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Fuzzy CoCo: A Cooperative-Coevolutionary Approach to Fuzzy Modeling
Carlos Andrés Peña-Reyes and Moshe Sipper

Abstract—Coevolutionary algorithms have received increased
attention in the past few years within the domain of evolutionary
computation. In this paper, we combine the search power of coevo-
lutionary computation with the expressive power of fuzzy systems,
introducing a novel algorithm, Fuzzy CoCo: Fuzzy Cooperative Co-
evolution. We demonstrate the efficacy ofFuzzy CoCoby applying
it to a hard, real-world problem—breast cancer diagnosis—ob-
taining the best results to date while expending less computational
effort than formerly. Analyzing our results, we derive guidelines
for setting the algorithm’s parameters given a (hard) problem to
solve. We hopeFuzzy CoCoproves to be a powerful tool in the fuzzy
modeler’s toolkit.

Index Terms—Cooperative coevolution, fuzzy modeling.

I. INTRODUCTION

A fundamental problem in fuzzy modeling is the simulta-
neous design of the rules describing qualitatively a behavior
and the membership functions linking this description with an
observable, real-world behavior. Rules and membership func-
tions, two essential components of fuzzy inference systems, are
very different in nature. Rules are symbolic, linguistically inter-
pretable entities, while membership functions map real values
into membership values. Rules and membership functions are,
however, strongly interdependent and together comprise the
major part of a fuzzy inference system. For many applications,
one of the major advantages of fuzzy systems is that they favor
interpretability, yet finding good fuzzy systems is often an
arduous task. Over the past few years evolutionary algorithms,
due to their powerful search capabilities, have been employed
in some stages of the fuzzy-modeling process.

This paper studies the application of an advanced evo-
lutionary technique—cooperative coevolution—to fuzzy
modeling, and is organized as follows: the remaining of this
introductory section discusses the use of evolutionary com-
putation to construct fuzzy models. Section II presents the
cooperative coevolutionary paradigm. Section III describes the
proposed Fuzzy CoCo methodology. Section IV then describes
a sample application of Fuzzy CoCo to a hard problem:
breast cancer diagnosis. The results obtained are presented in
Section V. In Section VI we discuss implementation issues
concerning Fuzzy CoCo and the work we envisage to extend
the methodology. Finally, Section VII presents concluding
remarks.
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A. Fuzzy Modeling

The basic structure of a fuzzy inference system includes four
main components [30]: 1) A fuzzifier, which translates crisp
(real-valued) inputs into fuzzy values; 2) an inference engine
that applies a fuzzy reasoning mechanism to obtain a fuzzy
output; 3) a defuzzifier, which translates this latter output into
a crisp value; and, 4) a knowledge base, which contains both
an ensemble of fuzzy rules, known as the rule base, and an en-
semble of membership functions known as the database.

Fuzzy modelingis the task of identifying the parameters of
a fuzzy inference system so that a desired behavior is attained
[45]. With the direct approach a fuzzy model is constructed
using knowledge from a human expert. This task becomes dif-
ficult when the available knowledge is incomplete or when the
problem space is very large, thus motivating the use ofauto-
matic approaches to fuzzy modeling. One of the major prob-
lems in fuzzy modeling is thecurse of dimensionality, meaning
that the computation requirements grow exponentially with the
number of variables.

The parameters of a fuzzy inference system can be classified
into four categories [30, Table I]: logical, structural, connec-
tive, and operational. In fuzzy modeling, logical parameters are
usually predefined by the designer based on experience and on
problem characteristics. Structural, connective, and operational
parameters may be either predefined, or obtained by synthesis
or search methodologies.

Fuzzy modeling can be considered as an optimization process
where part or all of the parameters of a fuzzy system consti-
tute the search space. Generally, the search space, and thus the
computational effort, grows exponentially with the number of
parameters. Therefore, one can either invest more resources in
the chosen search methodology, or infuse morea priori, ex-
pert knowledge into the system (thereby effectively reducing the
search space).

