ficiently in terms of time to solve, space (number of nodes Many planning systems are strongly based on the notion of

expanded), and solution length (number of nodes along theuristics (e.g., [26], [27]). However, relatively littheork has

path to the correct solution found). The policy-based, Gbeen done omvolvingheuristics for planning.

solvers described herein thus substantively improve upon o Aler et al. [28] (see also [29], [30]) proposed a multi-

previous GA-based solvers [15], [16], [17]. strategy approach for learning heuristics, embodied asredd
The contributions of this work are as follows: sets of control rules (calledolicies, for search problems in
1) Using genetic programing we develop the strongeal planning. Policies were evolved using a GP-based system

known heuristic-based solver for the game of FreeCellalled EvoCK [30], whose initial population was generated

2) Along the way we devise several novel heuristics fdry a specialized learning algorithm, called Hamlet [31]eifh
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hybrid system, Hamlet-EvoCK, outperformed each of its sub- I1l. METHODS

systems on two benchmark problems often used in planning:oyr work on the game of FreeCell progressed in five phases:
Blocks quld and Logls_tlcs (solvmg 85% and 87% of the 1) Construction of an iterative deepening (uninformed)
problems in these domains, respectively). Note that batheth search engine, endowed with several enhancements.
domains are considered relatively easy (e.g., compared to Heuristics weré not used during this phase
FreeCell), as evidenced by the fact that the last time thee we 2) Guiding an IDA* search algorithm with the HSD heuris-
included in an IPC was in 2002. tic function (HSDH)

Levine and Humphreys [32], and later Levine et al. [33], 3 |mplementation of the HSD algorithm (including the
also evolved policies and used them as heuristic measures to heuristic function).
guide search for the Blocks World and Logistic domains. Thei 4) Design of several novel heuristics and advisors for
system, L2Plan, included rule-level genetic programmiiog ( FreeCell.
dealing with entire rules), as well as simple local search to 5) Evolving heuristics using three different evolutionary
augment GP crossover and mutation. They demonstrated some algorithms—a standard GA, standard (Koza-style) GP
measure of success in these two domains, although hand-code and policy-based GP—eacH combined with three type,s

policies sometimes outperformed the evolved ones. of evolutionary learning mechanisms: Gradual difficulty,
Rosin-style coevolution, and Hillis-style coevolution.

D. Evolving Heuristics for Specific Puzzles )
A. Search Algorithms

q Ter(:]lshimz:]-Ma_n _et aL‘ [34]|co(rjnpare(;j_ two r_nodT:Is to pro- 1) Iterative DeepeningWe initially implemented standard
duce nyper- eur|§t|cst at solved two-dimensional regaial JIterative deepening search [9] as the heart of our game engin
irregular bin-packing problems, an NP-Hard problem domanc|1hiS algorithm may be viewed as a combination of DFS

The learning process in both of the models produced a ruléﬁid BFS: starting from a given configuration (e.g., the ahiti
based mechanism to determine which heuristic to applyditeasqate) with a minimal depth bound, we perfor,m a DES

state. Both models outperformed the continual use of aesm%'earch for the goal state through the graph of game states

heuristic. We note that their rules classified a state and th&n which vertices represent game configurations, and edges

applied a (single) heuristic, whereas we appliesbenbination legal moves). Thus, the algorithm requires ofliy.) memory,

of heuristics at each state, which we believed would perforvr\T,heren is the depth of the search tree. If we succeed, the
better. o ath is returned. If not, we increase the depth bound by a fixed
Hauptman et al. [18], [19] evolved heuristics for the Rushmqynt, and restart the search. Note that since the search is

Hour puzzle, a PSPACE-Complete problem domain. Theyeremental, when we find a solution we are guaranteed that it
started with blind iterative deepening search (i.e., naB80S s gptimal since a shorter solution would have been found in
used) and compared it both to searching with handcraftgd, evious iteration (more precisely, the solution is opfior
heuristics, as well as with evolved ones in the form gf peba near optimal, depending on whether the depth increase £qual
Hauptman et al. demonstrated that evolved heuristics (withy, g greater than 1). For difficult problems, such as Rush
IDA* search) greatly reduce the number of nodes required {@, - and FreeCell, finding solution is sufficient, and there

solve instances of the Rush Hour puzzle,*as compared 10 8§y nically no requirement of finding the optimal solution.
other two methods (blind search and IDA* with handcrafted ap jterative deepening-based game engine receives as input

heuristics). a FreeCell initial configuration (known as a deal), as well as

The problem instances of [18], [19] involved relatively Smagome run parameters, and outputs a solution (i.e., a list of
search spaces—they managed to solve their entire initial tggves) or an indication that the deal could not be solved.
suite using blind search alone (although 2% of the problems\\e opserved that even when we permitted the search
violated their space requirement of 1.6 million nodes), anggorithm to use all the available memory (2GB in our case, as
fared even better when using IDA* with handcrafted hewssti gpposed to [18] where the node count was limited) virtually
(with no evolution required). Therefore, Hauptman et al| Microsoft 32K problems could not be solved. Hence, we
designed a coevolutionary algorithm to find more-challeggi geduced that heuristics were essential for solving FrdeCel
Instances. instances—uninformed search alone was insufficient.

