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Abstract—We evolve heuristics to guide staged deepening
search for the hard game of FreeCell, obtaining top-notch
solvers for this human-challenging puzzle. We first devise several
novel heuristic measures using minimal domain knowledge and
then use them as building blocks in two evolutionary setups
involving a standard genetic algorithm and policy-based, genetic
programming. Our evolved solvers outperform the best FreeCell
solver to date by three distinct measures: 1) number of search
nodes is reduced by over 78%; 2) time to solution is reduced
by over 94%; and 3) average solution length is reduced by over
30%. Our top solver is the best published FreeCell player to
date, solving 99.65% of the standard Microsoft 32K problem set.
Moreover, it is able to convincingly beat high-ranking human
players.

Index Terms—Evolutionary Algorithms, Genetic Algorithms,
Genetic Programing, Heuristic, Hyper Heuristic, FreeCell

I. I NTRODUCTION

D ISCRETE puzzles, also known as single-player games,
are an excellent problem domain for artificial intelligence

research, because they can be parsimoniously described yet
are often hard to solve [1]. As such, puzzles have been the
focus of substantial research in AI during the past decades
(e.g., [2], [3]). Nonetheless, quite a few NP-Complete puzzles
have remained relatively neglected by academic researchers
(see [4] for a review).

Search algorithms for puzzles (as well as for other types of
problems) are strongly based on the notion of approximating
the distance of a given configuration (orstate) to the problem’s
solution (orgoal). Such approximations are found by means
of a computationally efficient function, known as aheuristic
function. By applying such a function to states reachable from
the current one considered, it becomes possible to select more-
promising alternatives earlier in the search process, possibly
reducing the amount of search effort (typically measured in
number of nodes expanded) required to solve a given problem.
The putative reduction is strongly tied to the quality of the
heuristic function used: employing a perfect function means
simply “strolling” onto the solution (i.e., no search de facto),
while using a bad function could render the search less
efficient than totally uninformed search, such as breadth-first
search (BFS) or depth-first search (DFS).

A well-known, highly popular example within the domain
of discrete puzzles is the card game of FreeCell. Starting with
all cards randomly divided intok piles (calledcascades), the
objective of the game is to move all cards onto four different
piles (called foundations)—one per suit—arranged upwards
from the ace to the king. Additionally, there are initially empty
cells (calledfree cells), whose purpose is to aid with moving
the cards. Only exposed cards can be moved, either from free
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Fig. 1. A FreeCell game configuration. Cascades: Bottom 8 piles. Foun-
dations: 4 upper-right piles. Free cells: 4 upper-left cells. Note that cascades
are not arranged according to suits, but foundations are. Legal moves for the
current configuration: 1) moving7♣ from the leftmost cascade to either the
pile fourth from the left (on top of the8♦), or to the pile third from the right
(on top of the8♥); 2) moving the6♦ from the right cascade to the left one
(on top of the7♣); and 3) moving any single card on top of a cascade onto
the empty free cell.

cells or cascades. Legal move destinations include: a home
(foundation) cell, if all previous (i.e., lower) cards are already
there; empty free cells; and, on top of a next-highest card of
opposite color in a cascade (Figure 1). FreeCell was proven
by Helmert [5] to be NP-complete. In his paper, Helmert
explains that the hardness of the domain is not (or at least
not exclusively) due to the difficulty in allocating free cells
or empty pile positions, but rather due to the choice of which
card to move on top of a pile when there are two possible
choices. Computational complexity aside, even in its limited
popular version (described below) many (oft-frustrated) human
players (including the authors) will readily attest to the game’s
hardness. The attainment of a competent machine player would
undoubtedly be considered a human-competitive result.

FreeCell remained relatively obscure until it was included
in the Windows 95 operating system (and in all subsequent
versions), along with 32,000 problems—known asMicrosoft
32K—all solvable but one (this latter, game #11982, was
proven to be unsolvable [6]). Due to Microsoft’s move, Free-
Cell has been claimed to be one of the world’s most popular
games [7]. The Microsoft version of the game comprises a
standard deck of 52 cards, 8 cascades, 4 foundations, and 4
free cells. Though limited in size, this FreeCell version still
requires an enormous amount of search, due both to long
solutions and to large branching factors. Thus it remains out of
reach for optimal heuristicsearch algorithms, such as A* and
iterative deepening A* [8], [9], both considered standard meth-
ods for solving difficult single-player games (e.g., [10], [11]).
FreeCell remains intractable even when powerful enhancement
techniques are employed, such as transposition tables [12],
[13] and macro moves [14].
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Despite there being numerous FreeCell solvers available
via the Web, few have been written up in the scientific
literature. The best published solver to date is our own GA-
based solver [15], [16], [17]. Using a standard GA, we were
able to outperform the previous top gun—Heineman’s staged
deepening algorithm—which is based on a hybrid A* / hill-
climbing search algorithm (henceforth referred to as theHSD
algorithm). The HSD algorithm, along with a heuristic func-
tion, forms Heineman’s FreeCell solver (we shall distinguish
between the HSD algorithm, the HSD heuristic, and the HSD
solver—which includes both). Heineman’s system exploits
several important characteristics of the game, elaboratedbe-
low.

In a previous work, we successfully applied genetic pro-
gramming (GP) to evolve heuristic functions for the Rush Hour
puzzle—a hard, PSPACE-Complete puzzle [18], [19]. The
evolved heuristics dramatically reduced the amount of nodes
traversed by an enhanced “brute-force”, iterative-deepening
search algorithm. Although from a computational-complexity
point of view the Rush Hour puzzle is harder than FreeCell
(unlessNP=PSPACE), search spaces induced bytypical in-
stances of FreeCell tend to be substantially larger than those
of Rush Hour, and thus far more difficult to solve. This is
evidenced by the failure of standard search methods to solve
FreeCell, as opposed to our success in solving all 6x6 Rush
Hour problems without requiring any heuristics.

The approach we take in this paper falls within the hyper-
heuristic framework, wherein the system is provided with a
set of predefined or preexisting heuristics for solving a certain
problem, and it tries to discover the best manner in which to
apply these heuristics at different stages of the search process.
The aim is to find new, higher-level heuristics, or hyper-
heuristics [20].

Our main set of experiments focused on evolving com-
binations of handcrafted heuristics we devised specifically
for FreeCell. We used these basic heuristics as building
blocks in a GP setting, where individuals were embodied as
ordered sets of search-guiding rules (orpolicies), the parts
of which were GP trees. We also used a standard genetic
algorithm (GA) and standard, tree-based GP (i.e., without
policies), both serving as yardsticks for assessing the policy
approach’s performance (in addition to comparisons with the
non-evolutionary methods mentioned above). We employed
three different learning methods: Rosin-style coevolution [21],
Hillis-style coevolution [22], and a novel method which we
call gradual difficulty (described below).