B. Evolutionary Computation

The domain of evolutionary computation involves the study
of the foundations and the applications of computational tech-
niques based on the principles of natural evolution. Evolution in
nature is responsible for the “design” of all living beings on earth
and for the strategies they use to interact with each other. Evo-
lutionary algorithms employ this powerful design philosophy to
find solutions to hard problems.

Generally speaking, evolutionary techniques can be viewed
either as search methods, or as optimization techniques. As
written by Michalewicz [22]: “Any abstract task to be ac-
complished can be thought of as solving a problem, which, in
turn, can be perceived as a search through a space of potential
solutions. Since usually we are after ‘the best’ solution, we can
view this task as an optimization process.”
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The first works on the use of evolution-inspired approaches
to problem solving date back to the late 1950s [3], [4], [7], [10],
[11]. Independent and almost simultaneous research conducted
by Rechenberg and Schwefel onevolution strategies[35], [36],
[38], [39], by Holland ongenetic algorithms[14], [15], and by
Fogel onevolutionary programming[8], [9] launched the study
and the application of evolutionary techniques.

Evolutionary computation makes use of a metaphor of nat-
ural evolution. According to this metaphor, a problem plays the
role of an environment wherein lives a population of individuals,
each representing a possible solution to the problem. The degree
of adaptation of each individual (i.e., candidate solution) to its
environment is expressed by an adequacy measure known as the
fitness function. The phenotype of each individual, i.e., the can-
didate solution itself, is generally encoded in some manner into
its genome(genotype). Like evolution in nature, evolutionary
algorithms potentially produce progressively better solutions to
the problem. This is possible thanks to the constant introduc-
tion of new “genetic” material into the population, by applying
so-called genetic operators which are the computational analogs
of natural evolutionary mechanisms.

There are several types of evolutionary algorithms, among
which the best known aregenetic algorithms, genetic program-
ming, evolution strategies, and evolutionary programming;
though different in the specifics they are all based on the same
general principles. The archetypal evolutionary algorithm
proceeds as follows. An initial population of individuals, ,
is generated at random or heuristically. Every evolutionary
step , known as ageneration, the individuals in the current
population, , are decodedand evaluatedaccording to
some predefined quality criterion, referred to as the fitness or
fitness function. Then, a subset of individuals, —known
as themating pool—is selected to reproduce, with selection
of individuals done probabilistically according to their fitness.
Thus, high-fitness (“good”) individuals stand a better chance
of “reproducing,” while low-fitness ones are more likely to
disappear.

Selection alone cannot introduce any new individuals into the
population, i.e., it cannot find new points in the search space.
These points are generated by altering the selected population

via the application of crossover (combining two or more
genomes to form novel offspring) and mutation (randomly flip-
ping bits in the genome), so as to produce a new population,

. Crossover tends to enable the evolutionary process to
move toward “promising” regions of the search space. Mutation
is introduced to prevent premature convergence to local optima,
by randomly sampling new points in the search space. Finally,
the new individuals are introduced into the next-gen-
eration population, ; usually simply becomes

. The termination condition may be specified as some
fixed, maximal number of generations or as the attainment of an
acceptable fitness level. Fig. 1 presents the structure of a generic
evolutionary algorithm in pseudo code format.

As they combine elements of directed and stochastic search,
evolutionary techniques exhibit a number of advantages over
other search methods. First, they usually need a smaller amount
of knowledge and fewer assumptions about the characteristics
of the search space. Second, they can more easily avoid getting

Fig. 1. Pseudocode of an evolutionary algorithm.

stuck in local optima. Finally, evolutionary algorithms strike a
good balance betweenexploitationof the best solutions andex-
ploration of the search space. The strength of evolutionary al-
gorithms relies on their population-based search and on the use
of the genetic mechanisms described above. The existence of a
population of candidate solutions entails an inherently parallel
search with the selection mechanism directing the search to the
most promising regions. The crossover operator encourages the
exchange of information between these search-space regions,
while the mutation operator enables the exploration of new di-
rections.