Note thatnoneof the deals in the Microsoft 32K problem 2) |terative Deepening A*:Given that the HSD solver
set could be solved with blind search, nor with IDA* equippedutperforms all other solvers (except ours), we implenente
with handcrafted heuristics, further evidencing that Beleis  the heuristic function used by HSD (described in SectiotB)I
far more difficult. along with the iterative deepening A* (IDA*) search algo-

We applied a standard genetic algorithm (GA) to evolvgthm [9], one of the most prominent methods for solving puz-
solvers for the game of FreeCell, surpassing the top knowfes (e.g., [10], [11], [35]). This algorithm operates damiy
solver [15], [16] . We will show herein that using policy-leal to iterative deepening, except that in the DFS phase h&urist
genetic programming we can dramatically improve upon thiglues are used to determine the order by which children of a
GA-FreeCaell. given node are visited. This move ordering is the only phase

The recent book by Sipper [17] provides a thorough accounherein the heuristic function is used—the open list stngctu
of the previous work on Rush Hour and FreeCell. is still sorted according to depth alone.
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IDA* underperformed where FreeCell was concerned, uflgorithm 1 Heineman's Staged Deepening Algorithm
able to solve many instances (deals). Even using several // Parameters, size of transposition table
heuristic functions, IDA*—despite its success in other difft ~ 1: 7' < initial state
domains—yielded inadequate performance: less than 1% @f while 7" not emptydo

the deals we tackled were solved in a reasonable time. 3. s < remove best state ili according to heuristic value
At this point we opted for employing the HSD solver in its 4 U « all states exactly moves away frons, discovered
entirety, rather than merely the HSD heuristic function. by DFS

3) Staged Deepening:Heineman's Staged Deepening 51 7T « merge(’, U)
(HSD) algorithm is based on the observation that there is no  // merge maintainsl” sorted by descending heuristic
need to store the entire search space seen so far in memory. Vvalue
This is so because of a number of significant characteristics ~ // merge overwrites nodes ifi with newer nodes from
of FreeCell: U of equal heuristic value
if size of transposition table S then
clear transposition table
end if
if goal € T then

o For most states there is more than one distinct permute?-:
tion of moves creating valid solutions. Hence, very little £
backtracking is needed. 8:

o There is a relatively high percentage of irreversible¥
moves: according to the game’s rules a card placed Y’ return path to goal
a home cell cannot be moved again, and a card movéy €nd if
from an unsorted pile cannot be returned to it. 12: end while

o If we start from game state and reach state after
performing k& moves, andk is large enough, then there
is no longer any need to store the intermediate stat%s
betweens andt. The reason is that there is a solution In this section we describe the heuristics we used, all of
from ¢ (first characteristic) and a high percentage of th&hich estimate the distance to the goal from a given game

moves along the path are irreversible anyway (secof@nfiguration:
characteristic). Hei neman’ s St aged Deepening Heuristic

erHSDH): This is the heuristic used by the HSD solver.
or each foundation pile (recall that foundation piles are
ponstructed in ascending order), locate within the cascade
piles the next card that should be placed there, and count the
cards found on top of it. The returned value is the sum of

visited nodes—to avoid loops; 2) Only nodes @ecisely t2h'_‘;‘ chount for all four?;jitllor}s. Th|s”number IS muItlpI|ded b?/
depthk are stored in the open listwhich is sorted accord- < ' there are no available free cells or empty cascade piles

ing to the nodes’ heuristic values. In addition to these tv\;(geflectlng the fact that freeing the next card is harder ia th

interleaved layers, whenever the transposition tablehesea case). _

predetermined size, it is emptied entirely, and only thenope Nun\/‘eoll ! P'II acid. ﬁ:OU?t th‘; numbelrl Oivell-gallie;(:_tedcargs
list remains in memory. Algorithm 1 presents the pseudoco!ﬂec"_iscda ep S_S' p(lje 0 C(;ir IS IS well p a(I:e Its cards
of the HSD algorithm.S was empirically set by Heineman to2'€ I descending order and a tern.atmg colors.

200.000. NumCar dsNot At Foundat i ons: Count the number of

Compared with IDA*, HSD uses fewer heuristic evaluationgards that are .not at the foundation p||e§.
: . . FreeCel | s: Count the number of available free cells and
(which are performed only on nodes entering the open Ilsgascades
resulting in a significant reduction in time. Reduction is D ffer.enceFromTo - The average value of the to
achieved through the second layer of the search, whichsstore P- 9 P

enough information to perform backtracking (as stated abo\%:ards in cascades, minus the average value of the top cards in

this do'e.s not occur often), and the sizeTofs controlled by Lowest Foundat i onCar d: The highest possible card
overwriting nodes. alue (typically the king) minus the lowest card value in
Although the staged deepening algorithm does not guaran ce ypicaly 9

an optimal solution, as explained above, for difficult peshs la?dar:fgtﬁ):":jﬁdati onCar d: The highest card value in
finding a solution is sufficient. 9 ' g

. . f i iles.
When we ran the HSD solver it solved 96% of M'CVOSOftOlg?(:aftfPeF:Ceespoundat i on: The highest card value in the
32K, as repqrted by Heineman. . foundation piles minus the lowest one.
At this point we were at the limit of the current state- SunCF Bot t onCar ds: Take the highest possible sum of

of-the-art for FreeCell, and we turned to evolution to m.taicards in the bottom of cascades (e.g., for 8 cascades, this
better results. However we first needed to develop addltlor@ 4% 13+ 412 — 100), and subtract the sum of values

heuristics for this domain.

Freecell Heuristics and Advisors

Thus, the HSD algorithm may be viewed as two-layer
IDA* with periodic memory cleanup. The two layers operat
in an interleaved fashion: 1) At each iteration, a local DES
performed from the head of the open list up to deptiwith
no heuristic evaluations, using a transposition table—sgor

oundation piles.

of cards actually located there. For example, in Figure 1,

INote that since we are using DFS and not BFS we do not find ali SU§UI'TG Bot t onCar ds is 100 — (2 +3+9+11+6+2+
states. 8+ 11) = 48.
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TABLE |
LIST OF HEURISTICS R: REAL OR INTEGER