We will show that not only do we solve 99.65% of the
Microsoft 32K problem set, a result far better than the best
solver on record, but we also do so significantly more ef-
ficiently in terms of time to solve, space (number of nodes
expanded), and solution length (number of nodes along the
path to the correct solution found). The policy-based, GP
solvers described herein thus substantively improve upon our
previous GA-based solvers [15], [16], [17].

The contributions of this work are as follows:
1) Using genetic programing we develop the strongest

known heuristic-based solver for the game of FreeCell.
2) Along the way we devise several novel heuristics for

FreeCell, many of which could be applied to other
domains and games.

3) We push the limit of what has been done with evolution
further, FreeCell being one of the most difficult single-
player domains (if not the most difficult) to which
evolutionary algorithms have been applied to date.

4) We perform a thorough analysis, applying nine different
settings for learning hyper-heuristics to this difficult
problem domain.

5) By devising novel heuristics and evolving them into
hyper-heuristics, we present a new framework for solv-
ing many heuristic problems, which proved to be effi-
cient and successful.

The paper is organized as follows: In the next section we
examine previous and related work. In Section III we describe
our method, followed by results in Section IV. Next, we
discuss our work in Section V. Finally, we end with concluding
remarks and future work in Sections VI.

II. PREVIOUS WORK

We hereby review the work done on FreeCell along with
several related topics.

A. Generalized Problem Solvers

Most reported work on FreeCell has been done in the
context of automated planning, a field of research in which
generalized problem solvers (known asplanning systemsor
planners) are constructed and tested across various benchmark
puzzle domains. FreeCell was used as such a domain both in
several International Planning Competitions (IPCs) (e.g., [23]),
and in many attempts to construct state-of-the-art planners
reported in the literature (e.g., [24], [25]), though in most cases
the deck size was less than 52 cards [5]. The version of the
game we solve herein, played with a full deck of 52 cards, is
considered to be one of the most difficult domains for classical
planning [7], evidenced by the poor performance of general-
purpose planners.

B. Domain-Specific Solvers

As stated above there are numerous solvers developed
specifically for FreeCell available via the web, the best of
which is that of Heineman [6]. Although it fails to solve 4%
of Microsoft 32K, Heineman’s solver significantly outperforms
all other solvers in terms of both space and time. We elaborate
on this solver in Section III-A.

C. Evolving Heuristics for Planning Systems

Many planning systems are strongly based on the notion of
heuristics (e.g., [26], [27]). However, relatively littlework has
been done onevolvingheuristics for planning.

Aler et al. [28] (see also [29], [30]) proposed a multi-
strategy approach for learning heuristics, embodied as ordered
sets of control rules (calledpolicies), for search problems in
AI planning. Policies were evolved using a GP-based system
called EvoCK [30], whose initial population was generated
by a specialized learning algorithm, called Hamlet [31]. Their
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hybrid system, Hamlet-EvoCK, outperformed each of its sub-
systems on two benchmark problems often used in planning:
Blocks World and Logistics (solving 85% and 87% of the
problems in these domains, respectively). Note that both these
domains are considered relatively easy (e.g., compared to
FreeCell), as evidenced by the fact that the last time they were
included in an IPC was in 2002.

Levine and Humphreys [32], and later Levine et al. [33],
also evolved policies and used them as heuristic measures to
guide search for the Blocks World and Logistic domains. Their
system, L2Plan, included rule-level genetic programming (for
dealing with entire rules), as well as simple local search to
augment GP crossover and mutation. They demonstrated some
measure of success in these two domains, although hand-coded
policies sometimes outperformed the evolved ones.

D. Evolving Heuristics for Specific Puzzles

Terashima-Maŕın et al. [34] compared two models to pro-
duce hyper-heuristics that solved two-dimensional regular and
irregular bin-packing problems, an NP-Hard problem domain.
The learning process in both of the models produced a rule-
based mechanism to determine which heuristic to apply at each
state. Both models outperformed the continual use of a single
heuristic. We note that their rules classified a state and then
applied a (single) heuristic, whereas we applied acombination
of heuristics at each state, which we believed would perform
better.

Hauptman et al. [18], [19] evolved heuristics for the Rush
Hour puzzle, a PSPACE-Complete problem domain. They
started with blind iterative deepening search (i.e., no heuristics
used) and compared it both to searching with handcrafted
heuristics, as well as with evolved ones in the form of policies.
Hauptman et al. demonstrated that evolved heuristics (with
IDA* search) greatly reduce the number of nodes required to
solve instances of the Rush Hour puzzle, as compared to the
other two methods (blind search and IDA* with handcrafted
heuristics).

The problem instances of [18], [19] involved relatively small
search spaces—they managed to solve their entire initial test
suite using blind search alone (although 2% of the problems
violated their space requirement of 1.6 million nodes), and
fared even better when using IDA* with handcrafted heuristics
(with no evolution required). Therefore, Hauptman et al.
designed a coevolutionary algorithm to find more-challenging
instances.

Note thatnoneof the deals in the Microsoft 32K problem
set could be solved with blind search, nor with IDA* equipped
with handcrafted heuristics, further evidencing that FreeCell is
far more difficult.

We applied a standard genetic algorithm (GA) to evolve
solvers for the game of FreeCell, surpassing the top known
solver [15], [16] . We will show herein that using policy-based
genetic programming we can dramatically improve upon this
GA-FreeCell.

The recent book by Sipper [17] provides a thorough account
of the previous work on Rush Hour and FreeCell.

III. M ETHODS

Our work on the game of FreeCell progressed in five phases:

1) Construction of an iterative deepening (uninformed)
search engine, endowed with several enhancements.
Heuristics were not used during this phase.

2) Guiding an IDA* search algorithm with the HSD heuris-
tic function (HSDH).

3) Implementation of the HSD algorithm (including the
heuristic function).

4) Design of several novel heuristics and advisors for
FreeCell.

5) Evolving heuristics using three different evolutionary
algorithms—a standard GA, standard (Koza-style) GP,
and policy-based GP—each combined with three types
of evolutionary learning mechanisms: Gradual difficulty,
Rosin-style coevolution, and Hillis-style coevolution.

A. Search Algorithms

1) Iterative Deepening:We initially implemented standard
iterative deepening search [9] as the heart of our game engine.
This algorithm may be viewed as a combination of DFS
and BFS: starting from a given configuration (e.g., the initial
state), with a minimal depth bound, we perform a DFS
search for the goal state through the graph of game states
(in which vertices represent game configurations, and edges—
legal moves). Thus, the algorithm requires onlyθ(n) memory,
wheren is the depth of the search tree. If we succeed, the
path is returned. If not, we increase the depth bound by a fixed
amount, and restart the search. Note that since the search is
incremental, when we find a solution we are guaranteed that it
is optimal since a shorter solution would have been found in
a previous iteration (more precisely, the solution is optimal or
near optimal, depending on whether the depth increase equals
1 or is greater than 1). For difficult problems, such as Rush
Hour and FreeCell, findinga solution is sufficient, and there
is typically no requirement of finding the optimal solution.