The application of an evolutionary algorithm involves a
number of important considerations. The first decision to take
when applying such an algorithm is how to encode candidate
solutions within the genome. The representation must allow for
the encoding of all possible solutions while being sufficiently
simple to be searched in a reasonable amount of time. Next, an
appropriate fitness function must be defined for evaluating the
individuals. The (usually scalar) fitness must reflect the criteria
to be optimized and their relative importance. Representation
and fitness are thus clearly problem-dependent in contrast to
selection, crossover, and mutation, which seemprima facie
more problem-independent. Practice has shown, however, that
while standard genetic operators can be used, one often needs
to tailor these to the problem at hand as well.

C. Applying Evolution to Fuzzy Modeling

Evolutionary algorithms are used to search large and often
complex search spaces. They have proven worthwhile on
numerous diverse problems, able to find near-optimal solutions
given an adequate performance (fitness) measure. Works
investigating the application of evolutionary techniques in
the domain of fuzzy modeling first appeared about a decade
ago [17], [26]. These focused mainly on the tuning of fuzzy
inference systems involved in control tasks (e.g., cart-pole
balancing, liquid level system, and spacecraft rendezvous op-
eration). Evolutionary fuzzy modeling has since been applied
to an evergrowing number of domains, branching into areas as
diverse as chemistry, medicine, telecommunications, biology,
and geophysics. For a detailed bibliography on evolutionary
fuzzy modeling up to 1996, the reader is referred to [1], [5].

Depending on several criteria—including the availablea
priori knowledge about the system, the size of the parameter
set, and the availability and completeness of input/output
data, artificial evolution can be applied in different stages of
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TABLE I
PARAMETER CLASSIFICATION OF FUZZY INFERENCESYSTEMS [30]

the fuzzy-parameters search. Three of the four categories of
fuzzy parameters in Table I can be used to define targets for
evolutionary fuzzy modeling: structural parameters, connective
parameters, and operational parameters [30].

1) Knowledge Tuning (Operational Parameters): The evo-
lutionary algorithm is used to tune the knowledge con-
tained in the fuzzy system by finding membership-func-
tion values.

2) Behavior Learning (Connective Parameters): In this ap-
proach, one supposes that extant knowledge is sufficient
in order to define the membership functions. The evolu-
tionary algorithm is used to find either the rule conse-
quents or an adequate subset of rules to be included in
the rule base.

3) Structure Learning (Structural Parameters): In this
approach, evolution has to deal with the simultaneous
design of rules, membership functions, and structural
parameters. Some methods use a fixed-length genome
encoding a fixed number of fuzzy rules along with
the membership-function values. Other methods use
variable-length genomes to allow evolution to discover
the optimal size of the rule base.

Both behavior and structure learning can be viewed
as rule-base learning processes with different levels of
complexity. They can thus be assimilated within other
methods from machine learning, taking advantage of ex-
perience gained in this latter domain. In the evolutionary
algorithm community there are two major approaches for
evolving such rule systems: the Michigan approach and
the Pittsburgh approach [22]. A more recent method has
been proposed specifically for fuzzy modeling: the itera-
tive rule learning approach [13]. These three approaches
are outlined below.

4) The Michigan Approach: Each individual represents a
singlerule. The fuzzy inference system is represented by
the entire population. Since several rules participate in
the inference process, the rules are in constant competi-
tion for the best action to be proposed and cooperate to
form an efficient fuzzy system. The cooperative-compet-
itive nature of this approach renders difficult the decision
of which rules are ultimately responsible for good system
behavior. It necessitates an effective credit-assignment
policy to ascribe fitness values to individual rules.

5) The Pittsburgh Approach: The evolutionary algorithm
maintains a population of candidate fuzzy systems,

each individual representing anentire fuzzy system.
Selection and genetic operators are used to produce new
generations of fuzzy systems. Since evaluation is applied
to the entire system, the credit assignment problem is
eschewed. This approach allows to include additional op-
timization criteria in the fitness function, thus affording
the implementation of multiobjective optimization. The
main shortcoming of this approach is its computational
cost, since a population of full-fledged fuzzy systems has
to be evaluated each generation.