Node name  Type Return value

HSDH R Heineman'’s staged deepening heuristic
NumAél | Pl aced R Number of well-placed cards in cascade piles
NuntCar dsNot At Foundat i ons R Number of cards not at foundation piles
FreeCel | s R Number of available free cells and cascades
Di f f er enceFr onTop R Average value of top cards in cascades minus average valiop @iards in foundation piles
Lowest Foundat i onCar d R Highest possible card value minus lowest card value in fatiod piles
Hi ghest Foundat i onCard R Highest card value in foundation piles
Di f f erenceFoundati on R Highest card value in foundation piles minus lowest one
SunCf Bot t onCar ds R Highest possible card value multiplied by number of suitesiusiisum of cascades’ bottom card
Table | provides a summary of all heuristics. C. Evolving Heuristics for FreeCell

Apart from heuristics, which estimate the distance to the Combining several heuristics to get a more accurate one is
goal, we also defineddvisors(or auxiliary functions), incor- considered one of the most difficult problems in contemporar
porating domain features, i.e., functions that do not gte\an heuristics research [35], [36].
estimate of the distance to the goal but which are nonethelesThis task typically involves solving three major sub-

beneficial in a GP setting. problems:

PhaseByX: This is a set of functions that includes a 1) How to combine heuristics bgrithmeticmeans, e.g., by
“mirror” function for each of the heuristics in Table I. summing their values or taking the maximal value.
Each function’s name (and purpose) is derived by replacing2) Finding exact conditions (i.elggic functions) regarding
X in PhaseByX with the original heuristic’'s name, e.g., whento apply each heuristic, or combinations thereof—
Lowest Foundat i onCar d produces some heuristics may be more suitable than others when
PhaseByLowest Foundat i onCar d. PhaseBy X incorpo- dealing with specific game configurations.
rates the notion of applying different strategies (embadie 3) Finding the proper set of game configurations in order
as heuristics) at differerphasesof the game, with a phase to facilitate the learning process while avoiding pitfalls
defined byg/(g + h), whereg is the number of moves made such as overfitting.
so far, andh is the value of the original heuristic. The problem of combining heuristics is difficult mainly

For example, suppose 10 moves have been madel(), because it entails traversing an extremely large searobespa
and the value returned biowest FoundationCard is of possible numeric combinations, logic conditions, anthga
5. The PhaseByLowest Foundat i onCar d heuristic will configurations. To tackle this problem we turneweolution
return10/(10+5) or 2/3 in this case, a value that represents In order to properly solve these three sub-problems, we
the belief that by using this heuristic the configurationnigei designed a large set of experiments using three differemt ev
examined is at approximateBy/3 of the way from the initial lutionary methods, all involving hyper-heuristics: a stard
state to the goal. GA, standard (Koza-style) GP, and policy-based GP. Each
type of hyper-heuristic was paired with three differentieag

Di fficul tyLevel : This function returns the location of . . . - .
A . : settings: Rosin-style coevolution, Hillis-style coewvidn, and
the current problem (initial state) being solved in an oeder ; o
a novel method which we call gradual difficulty.

bl t ted by difficulty), and th ield stém _ . .
problem set (sorted by difficulty), an US yields an © a Below we describe the elements of our setup in detalil.

of how difficult it is. The difficulty of a problem is defined by o
the number of nodes the HSD solver needed to solve it. 1) The Hyper Heuristic-Based Genomé&Ve used three
different genomic representations.

| sMoveToCascade is a Boolean function that examines giangard GA. This representation was used by us in [15],
the destination of the last move and returns true if it was[@g), [17]. This type of hyper-heuristic only addresses firgt

cascade. problem of how to combine heuristics by arithmetic means.
Table Il provides a list of the auxiliary functions, inclagi Each individual comprises 9 real values in the rarfge],
the above functions and a number of additional ones. representing a linear combination of all 9 heuristics descr

- . . above (Table 1). Specifically, the heuristic valdé, designated
All of the heuristics and advisors described above a[)eil an evolving individual is defined a&l — Z?:1 wihi,

intuitive and straightforward to implement and computethwi

o . . where w; is the ith weight specified by the genome, and
their time complexity bounded by the number of cards, '.'eh’i is the ith heuristic sr?own Fi)n Table I)./To ogtain a more

problem input. Furtherm_ore, thgy are not resource avanio, niform calculation we normalized all heuristic values to

as are gtandard heuristic functions, such as relaxatlmre(thithin the range[0, 1] by maintaining a maximal possible

consuming) and PDBs (memory consuming). value for each heuristic, and dividing by it. For example,
Experiments with these heuristics demonstrated that edgliferenceFoundatiorreturns values in the range, 13] (13

one separately (except for HSDH) was not good enough lteing the difference between the king's value and the ace’s

guide search for this difficult problem. Thus we turned twalue), and the normalized values are attained by dividing b

evolution. 13.
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TABLE Il
LIST OF AUXILIARY FUNCTIONS. B: BOOLEAN, R: REAL OR INTEGER.

Node name Type Return value

| sMoveToFr eecel | B True if last move was to a free cell, false otherwise
| sMoveToCascade B True if last move was to a cascade, false otherwise
| sMoveToFoundat i on B True if last move was to a foundation pile, false otherwise
| sMoveToSortedPil e B True if last move was to a sorted pile, false otherwise
Last Car dvbved R Value of last card moved
NunxX Si bl i ngs R Number of reachable states (in one move) from last state
Nunf Chi | dren R Number of reachable states (in one move) from current state
Di fficultyLevel R Index of the current problem in the problem set (sorted Hfiycdity)
PhaseByX R “Mirror” function for each heuristic
g R Number of moves made from initial configuration to current

A GA seemed a natural algorithm to employ given the wistombinations of heuristic values. After experimenting hwit
to obtain a linear vector of weights. As the results will shovseveral sizes of policies, we settled dh= 5, providing us
the GA proved quite successful and was therefore retainedvéith enough rules per individual, while avoiding cumbergom
a yardstick to measure against when we embarked upon qdividuals with too many rules. The depth limit used for the
GP path. Condition trees was empirically set to 5.