An iterative deepening-based game engine receives as input
a FreeCell initial configuration (known as a deal), as well as
some run parameters, and outputs a solution (i.e., a list of
moves) or an indication that the deal could not be solved.

We observed that even when we permitted the search
algorithm to use all the available memory (2GB in our case, as
opposed to [18] where the node count was limited) virtually
all Microsoft 32K problems could not be solved. Hence, we
deduced that heuristics were essential for solving FreeCell
instances—uninformed search alone was insufficient.

2) Iterative Deepening A*:Given that the HSD solver
outperforms all other solvers (except ours), we implemented
the heuristic function used by HSD (described in Section III-B)
along with the iterative deepening A* (IDA*) search algo-
rithm [9], one of the most prominent methods for solving puz-
zles (e.g., [10], [11], [35]). This algorithm operates similarly
to iterative deepening, except that in the DFS phase heuristic
values are used to determine the order by which children of a
given node are visited. This move ordering is the only phase
wherein the heuristic function is used—the open list structure
is still sorted according to depth alone.
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IDA* underperformed where FreeCell was concerned, un-
able to solve many instances (deals). Even using several
heuristic functions, IDA*—despite its success in other difficult
domains—yielded inadequate performance: less than 1% of
the deals we tackled were solved in a reasonable time.

At this point we opted for employing the HSD solver in its
entirety, rather than merely the HSD heuristic function.

3) Staged Deepening:Heineman’s Staged Deepening
(HSD) algorithm is based on the observation that there is no
need to store the entire search space seen so far in memory.
This is so because of a number of significant characteristics
of FreeCell:

• For most states there is more than one distinct permuta-
tion of moves creating valid solutions. Hence, very little
backtracking is needed.

• There is a relatively high percentage of irreversible
moves: according to the game’s rules a card placed in
a home cell cannot be moved again, and a card moved
from an unsorted pile cannot be returned to it.

• If we start from game states and reach statet after
performingk moves, andk is large enough, then there
is no longer any need to store the intermediate states
betweens and t. The reason is that there is a solution
from t (first characteristic) and a high percentage of the
moves along the path are irreversible anyway (second
characteristic).

Thus, the HSD algorithm may be viewed as two-layered
IDA* with periodic memory cleanup. The two layers operate
in an interleaved fashion: 1) At each iteration, a local DFS is
performed from the head of the open list up to depthk, with
no heuristic evaluations, using a transposition table—storing
visited nodes—to avoid loops; 2) Only nodes atprecisely
depthk are stored in the open list,1 which is sorted accord-
ing to the nodes’ heuristic values. In addition to these two
interleaved layers, whenever the transposition table reaches a
predetermined size, it is emptied entirely, and only the open
list remains in memory. Algorithm 1 presents the pseudocode
of the HSD algorithm.S was empirically set by Heineman to
200,000.

Compared with IDA*, HSD uses fewer heuristic evaluations
(which are performed only on nodes entering the open list),
resulting in a significant reduction in time. Reduction is
achieved through the second layer of the search, which stores
enough information to perform backtracking (as stated above,
this does not occur often), and the size ofT is controlled by
overwriting nodes.

Although the staged deepening algorithm does not guarantee
an optimal solution, as explained above, for difficult problems
finding a solution is sufficient.

When we ran the HSD solver it solved 96% of Microsoft
32K, as reported by Heineman.

At this point we were at the limit of the current state-
of-the-art for FreeCell, and we turned to evolution to attain
better results. However we first needed to develop additional
heuristics for this domain.

1Note that since we are using DFS and not BFS we do not find all such
states.

Algorithm 1 Heineman’s Staged Deepening Algorithm
// Parameter:S, size of transposition table

1: T ← initial state
2: while T not emptydo
3: s← remove best state inT according to heuristic value
4: U ← all states exactlyk moves away froms, discovered

by DFS
5: T ← merge(T , U )

// merge maintainsT sorted by descending heuristic
value
// merge overwrites nodes inT with newer nodes from
U of equal heuristic value

6: if size of transposition table≥ S then
7: clear transposition table
8: end if
9: if goal ∈ T then

10: return path to goal
11: end if
12: end while

B. Freecell Heuristics and Advisors

In this section we describe the heuristics we used, all of
which estimate the distance to the goal from a given game
configuration:
Heineman’s Staged Deepening Heuristic

(HSDH): This is the heuristic used by the HSD solver.
For each foundation pile (recall that foundation piles are
constructed in ascending order), locate within the cascade
piles the next card that should be placed there, and count the
cards found on top of it. The returned value is the sum of
this count for all foundations. This number is multiplied by
2 if there are no available free cells or empty cascade piles
(reflecting the fact that freeing the next card is harder in this
case).
NumWellPlaced: Count the number ofwell-placedcards

in cascade piles. A pile of cards is well placed ifall its cards
are in descending order and alternating colors.
NumCardsNotAtFoundations: Count the number of

cards that are not at the foundation piles.
FreeCells: Count the number of available free cells and

cascades.
DifferenceFromTop: The average value of the top

cards in cascades, minus the average value of the top cards in
foundation piles.
LowestFoundationCard: The highest possible card

value (typically the king) minus the lowest card value in
foundation piles.
HighestFoundationCard: The highest card value in

foundation piles.
DifferenceFoundation: The highest card value in the

foundation piles minus the lowest one.
SumOfBottomCards: Take the highest possible sum of

cards in the bottom of cascades (e.g., for 8 cascades, this
is 4 ∗ 13 + 4 ∗ 12 = 100), and subtract the sum of values
of cards actually located there. For example, in Figure 1,
SumOfBottomCards is 100 − (2 + 3 + 9 + 11 + 6 + 2 +
8 + 11) = 48.
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TABLE I
L IST OF HEURISTICS. R: REAL OR INTEGER.

Node name Type Return value
HSDH R Heineman’s staged deepening heuristic

NumWellPlaced R Number of well-placed cards in cascade piles
NumCardsNotAtFoundations R Number of cards not at foundation piles

FreeCells R Number of available free cells and cascades
DifferenceFromTop R Average value of top cards in cascades minus average value oftop cards in foundation piles

LowestFoundationCard R Highest possible card value minus lowest card value in foundation piles
HighestFoundationCard R Highest card value in foundation piles
DifferenceFoundation R Highest card value in foundation piles minus lowest one

SumOfBottomCards R Highest possible card value multiplied by number of suites, minus sum of cascades’ bottom card

Table I provides a summary of all heuristics.

Apart from heuristics, which estimate the distance to the
goal, we also definedadvisors(or auxiliary functions), incor-
porating domain features, i.e., functions that do not provide an
estimate of the distance to the goal but which are nonetheless
beneficial in a GP setting.