6) The Iterative Rule Learning Approach: As in the
Michigan approach, each individual encodes a single
rule. An evolutionary algorithm is used to find a single
rule, thus providing a partial solution. The evolutionary
algorithm is then used iteratively for the discovery of new
rules, until an appropriate rule base is built. To prevent
the process from finding redundant rules (i.e., rules with
similar antecedents), a penalization scheme is applied
each time a new rule is added. This approach combines
the speed of the Michigan approach with the simplicity
of fitness evaluation of the Pittsburgh approach. How-
ever, as with other incremental rule-base construction
methods, it can lead to a nonoptimal partitioning of the
antecedent space.

II. COOPERATIVECOEVOLUTION

Coevolutionrefers to the simultaneous evolution of two or
more species with coupled fitness. Such coupled evolution fa-
vors the discovery of complex solutions whenever complex so-
lutions are required [25]. Simplistically speaking, one can say
that coevolving species can either compete (e.g., to obtain exclu-
sivity on a limited resource) or cooperate (e.g., to gain access to
some hard-to-attain resource). In a competitive coevolutionary
algorithm the fitness of an individual is based on direct competi-
tion with individuals of other species, which in turn evolve sep-
arately in their own populations. Increased fitness of one of the
species implies a diminution in the fitness of the other species.
This evolutionary pressure tends to produce new strategies in
the populations involved so as to maintain their chances of sur-
vival. This “arms race” ideally increases the capabilities of each
species until they reach an optimum. For further details on com-
petitive coevolution, the reader is referred to [37].

Cooperative (also called symbiotic) coevolutionary algo-
rithms involve a number of independently evolving species
which together form complex structures, well suited to solve
a problem. The fitness of an individual depends on its ability
to collaborate with individuals from other species. In this way,
the evolutionary pressure stemming from the difficulty of the
problem favors the development of cooperative strategies and
individuals.

Single-population evolutionary algorithms often perform
poorly—manifesting stagnation, convergence to local optima,
and computational costliness—when confronted with problems
presenting one or more of the following features: 1) the
sought-after solution is complex, 2) the problem or its solution
is clearly decomposable, 3) the genome encodes different types
of values, 4) strong interdependencies among the components
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of the solution, and 5) components-ordering drastically affects
fitness. Cooperative coevolution addresses effectively these
issues, consequently widening the range of applications of
evolutionary computation.

Paredis [25] applied cooperative coevolution to problems
which involved finding simultaneously the values of a solution
and their adequate order. In his approach, a population of
solutions coevolves alongside a population of permutations
performed on the genotypes of the solutions. Moriarty [24]
used a cooperative coevolutionary approach to evolve neural
networks. Each individual in one species corresponds to a
single hidden neuron of a neural network and its connections
with the input and output layers. This population coevolves
alongside a second one whose individuals encode sets of hidden
neurons (i.e., individuals from the first population) forming
a neural network. Potter and DeJong [33], [34] developed a
model in which a number of populations explore different de-
compositions of the problem. Below we detail this framework
as it forms the basis of our own approach.

In Potter’s system, each species represents a subcomponent
of a potential solution. Complete solutions are obtained by as-
semblingrepresentativemembers of each of the species (pop-
ulations). The fitness of each individual depends on the quality
of (some of) the complete solutions it participated in, thus mea-
suring how well it cooperates to solve the problem. The evo-
lution of each species is controlled by a separate, independent
evolutionary algorithm. Fig. 2 shows the general architecture
of Potter’s cooperative coevolutionary framework and the way
each evolutionary algorithm computes the fitness of its individ-
uals by combining them with selected representatives from the
other species. The representatives can be selected via a greedy
strategy as the fittest individuals from the last generation.

Results presented by Potter and DeJong [34] show that
their approach addresses adequately issues like problem de-
composition and interdependencies between subcomponents.
The cooperative coevolutionary approach performs as good
as—and sometimes better than—single-population evolu-
tionary algorithms. Finally, cooperative coevolution usually
requires less computation than single-population evolution as
the populations involved are smaller, and convergence—in
terms of number of generations—is faster.