GP. As we wanted to embody both combinations of es- For Condition GP trees, the function set included the
timates and application conditions we evolved GP-trees fmctions{AND,OR,<,>}, and the terminal set included all
described in [37]. The function set included the functionigeuristics and auxiliary functions in Tables | and II. Thesse
{IF,AND,OR,<,>x,+}, and the terminal set included allweights appearing iV alues all lie within the rangg0, 1], and
heuristics and auxiliary functions in Tables | and II, asIwetorrespond to the heuristics listed in Table I. All the hstici
as random numbers within the ranffe 1]. All the heuristic values are normalized to within the ranffe1] as described
values were normalized to within the ran@e1] as performed above.

above with the GA. 2) Genetic Operators:We applied GP-style evolution in
This method yielded poor results, no matter what depth lintthe sense that first an operator (reproduction, crossover, o
was used for the trees. mutation) was selected with a given probability, and then

Policies.The last genome used also combines estimates &t or two individuals were selected in accordance with the
application conditions, using ordered sets of control guleoperator chosen. For all types of genomes we used standard
or policies As stated above, policies have been evolvédiiness-proportionate selection. We also used elitism—é®t b
successfully with GP to solve search problems—albeit simpl@dividual of each generation was passed onto the next one
ones (e.g., [18], [19] and [28], mentioned above). unchanged.

The structure of our policies is the same as the one in [18]:For simple GA individuals standard reproduction and single

point crossover were applied [38]. Mutation was performed i

RULE;: IF Condition; THEN Value, a manner analogous to bitwise mutation by replacing with
independent probability).1 a (real-valued) weight by a new
random value in the rang@, 1].

) We used Koza’s standard crossover, mutation, and repro-
RULEN: IF Conditiony THEN Valuey duction operators, for the GP hyper-heuristics [37].
DEFAULT: Valueni1 For policies, however, the crossover and mutation opesator

were performed as follows: First, one or two individuals &er
where Condition; and Value; represent conditions andselected (depending on the genetic operator). Second, we
estimates, respectively. randomly selected the rule (or rules) within the individagal

Policies are used by the search algorithm in the followinghis we did with uniform distribution, except that the mo#t o
manner: The rules are ordered such that we apply the first ruged rule (we measured the number of times each rule fired)
that “fires” (meaning its condition is true for the currerditst had a 50% chance of being selected. Third, we chose with
being evaluated), returning if8alue part. If no rule fires, the uniform probability whether to apply the operator to eitoér
value is taken from the last (default) rul&aluey ;. Thus the following: the entire rule, the condition part, or thduea
individuals, while in the form of policies, are still heuics—  part.
the value returned by the activated rule is an arithmetic We thus had 6 sub-operators, 3 for crossover—
combination of heuristic values, and is thus a heuristici&ral RuleCrossoverConditionCrossoverand ValueCrossover
itself. This accords with our requirements: rule orderimgl a —and 3 for mutation-RuleMutation ConditionMutation and
conditions control when we apply a heuristic combinatiord a ValueMutation One of the major advantages of policies is that
values provide the combinations themselves. they facilitate the use of such diverse genetic operators.

Thus, with N being the number of rules used, each individ- For both GP-trees and policies, crossover was only per-
ual in the evolving population containé Condition GP trees formed between nodes of the same type (using Strongly Typed
and N + 1 Value sets of weights used for computing lineaGenetic Programming [39]).



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND Al IN GAMES 7

3) GP Parameters:We experimented with several con-and the total fithessfs, was defined as the averagg, =
figurations, finally settling upon: population size—betweenh/N Zf;l fi- Initially we computed fitness by using a con-
40 and 60; total generation count—between 300 and 10@&@ant number)N, of deals (set to 10 to allow diversity while
depending on the learning method, as elaborated belowg+epavoiding prolonged evaluations), which were chosen rariglom
duction probability—0.2; crossover probability—O0.7; migat from the training set. However, as the test set was largesktn
probability—0.1; and elitism set size—1. These settings weseores fluctuated wildly and improvement proved difficuti. T
applied to all types of hyper-heuristics. A uniform distrilon  overcome this problem we devised a novel learning method
was used for selecting crossover and mutation points withivhich we calledgradual difficulty
individuals, except for policies, as described above.

4) Training and Test SetsThe Microsoft 32K suite con-
tains a random assortment of deals of varying difficulty leve
In each of our experiments 1,000 of these deals were randomlyl) Gradual Difficulty: We first sort the entire Microsoft
selected for the training set and the remaining 31K were usaéK into groups of increasing difficulty levels. During the
as the test set. course of learning, the difficulty of the problems encousder

The training set for the gradual-difficulty approach walkY individuals is increased by selecting from the more-clifi
selected anew each run, as described in Section Ill-D1.  9roups.

5) Fitness: An individual's fitness score was obtained by SOrting is done according to the number of nodes required
running the HSD solver on deals taken from the training sép, Solve each deal withSDH We divided the problems into
with the individual used as the heuristic function. Fitne<&® 9roups consisting of 100 problems each. An evolutionary
equaled the average search-node reduction ratio. This rdi" Pegins by choosing one random problem from each of
was obtained by comparing the reduction in number of searlllf S easiest ngUDSJl@UDOI. . .,group_)OB. We then use only
nodes—averaged over solved deals—uwith the average numise S problems for fitness evaluation. The run continues fo
of nodes when searching with the original HSD heuristit© genera_nons or until an individual with a fitness score.@f 0
(HSDH). For example, if the average reduction in search w@k @Pove is found. Next, we drop the problem frgmoup01
70% compared with HSDH (i.e., 70% fewer nodes expand@§d replace it with a random problem frogroup0g i.e.,
on average), the fitness score was set to 0.7. If a given deal W€ oW work with problems frongroup02. ...,group06 This

not solved within 2 minutes (a time limit we set empiricajly)iS repeated: drop easiest group, add more-difficult onel unt
we assigned a fitness score of 0 to that deal. group45is used for evaluation, i.e., until we are dealing with