PhaseByX: This is a set of functions that includes a
“mirror” function for each of the heuristics in Table I.
Each function’s name (and purpose) is derived by replacing
X in PhaseByX with the original heuristic’s name, e.g.,
LowestFoundationCard produces
PhaseByLowestFoundationCard. PhaseByX incorpo-
rates the notion of applying different strategies (embodied
as heuristics) at differentphasesof the game, with a phase
defined byg/(g + h), whereg is the number of moves made
so far, andh is the value of the original heuristic.

For example, suppose 10 moves have been made (g = 10),
and the value returned byLowestFoundationCard is
5. ThePhaseByLowestFoundationCard heuristic will
return10/(10+ 5) or 2/3 in this case, a value that represents
the belief that by using this heuristic the configuration being
examined is at approximately2/3 of the way from the initial
state to the goal.

DifficultyLevel: This function returns the location of
the current problem (initial state) being solved in an ordered
problem set (sorted by difficulty), and thus yields an estimate
of how difficult it is. The difficulty of a problem is defined by
the number of nodes the HSD solver needed to solve it.

IsMoveToCascade is a Boolean function that examines
the destination of the last move and returns true if it was a
cascade.

Table II provides a list of the auxiliary functions, including
the above functions and a number of additional ones.

All of the heuristics and advisors described above are
intuitive and straightforward to implement and compute, with
their time complexity bounded by the number of cards, i.e.,
problem input. Furthermore, they are not resource avaricious
as are standard heuristic functions, such as relaxation (time
consuming) and PDBs (memory consuming).

Experiments with these heuristics demonstrated that each
one separately (except for HSDH) was not good enough to
guide search for this difficult problem. Thus we turned to
evolution.

C. Evolving Heuristics for FreeCell

Combining several heuristics to get a more accurate one is
considered one of the most difficult problems in contemporary
heuristics research [35], [36].

This task typically involves solving three major sub-
problems:

1) How to combine heuristics byarithmeticmeans, e.g., by
summing their values or taking the maximal value.

2) Finding exact conditions (i.e.,logic functions) regarding
whento apply each heuristic, or combinations thereof—
some heuristics may be more suitable than others when
dealing with specific game configurations.

3) Finding the proper set of game configurations in order
to facilitate the learning process while avoiding pitfalls
such as overfitting.

The problem of combining heuristics is difficult mainly
because it entails traversing an extremely large search space
of possible numeric combinations, logic conditions, and game
configurations. To tackle this problem we turn toevolution.

In order to properly solve these three sub-problems, we
designed a large set of experiments using three different evo-
lutionary methods, all involving hyper-heuristics: a standard
GA, standard (Koza-style) GP, and policy-based GP. Each
type of hyper-heuristic was paired with three different learning
settings: Rosin-style coevolution, Hillis-style coevolution, and
a novel method which we call gradual difficulty.

Below we describe the elements of our setup in detail.
1) The Hyper Heuristic-Based Genome:We used three

different genomic representations.
Standard GA. This representation was used by us in [15],

[16], [17]. This type of hyper-heuristic only addresses thefirst
problem of how to combine heuristics by arithmetic means.
Each individual comprises 9 real values in the range[0, 1],
representing a linear combination of all 9 heuristics described
above (Table I). Specifically, the heuristic value,H, designated
by an evolving individual is defined asH =

∑9

i=1
wihi,

where wi is the ith weight specified by the genome, and
hi is the ith heuristic shown in Table I. To obtain a more
uniform calculation we normalized all heuristic values to
within the range[0, 1] by maintaining a maximal possible
value for each heuristic, and dividing by it. For example,
DifferenceFoundationreturns values in the range[0, 13] (13
being the difference between the king’s value and the ace’s
value), and the normalized values are attained by dividing by
13.
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TABLE II
L IST OF AUXILIARY FUNCTIONS. B: BOOLEAN, R: REAL OR INTEGER.

Node name Type Return value
IsMoveToFreecell B True if last move was to a free cell, false otherwise
IsMoveToCascade B True if last move was to a cascade, false otherwise

IsMoveToFoundation B True if last move was to a foundation pile, false otherwise
IsMoveToSortedPile B True if last move was to a sorted pile, false otherwise

LastCardMoved R Value of last card moved
NumOfSiblings R Number of reachable states (in one move) from last state
NumOfChildren R Number of reachable states (in one move) from current state

DifficultyLevel R Index of the current problem in the problem set (sorted by difficulty)
PhaseByX R “Mirror” function for each heuristic

g R Number of moves made from initial configuration to current

A GA seemed a natural algorithm to employ given the wish
to obtain a linear vector of weights. As the results will show,
the GA proved quite successful and was therefore retained as
a yardstick to measure against when we embarked upon our
GP path.

GP. As we wanted to embody both combinations of es-
timates and application conditions we evolved GP-trees as
described in [37]. The function set included the functions
{IF ,AND,OR,≤,≥,∗,+}, and the terminal set included all
heuristics and auxiliary functions in Tables I and II, as well
as random numbers within the range[0, 1]. All the heuristic
values were normalized to within the range[0, 1] as performed
above with the GA.

This method yielded poor results, no matter what depth limit
was used for the trees.

Policies.The last genome used also combines estimates and
application conditions, using ordered sets of control rules,
or policies. As stated above, policies have been evolved
successfully with GP to solve search problems—albeit simpler
ones (e.g., [18], [19] and [28], mentioned above).

The structure of our policies is the same as the one in [18]:

RULE1: IF Condition1 THEN V alue1
.
.
.

RULEN : IF ConditionN THEN V alueN
DEFAULT : V alueN+1

where Conditioni and V aluei represent conditions and
estimates, respectively.

Policies are used by the search algorithm in the following
manner: The rules are ordered such that we apply the first rule
that “fires” (meaning its condition is true for the current state
being evaluated), returning itsV alue part. If no rule fires, the
value is taken from the last (default) rule:V alueN+1. Thus
individuals, while in the form of policies, are still heuristics—
the value returned by the activated rule is an arithmetic
combination of heuristic values, and is thus a heuristic value
itself. This accords with our requirements: rule ordering and
conditions control when we apply a heuristic combination, and
values provide the combinations themselves.

Thus, withN being the number of rules used, each individ-
ual in the evolving population containsN Condition GP trees
andN + 1 V alue sets of weights used for computing linear

combinations of heuristic values. After experimenting with
several sizes of policies, we settled onN = 5, providing us
with enough rules per individual, while avoiding cumbersome
individuals with too many rules. The depth limit used for the
Condition trees was empirically set to 5.

For Condition GP trees, the function set included the
functions{AND,OR,≤,≥}, and the terminal set included all
heuristics and auxiliary functions in Tables I and II. The sets of
weights appearing inV alues all lie within the range[0, 1], and
correspond to the heuristics listed in Table I. All the heuristic
values are normalized to within the range[0, 1] as described
above.