III. FUZZY COCO

Fuzzy CoCo is a Cooperative Coevolutionary approach to
fuzzy modeling where two coevolving species are defined: data-
base (membership functions) and rule base. This approach is
based primarily on the framework defined by Potter and DeJong
([33] and [34], Sec. II).

A fuzzy modeling process need usually deal with the si-
multaneous search for operational and connective parameters
(Table I). These parameters provide an almost complete defi-
nition of the linguistic knowledge describing the behavior of a
fuzzy system and the values mapping this symbolic description
into a real-valued world (a complete definition also requires
structural parameters, such as relevant variables and number
of rules). Thus, fuzzy modeling can be thought of as two
separate but intertwined search processes: 1) the search for

Fig. 2. Potter’s cooperative coevolutionary system. The figure shows the
evolutionary process from the perspective of Species 1. The individual being
evaluated is combined with one or morerepresentativesof the other species
so as to construct several solutions which are tested on the problem. The
individual’s fitness depends on the quality of these solutions.

the membership functions (i.e., operational parameters) that
define the fuzzy variables and 2) the search for the rules (i.e.,
connective parameters) used to perform the inference.

A. Description of Fuzzy CoCo

Fuzzy modeling presents several features discussed in Sec-
tion II which justify the application of cooperative coevolution.

1) The required solutions can be very complex, since fuzzy
systems with a few dozen variables may call for hundreds
of parameters to be defined.

2) The proposed solution—a fuzzy inference system—can
be decomposed into two distinct components: rules and
membership functions.

3) Membership functions are represented by continuous,
real values, while rules are represented by discrete,
symbolic values.

4) These two components are interdependent because the
membership functions defined by the first group of values
are indexed by the second group (rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling problem
is solved by two coevolving, cooperating species. Individuals of
the first species encode values which define completely all the
membership functions for all the variables of the system.

Individuals of the second species define a set of rules of the
form:
if ( is ) and and ( is ), then (outputis ),
where the term indicates which one of the linguistic
labels of fuzzy variable is used by the rule. For example,
a valid rule could contain the expression:
if and (Temperatureis Warm) and then ,
which includes the membership functionWarm whose
defining parameters are contained in the first species.

The two evolutionary algorithms used to control the evolu-
tion of the two populations are instances of a simple genetic
algorithm [44]. Fig. 3 presents the Fuzzy CoCo algorithm in
pseudocode format. The genetic algorithms apply fitness-pro-
portionate selection to choose the mating pool (essentially,
probabilistic selection according to fitness) and apply an elitist
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Fig. 3. Pseudocode of Fuzzy CoCo. Two species coevolve in Fuzzy CoCo:
membership functions and rules. The elitism strategy extractsE individuals
to be reinserted into the population after evolutionary operators have been
applied (i.e., selection, crossover, and mutation). Selection results in a reduced
populationP (g) (usually, the size ofP (g) is kP k = kP k� kE k). The
line “Evaluate populationP (g)” is elaborated in Fig. 4.

strategy with an elitism rate to allow some of the best indi-
viduals to survive into the next generation. Standard crossover
and mutation operators are applied [22]. Crossover between
two genomes is performed with probability by selecting at
random (with uniform probability) a single crossover point and
exchanging the subsequent parts to form two new offspring;
if no crossover takes place (with probability ) the two
offspring are exact copies of their parents. Mutation involves
flipping bits in the genome with probability per bit.