To distinguish between individuals that did not solve a gived"©UPSgroup41.....group4s To reduce the effect of overfitting
deal and individuals that solved it but without reducing th&N€n evaluating with specific groups of problems, we also
amount of search (the latter case reflecting better perfocea used a sixth problem for fitness evaluation. This problem was
than the former), we assigned to the latter a partial scor@€cted from one of the groups that had been dropped, with
of (1 — FractionExcessNodg&C, whereFractionExcessNodes e number of dropped groups continually growing. The test
was the fraction of excessive nodes (values greater thamrel weet used was the remainder of Mlcrqsoft .32K: .
truncated to 1), andC was a constant used to decrease the Note that all the parameters described in this section—total
score relative to search reduction (set empirically to }JoodUmber of groups, number of concurrently used groups, gener
For example, an excess of 30% would yield a partial score 3N count per group, and maximal fitness—were determined
(1 —0.3)/C; an excess of over 200% would yield 0. empirically. _ _

Because of the puzzle's difficulty, some deals were solved V/Nile some improvement was observed in node reduction
by an evolving individual or by HSDH—but not by both, thu?nd time, the individuals developed with this meth_od_ faiied
rendering comparison (and fithess computation) problematF©/ve many of the problems solved by HSDH. This is further
To overcome this we imposed a penalty for unsuccessfljpcussed in Sectl_on V. Alsc_J, the learning process needed
search: Problems not solved within 2 minutes were count@e" 1000 generations to attain reasonable results.
as requiring10? search nodes. For example, if HSDH did not "€ major reason for failing to solve many problems
solve within 2 minutes a deal that an evolving individual di’N€N using hyper-heuristics evolved with gradual d|ff|y?ult
solve usings x 10® nodes, the percent of nodes reduced wa&aring, is the phenomenon ébrgetting [40], [41], [42]:
computed as 50%. The® value was derived by taking the Ve the generations the population becomes adept at golvin

hardest problem solved by HSDH and multiplying by two thE€"ain problems, at the expense of "forgetting” o soleeot
number of nodes required to solve it. problems it had been adept at in earlier generations.

Coevolution, wherein the population of solutions coevslve
alongside a population of problems, offers a solution ts thi

D. Learning Methods

An evolving solver’s fithess per single degl, thus equaled:

search-node reduction ratio problem . The basic idea is that neither population is altbwe
if solution found with node reduction to stagnate: As solvers become more adept at solving certain
problems these latter do not remain in the problem set but
fi = ¢ max{(1-FractionExcessNodes)/1000, 0 are removed from the population of problems—which itself

if solution found without node reduction  evolves. In this form of competitive coevolution the fithneds
one population is inversely related to the fithess of the rothe
0 if no solution found population.
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2) Rosin-Style CoevolutionThe first type of coevolution designed to maintain rules for different states, they need a
we tried was Rosin-style coevolution withHall of Fame[21]. effective training method to learn the correct questiond an
Rosin’s method may be viewed as an extension of the elitisralues.
concept. The “Hall of Fame” encourages arms races by savingrhus we come to Hillis-style coevolution, which proved to
good individuals from prior generations [21]. be the most successful learning method for FreeCell.

In this coevolutionary scenario the first population com- 3) Hillis-Style Coevolution:We assumed that if we could
prises hyper-heuristics—as described above—while the gecarain each hyper-heuristic with a subset of deals that someh
population consists of FreeCell deals. The populations aepresented the entire search space, we would obtain better
equal in size (40). Ten top deals (in terms of difficulty toveol sults. Although Hillis-style coevolution [22] did not ofitally
them) are maintained in the Hall of Fame for future testingddress this problem, it does provide a solution.

Each hyper-heuristic individual is given 5 deals to soh@nfr  In our new coevolutionary scenario the first population
the deals population and 2 instances from the Hall of Fanmmprises the solvers, as described above. In the second pop
Thus each deal is provided as training material to more thafation an individual representsset of FreeCell deals. Thus

one hyper-heuristic. a “hard”-to-solve individual in this latter, problem poptibn
The genome and genetic operators of the solver populatioontains several deals of varying difficulty levels. Thisltiru
were identical to those defined in Section IlI-C. deal individual made life harder for the evolving solverbey

We applied GP-style evolution to the deal population in thead to maintain a consistent level of play over several deals
sense that first an operator (reproduction or mutation) was $Vith single-deal individuals, which we used in Rosin-style
lected with a given probability, and then one or two indinatiu coevolution, either the solvers did not improve if the deal
were selected in accordance with the operator chosen. Ve ugepulation evolved every generation (i.e., too fast), a th
standard fitness-proportionate selection. Mutation waidiegh solvers became adept at solving certain deals and failed on
by replacing a random deal with another random deal froathers if the deal population evolved more slowly (i.e.,rgve

the training set. We did not use crossover. k generations, for a giveh > 1).
Fitness was assigned to a solver by averaging its perfor-The genome and genetic operators of the solver population
mance over the 7 deals, as described in Section 1lI-C. were identical to those defined in Section II-C.