2) Genetic Operators:We applied GP-style evolution in
the sense that first an operator (reproduction, crossover, or
mutation) was selected with a given probability, and then
one or two individuals were selected in accordance with the
operator chosen. For all types of genomes we used standard
fitness-proportionate selection. We also used elitism—the best
individual of each generation was passed onto the next one
unchanged.

For simple GA individuals standard reproduction and single-
point crossover were applied [38]. Mutation was performed in
a manner analogous to bitwise mutation by replacing with
independent probability0.1 a (real-valued) weight by a new
random value in the range[0, 1].

We used Koza’s standard crossover, mutation, and repro-
duction operators, for the GP hyper-heuristics [37].

For policies, however, the crossover and mutation operators
were performed as follows: First, one or two individuals were
selected (depending on the genetic operator). Second, we
randomly selected the rule (or rules) within the individual(s).
This we did with uniform distribution, except that the most oft-
used rule (we measured the number of times each rule fired)
had a 50% chance of being selected. Third, we chose with
uniform probability whether to apply the operator to eitherof
the following: the entire rule, the condition part, or the value
part.

We thus had 6 sub-operators, 3 for crossover—
RuleCrossover, ConditionCrossover, andValueCrossover
—and 3 for mutation—RuleMutation, ConditionMutation, and
ValueMutation. One of the major advantages of policies is that
they facilitate the use of such diverse genetic operators.

For both GP-trees and policies, crossover was only per-
formed between nodes of the same type (using Strongly Typed
Genetic Programming [39]).
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3) GP Parameters:We experimented with several con-
figurations, finally settling upon: population size—between
40 and 60; total generation count—between 300 and 1000,
depending on the learning method, as elaborated below; repro-
duction probability—0.2; crossover probability—0.7; mutation
probability—0.1; and elitism set size—1. These settings were
applied to all types of hyper-heuristics. A uniform distribution
was used for selecting crossover and mutation points within
individuals, except for policies, as described above.

4) Training and Test Sets:The Microsoft 32K suite con-
tains a random assortment of deals of varying difficulty levels.
In each of our experiments 1,000 of these deals were randomly
selected for the training set and the remaining 31K were used
as the test set.

The training set for the gradual-difficulty approach was
selected anew each run, as described in Section III-D1.

5) Fitness: An individual’s fitness score was obtained by
running the HSD solver on deals taken from the training set,
with the individual used as the heuristic function. Fitness
equaled the average search-node reduction ratio. This ratio
was obtained by comparing the reduction in number of search
nodes—averaged over solved deals—with the average number
of nodes when searching with the original HSD heuristic
(HSDH). For example, if the average reduction in search was
70% compared with HSDH (i.e., 70% fewer nodes expanded
on average), the fitness score was set to 0.7. If a given deal was
not solved within 2 minutes (a time limit we set empirically),
we assigned a fitness score of 0 to that deal.

To distinguish between individuals that did not solve a given
deal and individuals that solved it but without reducing the
amount of search (the latter case reflecting better performance
than the former), we assigned to the latter a partial score
of (1−FractionExcessNodes)/C, whereFractionExcessNodes
was the fraction of excessive nodes (values greater than 1 were
truncated to 1), andC was a constant used to decrease the
score relative to search reduction (set empirically to 1000).
For example, an excess of 30% would yield a partial score of
(1− 0.3)/C; an excess of over 200% would yield 0.

Because of the puzzle’s difficulty, some deals were solved
by an evolving individual or by HSDH—but not by both, thus
rendering comparison (and fitness computation) problematic.
To overcome this we imposed a penalty for unsuccessful
search: Problems not solved within 2 minutes were counted
as requiring109 search nodes. For example, if HSDH did not
solve within 2 minutes a deal that an evolving individual did
solve using5× 108 nodes, the percent of nodes reduced was
computed as 50%. The109 value was derived by taking the
hardest problem solved by HSDH and multiplying by two the
number of nodes required to solve it.

An evolving solver’s fitness per single deal,fi, thus equaled:

fi =







































search-node reduction ratio
if solution found with node reduction

max{(1-FractionExcessNodes)/1000, 0}
if solution found without node reduction

0 if no solution found

and the total fitness,fs, was defined as the average,fs =
1/N

∑

N

i=1
fi. Initially we computed fitness by using a con-

stant number,N , of deals (set to 10 to allow diversity while
avoiding prolonged evaluations), which were chosen randomly
from the training set. However, as the test set was large, fitness
scores fluctuated wildly and improvement proved difficult. To
overcome this problem we devised a novel learning method
which we calledgradual difficulty.

D. Learning Methods

1) Gradual Difficulty: We first sort the entire Microsoft
32K into groups of increasing difficulty levels. During the
course of learning, the difficulty of the problems encountered
by individuals is increased by selecting from the more-difficult
groups.

Sorting is done according to the number of nodes required
to solve each deal withHSDH. We divided the problems into
45 groups consisting of 100 problems each. An evolutionary
run begins by choosing one random problem from each of
the 5 easiest groups (group01,. . .,group05). We then use only
these 5 problems for fitness evaluation. The run continues for
10 generations or until an individual with a fitness score of 0.7
or above is found. Next, we drop the problem fromgroup01
and replace it with a random problem fromgroup06, i.e.,
we now work with problems fromgroup02,. . .,group06. This
is repeated: drop easiest group, add more-difficult one, until
group45is used for evaluation, i.e., until we are dealing with
groupsgroup41,. . .,group45. To reduce the effect of overfitting
when evaluating with specific groups of problems, we also
used a sixth problem for fitness evaluation. This problem was
selected from one of the groups that had been dropped, with
the number of dropped groups continually growing. The test
set used was the remainder of Microsoft 32K.

Note that all the parameters described in this section—total
number of groups, number of concurrently used groups, gener-
ation count per group, and maximal fitness—were determined
empirically.

While some improvement was observed in node reduction
and time, the individuals developed with this method failedto
solve many of the problems solved by HSDH. This is further
discussed in Section IV. Also, the learning process needed
over 1000 generations to attain reasonable results.

The major reason for failing to solve many problems
when using hyper-heuristics evolved with gradual difficulty
learning, is the phenomenon offorgetting [40], [41], [42]:
over the generations the population becomes adept at solving
certain problems, at the expense of “forgetting” to solve other
problems it had been adept at in earlier generations.

Coevolution, wherein the population of solutions coevolves
alongside a population of problems, offers a solution to this
problem . The basic idea is that neither population is allowed
to stagnate: As solvers become more adept at solving certain
problems these latter do not remain in the problem set but
are removed from the population of problems—which itself
evolves. In this form of competitive coevolution the fitnessof
one population is inversely related to the fitness of the other
population.
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2) Rosin-Style Coevolution:The first type of coevolution
we tried was Rosin-style coevolution with aHall of Fame[21].
Rosin’s method may be viewed as an extension of the elitism
concept. The “Hall of Fame” encourages arms races by saving
good individuals from prior generations [21].