We introduced elitism to avoid the divergent behavior of
Fuzzy CoCo, observed in our preliminary trial runs. Noneli-
tist versions of Fuzzy CoCo often tend to lose the genetic
information of good individuals found during evolution, con-
sequently producing populations with mediocre individuals
scattered throughout the search space. This is probably due
to the relatively small size of the populations which renders
difficult the preservation of good solutions while exploring the
search space. The introduction of simple elitism produces an
undesirable effect on Fuzzy CoCo’s performance: populations
converge prematurely even with reduced values of the elitism
rate . To offset this effect without losing the advantages of
elitism, it is necessary to increase the mutation probability

by an order of magnitude (Table III) so as to improve the
exploration capabilities of the algorithm. As the dispersion
effect is less important when Fuzzy CoCo is allowed to manage
relatively large populations, the values of both and
should be reduced in such case. The condition under which the
algorithm terminates is usually satisfied either when a given
threshold fitness is attained, or when the maximum number of
generations is reached.

A more detailed view of the fitness evaluation process is de-
picted in Fig. 4. An individual undergoing fitness evaluation es-
tablishes cooperation with one or more representatives of the
other species, i.e., it is combined with individuals from the other

Fig. 4. Fitness evaluation in Fuzzy CoCo. (a) Several individuals from
generationg � 1 of each species are selected according to their fitness to be
the representatives of their species during generationg; these representatives
are called “cooperators.” (b) During the evaluation stage of generationg (after
selection, crossover, and mutation—see Fig. 3), individuals are combined with
the selected cooperators of the other species to construct fuzzy systems. These
systems are then evaluated on the problem domain and serve as a basis for
assigning the final fitness to the individual being evaluated.

species to construct fuzzy systems. The fitness value assigned to
the individual depends on the performance of the fuzzy systems
it participated in (specifically, either the average or the maximal
value).

Representatives, orcooperators, are selected both fit-
ness-proportionally and randomly from the last generation in
which they were already assigned a fitness value (see Fig. 3).
In Fuzzy CoCo, cooperators are selected probabilistically
according to their fitness, favoring the fittest individuals, thus
boosting the exploitation of known good solutions. The other

cooperators are selected randomly from the population to
represent the diversity of the species, maintaining in this way
exploration of the search space.

B. A Stepwise Guide to Applying Fuzzy CoCo

Applying Fuzzy CoCo requires the definition of parameters
of its two main components: 1) the fuzzy system and 2) the
cooperative coevolutionary algorithm.

1) Fuzzy-system parameters are defined through the fol-
lowing four-level procedure:

a) Define the logical parameters. As noted in Section I,
logical parameters are predefined by the designer
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based on experience and on problem characteris-
tics.

b) Choose the structural parameters.
• A set of relevant variables should be defined.

Usually, this set includesall the available vari-
ables as Fuzzy CoCo can automatically reduce
their number.

• Fuzzy CoCo requires predefining the number of
membership functions. This issue is discussed
in Section VI.

• The number of rules is fixed (by the designer)
for a given Fuzzy CoCo run. A discussion about
this number is presented in Section VI.

c) Encode the connective parameters into the rules
genome. The rules may be either complete (i.e.,
containing at least one antecedent for each variable)
or incomplete [20]. The antecedents in rules may
be connected merely by the “and” operator, or may
contain also “or” and “not” operators. Fuzzy CoCo
thus offers the designer the freedom of choosing
any type of rule, given that there exists a proper way
to encode it.

d) Encode the operational parameters into the mem-
bership-function genome. The membership func-
tions can be of arbitrary form. The usual criteria
for choosing the membership functions in fuzzy
modeling are also applicable in the context of
Fuzzy CoCo. The only condition imposed by
Fuzzy CoCo is that all possible lables implied by
the rules species should be defined.

Note that Fuzzy CoCo is a methodology for improving the
performance and speed of the fuzzy modeling process. It
cannot correct on its own wrong decisions made during
the definition of the fuzzy-system parameters. Thus, the
designer need posses knowledge of the problem or a good
evaluation heuristics.