A deal individual's fitness was defined as the average The genome of an individual in the deals population con-
number of nodes needed to solve it, averaged over the solvaised 6 FreeCell deals, represented as integer-valuesésd
that “ran” this individual, and divided by the average numbdrom the training sefvy, vs, . .., v1000 }, Wherev; is a random
of nodes when searching with the original HSD heuristic. If mmdex in the rangdl, 32000]. We applied GP-style evolution
particular deal was not solved by any of the solvers—a valire the sense that first an operator (reproduction, crossover
of 10° nodes was assigned to it. This way the fitness of deals mutation) was selected with a given probability, and then
was inversely proportional to the hyper-heuristics’ fisieso one or two individuals were selected in accordance with
that if a deal was solved easily (with a relatively small n@mb the operator chosen. We used standard fithess-proposionat
of nodes) on average—it was assigned a low fitness. selection and single-point crossover. Mutation was paréat

Unfortunately, this method proved unsuccessful for oum a manner analogous to bitwise mutation by replacing with
problem domain, regardless of the parameter settingsnRosndependent probability).1 an (integer-valued) index with
style coevolution is based on the assumption that the maerandomly chosen deal (index) from the training set, i.e.,
the FreeCell deals that accumulate in the Hall of Fame afe;,vs,...,v1000} (Figure 2). Since the solvers needed more
harder, the more the hyper-heuristics will improve. Altgbu time to adapt to deals, we evolved the deal population every
this assumption might hold for some domains it is untrue f& solver generations (this slower evolutionary rate was set
FreeCell due to the difficulty of defininigard problems. While empirically).
for some states a heuristic function might provide a good We experimented with several parameter settings, finally
estimate, for other states it might provide bad estimat8% [4settling on: population size—between 40 and 60, generation
This means that there is no inherently hard or easy state émunt—between 60 and 80, reproduction probability—O0.2,
a heuristic; therefore, a hard-to-solve Hall of Fame deal grossover probability—0.7, mutation probability—0.1, and
a certain generation will be easy to solve a few generatioaktism set size—1.
later when the hyper-heuristic individuals have specialim Fitness was assigned to a solver by picking 2 individuals in
the new type of deals and have “forgotten” how to solve thibe deal population and attempting to solve all 12 deals they
previous ones. If at some point a hyper-heuristic performmgpresented. The fitness value was an average of all 12 deals,
badly on some deals in the Hall of Fame, we do not knoas described in Section IlI-C.
whether the hyper-heuristic is bad all around or perhapsWhenever a solver “ran” a deal individual's 6 deals its
it performs well on other types of deals. The evolutionargerformance was recorded in order to derive the fithess of the
process exploits this for the benefit of the deal populatiodeal population. A deal individual’s fithess was defined a&s th
and every few generations “hard” deals become “easy” aaslerage number of nodes needed to solve the 6 deals, averaged
vice-versa. over the solvers that “ran” this individual, and divided et

Given the fundamental problem of forgetting, a new methaa/erage number of nodes when searching with the original
for training the hyper-heuristics to classify states anghap HSD heuristic. If a particular deal was not solved by any of
different values thereof was needed. Although policiesewethe solvers—a value of0° nodes was assigned to it.
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TABLE Il
AVERAGE NUMBER OF NODES TIME (IN SECONDS, AND SOLUTION LENGTH REQUIRED TO SOLVE ALLMICROSOFT32K PROBLEMS ALONG WITH THE
NUMBER OF PROBLEMS SOLVED TWO SETS OF MEASURES ARE GIVEN1) UNSOLVED PROBLEMS ARE ASSIGNED A PENALTYAND 2) UNSOLVED
PROBLEMS ARE EXCLUDED FROM THE COUNTHSDH IS THE HEURISTIC FUNCTION USED BYHSD, GA-FreeCellls OUR TOP EVOLVEDGA SOLVER[15],
AND Policy-FreeCellis THE TOP EVOLVED HYPERHEURISTIC POLICY, ALL SELECTED ACCORDING TO PERFORMANCE ON THE TRAINING SET

Heuristic Learning method Nodes Time Length  Solved

Unsolved problems penalized

HSDH - 75,713,179 709 4,680 30,859

GA Gradual Difficulty 290,209,299 2,612 17,512 17,748

Policy Gradual Difficulty 261,331,656 2,352 15,782 18,470

GA-FreeCell Hillis-style coevolution 16,626,567 150 1,132 31,475

Policy-FreeCell  Hillis-style coevolution 3,977,932 34.94 392 31,888

Unsolved problems excluded

HSDH - 1,780,216 4445 255 30,859

GA Gradual Difficulty 182,132 1.77 151 17,748

Policy Gradual Difficulty 178,202 1.71 149 18,470

GA-FreeCell Hillis-style coevolution 230,345 2.95 151 31,475

Policy-FreeCell  Hillis-style coevolution 385,568 2.61 177 31,888

parents Table 11l shows our result$di ghest Foundat i onCar d,
o |11397| 3042 |23345‘ 7364 ‘17957‘ 5084 I Di f f erenceFoundati on, and all GP individuals proved

worse than HSD's heuristic function in all of the measures an

p, [2837118923] 9834 | 12 | 30011 | 13498] in all of the experiments and therefore were not included in

the tables. In addition, all Rosin-style coevolution expents
failed to solve more than 98% of the problems, and therefore

offspring (crossover) this learning method was not included in the tables as well.
! The results for the test set (Microsoft 32K minus 1K training
0, |[11897 | 3042 | 23845 | 7364 | 30011 | 13498 | set) and for the entire Microsoft 32K set were very similar,
! and therefore we report only the latter. The runs provedequit
0, |[28371[18923 | 9834 | 12 | 17987 | 5984 | similar in their results, with the number of generationsnigei

: 1000 on average for gradual difficulty and 300 on average for
Hillis-style coevolution. The first few generations took o
than 8 hours (on a Linux-based PC, with processor speed
3GHz, and 2GB of main memory) since most of the solvers
did not solve most of the deals within the 2-minute time limit
As evolution progressed a generation came to take less than
Fig. 2. Crossover and mutation of individuals in the popolaf problems an hour.
(deals). For comparing unsolved deals we applied i€ penalty
scheme described in Section IlI-C to the node reduction
measure. Since we also compared time to solve and solution
é’ngth, we applied the penalties of 9,000 seconds and 60,000
oves to these measures, respectively. Since we used this
enalty scheme during fitness evaluation we included the
enalty in the results as well.
€ Compared to HSDH, GA-FreeCell [15] and Policy-FreeCell
reduced the amount of search by more than 78%, solution
time by more than 93%, and solution length by more than
IV. RESULTS 30% (with unsolved problems excluded from the count). In
o .addition, Policy-FreeCell solved 99.65% of Microsoft 32K,
We evaluated the performance of evolved heuristics Wit ;s outperforming both HSDH and GA-FreeCell. Note that
the same scoring method used for fithess computation, exc&ﬁ’ﬁough Policy-FreeCell solves “only” 1.3% more instasice

we averaged over all Microsoft 32K deals instead of over th,n Ga-FreeCell, these additional deals are far hardesites
training set. We also measured average improvement in tigge 1o the long tail of the learning curve.