In this coevolutionary scenario the first population com-
prises hyper-heuristics—as described above—while the second
population consists of FreeCell deals. The populations are
equal in size (40). Ten top deals (in terms of difficulty to solve
them) are maintained in the Hall of Fame for future testing.
Each hyper-heuristic individual is given 5 deals to solve from
the deals population and 2 instances from the Hall of Fame.
Thus each deal is provided as training material to more than
one hyper-heuristic.

The genome and genetic operators of the solver population
were identical to those defined in Section III-C.

We applied GP-style evolution to the deal population in the
sense that first an operator (reproduction or mutation) was se-
lected with a given probability, and then one or two individuals
were selected in accordance with the operator chosen. We used
standard fitness-proportionate selection. Mutation was applied
by replacing a random deal with another random deal from
the training set. We did not use crossover.

Fitness was assigned to a solver by averaging its perfor-
mance over the 7 deals, as described in Section III-C.

A deal individual’s fitness was defined as the average
number of nodes needed to solve it, averaged over the solvers
that “ran” this individual, and divided by the average number
of nodes when searching with the original HSD heuristic. If a
particular deal was not solved by any of the solvers—a value
of 109 nodes was assigned to it. This way the fitness of deals
was inversely proportional to the hyper-heuristics’ fitness, so
that if a deal was solved easily (with a relatively small number
of nodes) on average—it was assigned a low fitness.

Unfortunately, this method proved unsuccessful for our
problem domain, regardless of the parameter settings. Rosin-
style coevolution is based on the assumption that the more
the FreeCell deals that accumulate in the Hall of Fame are
harder, the more the hyper-heuristics will improve. Although
this assumption might hold for some domains it is untrue for
FreeCell due to the difficulty of defininghard problems. While
for some states a heuristic function might provide a good
estimate, for other states it might provide bad estimates [43].
This means that there is no inherently hard or easy state for
a heuristic; therefore, a hard-to-solve Hall of Fame deal in
a certain generation will be easy to solve a few generations
later when the hyper-heuristic individuals have specialized in
the new type of deals and have “forgotten” how to solve the
previous ones. If at some point a hyper-heuristic performs
badly on some deals in the Hall of Fame, we do not know
whether the hyper-heuristic is bad all around or perhaps
it performs well on other types of deals. The evolutionary
process exploits this for the benefit of the deal population,
and every few generations “hard” deals become “easy” and
vice-versa.

Given the fundamental problem of forgetting, a new method
for training the hyper-heuristics to classify states and apply
different values thereof was needed. Although policies were

designed to maintain rules for different states, they need an
effective training method to learn the correct questions and
values.

Thus we come to Hillis-style coevolution, which proved to
be the most successful learning method for FreeCell.

3) Hillis-Style Coevolution:We assumed that if we could
train each hyper-heuristic with a subset of deals that somehow
represented the entire search space, we would obtain betterre-
sults. Although Hillis-style coevolution [22] did not originally
address this problem, it does provide a solution.

In our new coevolutionary scenario the first population
comprises the solvers, as described above. In the second pop-
ulation an individual represents aset of FreeCell deals. Thus
a “hard”-to-solve individual in this latter, problem population
contains several deals of varying difficulty levels. This multi-
deal individual made life harder for the evolving solvers: They
had to maintain a consistent level of play over several deals.
With single-deal individuals, which we used in Rosin-style
coevolution, either the solvers did not improve if the deal
population evolved every generation (i.e., too fast), or the
solvers became adept at solving certain deals and failed on
others if the deal population evolved more slowly (i.e., every
k generations, for a givenk > 1).

The genome and genetic operators of the solver population
were identical to those defined in Section II-C.

The genome of an individual in the deals population con-
tained 6 FreeCell deals, represented as integer-valued indexes
from the training set{v1, v2, . . . , v1000}, wherevi is a random
index in the range[1, 32000]. We applied GP-style evolution
in the sense that first an operator (reproduction, crossover,
or mutation) was selected with a given probability, and then
one or two individuals were selected in accordance with
the operator chosen. We used standard fitness-proportionate
selection and single-point crossover. Mutation was performed
in a manner analogous to bitwise mutation by replacing with
independent probability0.1 an (integer-valued) index with
a randomly chosen deal (index) from the training set, i.e.,
{v1, v2, . . . , v1000} (Figure 2). Since the solvers needed more
time to adapt to deals, we evolved the deal population every
5 solver generations (this slower evolutionary rate was set
empirically).

We experimented with several parameter settings, finally
settling on: population size—between 40 and 60, generation
count—between 60 and 80, reproduction probability—0.2,
crossover probability—0.7, mutation probability—0.1, and
elitism set size—1.

Fitness was assigned to a solver by picking 2 individuals in
the deal population and attempting to solve all 12 deals they
represented. The fitness value was an average of all 12 deals,
as described in Section III-C.

Whenever a solver “ran” a deal individual’s 6 deals its
performance was recorded in order to derive the fitness of the
deal population. A deal individual’s fitness was defined as the
average number of nodes needed to solve the 6 deals, averaged
over the solvers that “ran” this individual, and divided by the
average number of nodes when searching with the original
HSD heuristic. If a particular deal was not solved by any of
the solvers—a value of109 nodes was assigned to it.
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TABLE III
AVERAGE NUMBER OF NODES, TIME (IN SECONDS), AND SOLUTION LENGTH REQUIRED TO SOLVE ALLM ICROSOFT32K PROBLEMS, ALONG WITH THE

NUMBER OF PROBLEMS SOLVED. TWO SETS OF MEASURES ARE GIVEN: 1) UNSOLVED PROBLEMS ARE ASSIGNED A PENALTY, AND 2) UNSOLVED

PROBLEMS ARE EXCLUDED FROM THE COUNT. HSDH IS THE HEURISTIC FUNCTION USED BYHSD,GA-FreeCellIS OUR TOP EVOLVEDGA SOLVER [15],
AND Policy-FreeCellIS THE TOP EVOLVED HYPER-HEURISTIC POLICY, ALL SELECTED ACCORDING TO PERFORMANCE ON THE TRAINING SET.

Heuristic Learning method Nodes Time Length Solved
Unsolved problems penalized
HSDH - 75,713,179 709 4,680 30,859
GA Gradual Difficulty 290,209,299 2,612 17,512 17,748
Policy Gradual Difficulty 261,331,656 2,352 15,782 18,470
GA-FreeCell Hillis-style coevolution 16,626,567 150 1,132 31,475
Policy-FreeCell Hillis-style coevolution 3,977,932 34.94 392 31,888
Unsolved problems excluded
HSDH - 1,780,216 44.45 255 30,859
GA Gradual Difficulty 182,132 1.77 151 17,748
Policy Gradual Difficulty 178,202 1.71 149 18,470
GA-FreeCell Hillis-style coevolution 230,345 2.95 151 31,475
Policy-FreeCell Hillis-style coevolution 385,568 2.61 177 31,888

Fig. 2. Crossover and mutation of individuals in the population of problems
(deals).

Not only did this method surpass the previous ones, it also
outperformed HSDH by a wide margin, solving all but 112
deals of Microsoft 32K when using policy individuals, and
doing so using significantly less time and space requirements.
Additionally, the solutions found were shorter and hence
better.

IV. RESULTS

We evaluated the performance of evolved heuristics with
the same scoring method used for fitness computation, except
we averaged over all Microsoft 32K deals instead of over the
training set. We also measured average improvement in time,
solution length (number of nodes along the path to the correct
solution found), and number of solved instances of Microsoft
32K, all compared to the HSD heuristic, HSDH.

We compared the following heuristics: HSDH
(Section III-B), HighestFoundationCard and
DifferenceFoundation (Section III-B)—both of
which proliferated in evolved individuals, and the top
hyper-heuristic developed via each of the learning methods.

Table III shows our results.HighestFoundationCard,
DifferenceFoundation, and all GP individuals proved
worse than HSD’s heuristic function in all of the measures and
in all of the experiments and therefore were not included in
the tables. In addition, all Rosin-style coevolution experiments
failed to solve more than 98% of the problems, and therefore
this learning method was not included in the tables as well.

The results for the test set (Microsoft 32K minus 1K training
set) and for the entire Microsoft 32K set were very similar,
and therefore we report only the latter. The runs proved quite
similar in their results, with the number of generations being
1000 on average for gradual difficulty and 300 on average for
Hillis-style coevolution. The first few generations took more
than 8 hours (on a Linux-based PC, with processor speed
3GHz, and 2GB of main memory) since most of the solvers
did not solve most of the deals within the 2-minute time limit.
As evolution progressed a generation came to take less than
an hour.

For comparing unsolved deals we applied the109 penalty
scheme described in Section III-C to the node reduction
measure. Since we also compared time to solve and solution
length, we applied the penalties of 9,000 seconds and 60,000
moves to these measures, respectively. Since we used this
penalty scheme during fitness evaluation we included the
penalty in the results as well.

Compared to HSDH, GA-FreeCell [15] and Policy-FreeCell
reduced the amount of search by more than 78%, solution
time by more than 93%, and solution length by more than
30% (with unsolved problems excluded from the count). In
addition, Policy-FreeCell solved 99.65% of Microsoft 32K,
thus outperforming both HSDH and GA-FreeCell. Note that
although Policy-FreeCell solves “only” 1.3% more instances
than GA-FreeCell, these additional deals are far harder to solve
due to the long tail of the learning curve.

One of our best Policy solvers is shown in Table IV.
How does our evolution-produced player fare against hu-

mans? A major FreeCell website2 provides a ranking of human
FreeCell players, listing solution times and win rates (alas, no
data on number of deals examined by humans, nor on solution
lengths). This site contains thousands of entries and has been

2http://www.freecell.net
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TABLE IV
EXAMPLE OF AN EVOLVED POLICY-BASED SOLVER. Hi IS THE iTH HEURISTIC OFTABLE I.

.

Rule Condition Value
H1 H2 H3 H4 H5 H6 H7 H8 H9

1 (AND (OR (OR (≤ PhaseBySumOfBottomCards 0.58)
(≤ NumCardsNotAtFoundations 0.82)) (OR (≤ PhaseBy-
SumOfBottomCards 0.58) (≤ NumCardsNotAtFoundations
0.58))) (OR (OR (≥ PhaseByDifferenceFromTop 0.77) (≤

PhaseByLowestFoundationCard 0.16)) (AND (≤ Phase-
ByNumWellPlaced 0.21) (≥ IsMoveToSortedPile 0.59))))

0 0.02 0.03 0.41 0 0 0.51 0.02 0.01

2 (OR (OR (OR (≥ PhaseByDifferenceFromTop
0.77) (≤ PhaseByNumWellPlaced 0.16)) (AND (≤

PhaseByNumWellPlaced 0.21) (≥ PhaseByNumWellPlaced
0.59))) (OR (OR (≥ PhaseByDifferenceFromTop 0.77)
(≤ PhaseByLowestFoundationCard 0.16)) (AND (≤

PhaseByNumWellPlaced 0.21) (≥ IsMoveToSortedPile
0.59))))

0.2 0.11 0.02 0 0.15 0.03 0.03 0.32 0.14

3 (AND (AND (≥ PhaseByLowestFoundationCard 0.63) (≥

PhaseByLowestFoundationCard 0.63)) (≥ PhaseByLowest-
FoundationCard 0.63))

0.01 0 0.02 0 0.28 0 0.68 0.01 0

4 (AND (≤ NumCardsNotAtFoundations 0.78) (≥ PhaseBy-
LowestFoundationCard 0.63))

0 0.04 0.09 0 0.02 0.47 0.07 0.26 0.05

5 (OR (≤ HighestFoundationCard 0.44) (≤ HSDH 0.83)) 0.3 0.41 0 0.13 0 0 0.09 0.06 0.01

default — 0.26 0.07 0.03 0.06 0.01 0 0.02 0.52 0.03

TABLE V
THE TOP THREE HUMAN PLAYERS(WHEN SORTED ACCORDING TO

NUMBER OF GAMES PLAYED), COMPARED WITH HSDH, GA-FREECELL ,
AND POLICY-FREECELL . SHOWN ARE NUMBER OF DEALS PLAYED,
AVERAGE TIME (IN SECONDS) TO SOLVE, AND PERCENT OF SOLVED

DEALS FROM M ICROSOFT32K. TABLE ARRANGED IN DESCENDING

ORDER OF WIN RATE(PERCENTAGE OF SOLVED DEALS).

Rank Name Deals played Time Solved
1 Policy-FreeCell 32,000 3 99.65%
2 GA-FreeCell 32,000 3 98.36%
3 HSDH 32,000 44 96.43%
4 volwin 159,478 190 96.03%
5 deemde 160,237 111 96.02%
6 caralina 151,102 67 65.82%

active since 1996, so the data is reliable. It should be noted
that the game engine used by this site generates random deals
in a somewhat different manner than the one used to generate
Microsoft 32K. Yet, since the deals are randomly generated,
it is reasonable to assume that the deals are not biased in any
way. Since statistics regarding players who played sparsely
are not reliable, we focused on humans who played over 30K
games—a figure commensurate with our own.