solution length (number of nodes along the path to the cbrrec oo of our best Policy solvers is shown in Table IV.
solution found), and number of solved instances of Micrbsof How does our evolution-produced player fare against hu-
32K, all compared to the HSD heuristic, HSDH. mans? A major FreeCell websitprovides a ranking of human
We  compared the following  heuristics: HSDH  Ereecell players, listing solution times and win ratesgafo
(Section  1ll-B),  Hi ghest FoundationCard and ga14 on number of deals examined by humans, nor on solution

D fferenceFoundation (Section |lI-B)—both of |gngihs). This site contains thousands of entries and has be
which proliferated in evolved individuals, and the top

hyper-heuristic developed via each of the learning methods 2http://imww.freecell.net

offspring (mutation)

0y |[21043] 3042 | 23845 | 7364 | 17987 | 5984 |

Not only did this method surpass the previous ones, it al
outperformed HSDH by a wide margin, solving all but 11
deals of Microsoft 32K when using policy individuals, an
doing so using significantly less time and space requiresne
Additionally, the solutions found were shorter and hen
better.
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TABLE IV
EXAMPLE OF AN EVOLVED POLICY-BASED SOLVER H; IS THE¢TH HEURISTIC OF TABLE |.

Rule Condition Value

H; Ho Hs Hy Hs Hs H~ Hyg Hy

1 (AND (OR (OR K PhaseBySumOfBottomCards 0.58) 0 0.02 0.03 041 0 0 051 0.02 0.01
(< NumCardsNotAtFoundations 0.82)) (OK (PhaseBy-
SumOfBottomCards 0.58( NumCardsNotAtFoundations
0.58))) (OR (OR ¢ PhaseByDifferenceFromTop 0.77A (
PhaseByLowestFoundationCard 0.16)) (AN (Phase-
ByNumWellPlaced 0.21)% IsMoveToSortedPile 0.59))))

2 (OR (OR (OR ¢ PhaseByDifferenceFromTop 0.2 0.11 0.02 0 0.15 0.03 0.03 0.32 0.14
0.77) (K PhaseByNumWellPlaced 0.16)) (AND <(
PhaseByNumWellPlaced 0.21Ly (PhaseByNumWellPlaced
0.59))) (OR (OR ¢ PhaseByDifferenceFromTop 0.77)
(£ PhaseByLowestFoundationCard 0.16)) (AND<
PhaseByNumWellPlaced 0.21)>( IsMoveToSortedPile
0.59))))

3 (AND (AND (> PhaseByLowestFoundationCard 0.63) ( 0.01 0 0.02 0 0.28 0 0.68 0.01 0
PhaseByLowestFoundationCard 0.63}) PhaseByLowest-
FoundationCard 0.63))

4 (AND (< NumCardsNotAtFoundations 0.78) (PhaseBy-| 0 0.04 0.09 0 0.02 047 0.07 0.26 0.05
LowestFoundationCard 0.63))

5 (OR (K HighestFoundationCard 0.44% (HSDH 0.83)) 03 041 0 013 0 0 009 006 0.01

default — 0.26 0.07 0.03 0.06 0.01 0 0.02 0.52 0.03
TABLE V TABLE VI
THE TOP THREE HUMAN PLAYERS(WHEN SORTED ACCORDING TO THE TOP THREE HUMAN PLAYERS WITH WIN RATE OVER90% (WHEN
NUMBER OF GAMES PLAYED), COMPARED WITHHSDH, GA-FRREECELL, SORTED ACCORDING TO AVERAGE TIME TO SOLV{, COMPARED WITH
AND PoLICY-FREECELL. SHOWN ARE NUMBER OF DEALS PLAYEDQ HSDH, GA-FREECELL, AND POLICY-FREECELL. SHOWN ARE NUMBER
AVERAGE TIME (IN SECONDS TO SOLVE, AND PERCENT OF SOLVED OF DEALS PLAYED, AVERAGE TIME (IN SECONDS TO SOLVE, AND
DEALS FROM MICROSOFT32K. TABLE ARRANGED IN DESCENDING PERCENT OF SOLVED DEALS FROMMICROSOFT32K. TABLE ARRANGED
ORDER OF WIN RATE(PERCENTAGE OF SOLVED DEAL$. IN DESCENDING ORDER OF WIN RATE(PERCENTAGE OF SOLVED DEAL}.
Rank Name Deals played Time  Solved Rank Name Deals played Time  Solved
1 Policy-FreeCell 32,000 3 99.65% 1 Policy-FreeCell 32,000 3 99.65%
2 GA-FreeCell 32,000 3 98.36% 2 GA-FreeCell 32,000 3 98.36%
3 HSDH 32,000 44 96.43% 3 DoubleDouble 48,828 107 96.64%
4 volwin 159,478 190 96.03% 4 caribsoul 61,617 104 96.56%
5 deemde 160,237 111 96.02% 5 HSDH 32,000 44 96.43%
6 caralina 151,102 67 65.82% 6 deemde 160,237 111 96.02%

active since 1996, so the data is reliable. It should be notedman player with win rate above 90% solved deals in an
that the game engine used by this site generates random daatgage time of 104 seconds and achieved a win rate of
in a somewhat different manner than the one used to gener@ée56%. This human is therefore pushed to the fourth positio
Microsoft 32K. Yet, since the deals are randomly generategith HSDH in the third place, GA-FreeCell in the second place
it is reasonable to assume that the deals are not biased in ang Policy-FreeCell taking the first place (Table VI). Note
way. Since statistics regarding players who played sparséhat the fastest human player—caralina—takes 67 seconds
are not reliable, we focused on humans who played over 3@i¢ average to reach a solution (Table V). HSDH reduces
games—a figure commensurate with our own. caralina’s average time by 34.3%, while our evolved solvers
The site statistics, which we downloaded on December I@duce the average time by 95.5%. These values suggest that
2011, included results for 83 humans who met the minimatutperforming human players in time-to-solve is not a #iivi
game requirement—all but two of whom exhibited a win rateask for a computer. Yet, our evolved solvers manage to shine
greater than 91%. Sorted according to the number of ganveih respect to time as well.
played, the no. 1 player played 160,237 games, achieving df the statistics are sorted according to win rate then our
win rate of 96.02%. This human is therefore pushed to tflicy-FreeCell player takes the first place with a win rate
fourth position, with our top player (99.65% win rate) tain of 99.65%, while GA-FreeCell attains the respectable 11th
the first place, our GA-FreeCell taking the second place, apthce. Either way, it is clear that when compared with strong
HSDH coming in third (Table V). persistent, and consistent humans, Policy-FreeCell esnerg
When sorted according to average solving time, the fastest the new best player to date, leaving HSDH far behind
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TABLE VII
THE TOP THREE HUMAN PLAYERS(WHEN SORTED ACCORDING TO WIN VI CONCLUDING REMARKS
RATE), COMPARED WITHHSDH, GA-FREECELL, AND We evolved a solver for the FreeCell puzzle, one of the

POLICY-FREECELL. SHOWN ARE NUMBER OF DEALS PLAYEDQ AVERAGE - . L e
TIME (IN SECONDS TO SOLVE, AND PERCENT OF SOLVED DEALS From  MOst difficult single-player domains (if not the most diffiju

MICROSOFT32K. TABLE ARRANGED IN DESCENDING ORDER OF WIN  t0 which evolutionary algorithms have been applied to date.

RATE (PERCENTAGE OF SOLVED DEAL}. Policy-FreeCell and GA-FreeCell beat the previous top pub-
Rank Name Deals played Time  Solved lished solver by a wide margin on several measures, with the
1 Policy-FreeCell 32,000 3 99.65% former emerging as the top gun. By classifying states and
g JonnieBoy ?é%%% %(i gggg‘;//o assigning different values to different states, Policge®ell
time.waster ' . 0 0, i
2 NatKing C. 54,599 207 98.97% was able to solve 99.65% of Microsoft 32K, a result far better
than any previous solver.
11 GA-FreeCell 32,000 3 98.36% There are a number of possible extensions to our work,
66  HSDH 32,000 44 96.43% including:

1) It is possible to implement FreeCell macro moves and
thus decrease the search space. Implementing macro
(Table VII). moves will yield better results, and we believe that we
might even solve the entire Microsoft 32K (not including
unsolvable game #11982).

V. DiscussioN 2) As mentioned in Section V, complex heuristics and
memory-consuming heuristics (e.g., landmarks and pat-
tern databases) can easily be used as building blocks as
well. Such solvers might outperform the simpler ones at
the expense of increased run time or code complexity.
The HSD algorithm, enhanced with evolved heuristics,
is more efficient than the original version. This is
evidenced both by the amount of search reduction and
the increased number of solved deals. It remains to
be determined whether the algorithm, when aided by
evolution, can outperform other widely used algorithms
(such as IDA¥) in different domains. The fact that the
algorithm is based on several properties of search prob-
lems, such as the high percentage of irreversible moves
and the small number of deadlocks, already points the
way towards several domains. A good candidate may be

Although policies can be seen as a special case of GP trees
they yielded good results for this domain while GP did not.
A possible reason for this is that the policy structure is enor
apt for this type of problems. The policy conditions clagsif
states while the values combine the available heuristiceiWh 3)
standard tree-GP is used, the structure is not clear and many
meaningless trees are generated.

Another interesting point is the difference in the results b
tween GA-FreeCell and Policy-FreeCell. 80% of the problems
not solved by GA-FreeCell were solved by Policy-FreeCell,
leaving only 112 unsolved problems by the latter. On therothe
hand, the search reduction measures were similar. We thus
concluded that for most of the states a simple GA individual
would have sufficed, but in order to attain a leap in success

rate the use of policies proved necessary. the Satellite game, previously studied in [44], [45].

In general, when the evaluation time of an individual is D .
short, large populations may be used; moreover, we Can4) Handcrafted heuristics may themselves be improved by
f ' ' evolution. This could be done by breaking them into

afford to evaluate each individual on many randomly setkcte . ! . .
. . - their elemental components and evolving their combi-
instances, perhaps even on the entire training set, thereby nations thereof

attaining a reliable fithess measure. In such cases gradual d . ' o

! ! . ! 5) Many single-agent search problems fall within the
ficulty might contribute to the evolutionary process. Hoesev framework  of  Al-plannin roblems (e with
with long evaluation times an individual can be tested agjain ADL [46]) Howeve? using]q e\f)olution in co.r?j.t,mction

but a small subset of the entire training set, and this pdtt wi . ) . L .

. . . with these techniques is not trivial and may require the
not be representative of the whole. The learning proceds wil . -

A ” p e, . use of techniques such as GP policies [18].
then exhibit “forgetfulness” and “specialization”, as delsed
in Section IlI-D. As we saw, Hillis-style coevolution solve
these problems since we did not need to know a priori which ACKNOWLEDGMENTS
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