The site statistics, which we downloaded on December 13,
2011, included results for 83 humans who met the minimal-
game requirement—all but two of whom exhibited a win rate
greater than 91%. Sorted according to the number of games
played, the no. 1 player played 160,237 games, achieving a
win rate of 96.02%. This human is therefore pushed to the
fourth position, with our top player (99.65% win rate) taking
the first place, our GA-FreeCell taking the second place, and
HSDH coming in third (Table V).

When sorted according to average solving time, the fastest

TABLE VI
THE TOP THREE HUMAN PLAYERS WITH WIN RATE OVER90% (WHEN

SORTED ACCORDING TO AVERAGE TIME TO SOLVE), COMPARED WITH

HSDH, GA-FREECELL , AND POLICY-FREECELL . SHOWN ARE NUMBER

OF DEALS PLAYED, AVERAGE TIME (IN SECONDS) TO SOLVE, AND

PERCENT OF SOLVED DEALS FROMM ICROSOFT32K. TABLE ARRANGED

IN DESCENDING ORDER OF WIN RATE(PERCENTAGE OF SOLVED DEALS).

Rank Name Deals played Time Solved
1 Policy-FreeCell 32,000 3 99.65%
2 GA-FreeCell 32,000 3 98.36%
3 DoubleDouble 48,828 107 96.64%
4 caribsoul 61,617 104 96.56%
5 HSDH 32,000 44 96.43%
6 deemde 160,237 111 96.02%

human player with win rate above 90% solved deals in an
average time of 104 seconds and achieved a win rate of
96.56%. This human is therefore pushed to the fourth position,
with HSDH in the third place, GA-FreeCell in the second place
and Policy-FreeCell taking the first place (Table VI). Note
that the fastest human player—caralina—takes 67 seconds
on average to reach a solution (Table V). HSDH reduces
caralina’s average time by 34.3%, while our evolved solvers
reduce the average time by 95.5%. These values suggest that
outperforming human players in time-to-solve is not a trivial
task for a computer. Yet, our evolved solvers manage to shine
with respect to time as well.

If the statistics are sorted according to win rate then our
Policy-FreeCell player takes the first place with a win rate
of 99.65%, while GA-FreeCell attains the respectable 11th
place. Either way, it is clear that when compared with strong,
persistent, and consistent humans, Policy-FreeCell emerges
as the new best player to date, leaving HSDH far behind
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TABLE VII
THE TOP THREE HUMAN PLAYERS(WHEN SORTED ACCORDING TO WIN

RATE), COMPARED WITH HSDH, GA-FREECELL , AND

POLICY-FREECELL . SHOWN ARE NUMBER OF DEALS PLAYED, AVERAGE

TIME (IN SECONDS) TO SOLVE, AND PERCENT OF SOLVED DEALS FROM

M ICROSOFT32K. TABLE ARRANGED IN DESCENDING ORDER OF WIN

RATE (PERCENTAGE OF SOLVED DEALS).

Rank Name Deals played Time Solved
1 Policy-FreeCell 32,000 3 99.65%
2 JonnieBoy 39,102 270 99.33%
3 time.waster 37,286 191 99.20%
4 Nat King C. 54,599 207 98.97%
...
11 GA-FreeCell 32,000 3 98.36%
...
66 HSDH 32,000 44 96.43%

(Table VII).

V. D ISCUSSION

Although policies can be seen as a special case of GP trees
they yielded good results for this domain while GP did not.
A possible reason for this is that the policy structure is more
apt for this type of problems. The policy conditions classify
states while the values combine the available heuristics. When
standard tree-GP is used, the structure is not clear and many
meaningless trees are generated.

Another interesting point is the difference in the results be-
tween GA-FreeCell and Policy-FreeCell. 80% of the problems
not solved by GA-FreeCell were solved by Policy-FreeCell,
leaving only 112 unsolved problems by the latter. On the other
hand, the search reduction measures were similar. We thus
concluded that for most of the states a simple GA individual
would have sufficed, but in order to attain a leap in success
rate the use of policies proved necessary.

In general, when the evaluation time of an individual is
short, large populations may be used; moreover, we can
afford to evaluate each individual on many randomly selected
instances, perhaps even on the entire training set, thereby
attaining a reliable fitness measure. In such cases gradual dif-
ficulty might contribute to the evolutionary process. However,
with long evaluation times an individual can be tested against
but a small subset of the entire training set, and this part will
not be representative of the whole. The learning process will
then exhibit “forgetfulness” and “specialization”, as described
in Section III-D. As we saw, Hillis-style coevolution solved
these problems since we did not need to know a priori which
deals to use for the learning process.

Lastly, the heuristics and advisors used as building blocks
for the evolutionary process are intuitive and straightforward
to implement and compute. Yet, our evolved solvers are the
top solvers for the game of FreeCell, suggesting that in some
domains good solvers can be achieved with minimal domain
knowledge and without the use of much domain expertise.
It should be noted that complex heuristics and memory-
consuming heuristics (e.g., landmarks and pattern databases)
can be easily used as building blocks as well. Such solvers
might outperform the simpler ones at the expense of increased
run time or code complexity.

VI. CONCLUDING REMARKS

We evolved a solver for the FreeCell puzzle, one of the
most difficult single-player domains (if not the most difficult)
to which evolutionary algorithms have been applied to date.
Policy-FreeCell and GA-FreeCell beat the previous top pub-
lished solver by a wide margin on several measures, with the
former emerging as the top gun. By classifying states and
assigning different values to different states, Policy-FreeCell
was able to solve 99.65% of Microsoft 32K, a result far better
than any previous solver.

There are a number of possible extensions to our work,
including:

1) It is possible to implement FreeCell macro moves and
thus decrease the search space. Implementing macro
moves will yield better results, and we believe that we
might even solve the entire Microsoft 32K (not including
unsolvable game #11982).

2) As mentioned in Section V, complex heuristics and
memory-consuming heuristics (e.g., landmarks and pat-
tern databases) can easily be used as building blocks as
well. Such solvers might outperform the simpler ones at
the expense of increased run time or code complexity.

3) The HSD algorithm, enhanced with evolved heuristics,
is more efficient than the original version. This is
evidenced both by the amount of search reduction and
the increased number of solved deals. It remains to
be determined whether the algorithm, when aided by
evolution, can outperform other widely used algorithms
(such as IDA*) in different domains. The fact that the
algorithm is based on several properties of search prob-
lems, such as the high percentage of irreversible moves
and the small number of deadlocks, already points the
way towards several domains. A good candidate may be
the Satellite game, previously studied in [44], [45].

4) Handcrafted heuristics may themselves be improved by
evolution. This could be done by breaking them into
their elemental components and evolving their combi-
nations thereof.

5) Many single-agent search problems fall within the
framework of AI-planning problems (e.g., with
ADL [46]). However, using evolution in conjunction
with these techniques is not trivial and may require the
use of techniques such as GP policies [18].
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