2) Once both genomes, rules and membership-functions are
encoded, the coevolutionary parameters presented below
must be set according to a number of criteria; the two
most important being computational costliness and ex-
ploration-exploitation tradeoff. A discussion concerning
the qualitative relations among the ranges of the coevolu-
tionary parameters is presented in Section VI.

a) Maximum number of generations . Due to the
speed gain offered by Fuzzy CoCo, the value ,
related directly to computational costliness, can be
up to five times smaller than single-population algo-
rithms.

b) Population size . Fuzzy CoCo requires smaller
populations than the simple genetic algorithm-based
approach. Typically, 50 to 80 percent smaller. This
markedly reduces the computational cost.

c) Number of “fit” cooperators . Typical values range
from 1 to 3 fitness-proportionally selected coopera-
tors. affects directly both the exploitation and the
computational cost of the algorithm.

d) Number of random cooperators . Typical values
range from 0 to 4 randomly selected cooperators.
affects directly both the exploration and the computa-
tional cost of the algorithm.

e) Crossover probability . There is no special consid-
eration concerning the value of in Fuzzy CoCo.
Standard values— to 1—are used [23].

f) Mutation probability . As discussed in Sec-
tion III-A, due to an exploration-exploitation tradeoff
with the elitism rate, values in Fuzzy CoCo are
usually an order of magnitude higher than in simple
genetic algorithms. While the value of proposed
by Potter and DeJong ( )
[34] can be applied with relatively large populations,
it has to be increased up to 10 times when Fuzzy
CoCo is applied with small populations.

g) Elitism Rate . Typical values for are between 0.1
and 0.6, where larger values are required in systems
with few rules and small populations. encourages
exploitation of solutions found.

IV. A PPLYING FUZZY COCO TO BREASTCANCER DIAGNOSIS

The Wisconsin breast cancer diagnosis (WBCD) problem in-
volves classifying a presented case as to whether it is benign or
malignant. It admits a relatively high number of variables and
consequently a large search space. The WBCD database [21]
consists of nine visually assessed characteristics obtained from
fine needle aspirates1 of breast masses, each of which is ulti-
mately represented as an integer value between 1 and 10. The
measured variables are as follows: 1) Clump Thickness (); 2)
Uniformity of Cell Size ( ); 3) Uniformity of Cell Shape ( );
4) Marginal Adhesion ( ); 5) Single Epithelial Cell Size ( );
6) Bare Nuclei ( ); 7) Bland Chromatin ( ); 8) Normal Nu-
cleoli ( ); and 9) Mitosis ( ).

The diagnostics in the WBCD database were furnished by
specialists in the field. The database itself consists of 683 cases,
with each entry representing the classification for a certain en-
semble of measured values:

There are several studies based on this database. Among
them, researchers having interpretability of the diagnostic as a
prior objective, have applied the method of extracting Boolean
rules from neural networks [40], [42], [43]. Our own work on
the evolution of fuzzy rules for the WBCD problem has shown
that it is possible to obtain diagnostic systems exhibiting high
performance, coupled with interpretability and a confidence
measure [28]–[30]. In our previous work we used a simple
genetic algorithm rather than Fuzzy CoCo.

1Fine needle aspiration is an outpatient procedure that involves using a small-
gauge needle to extract fluid directly from a breast mass [19].
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Fig. 5. Proposed diagnosis system.

The solution scheme we propose for the WBCD problem is
depicted in Fig. 5. It consists of a fuzzy system and a threshold
unit. The fuzzy system computes a continuous appraisal value
of the malignancy of a case, based on the input values. The
threshold unit then outputs abenignor malignantdiagnostic ac-
cording to the fuzzy system’s output.

Our previous knowledge about the WBCD problem repre-
sents valuable information to be used for our choice of fuzzy
parameters. When defining our setup we took into considera-
tion the following three results concerning the composition of
potential high-performance systems: 1) small number of rules;
2) small number of variables; and 3) monotonicity of the input
variables [30]. Some fuzzy models forgo interpretability in the
interest of improved performance. Where medical diagnosis
is concerned [31], interpretability—also called linguistic
integrity—is the major advantage of fuzzy systems. This
motivated us to take into account the following five semantic
criteria, defining constraints on the fuzzy parameters [30]:
1) distinguishability; 2) justifiable number of elements; 3)
coverage; 4) normalization; and 5) orthogonality.

Referring to Table I, and taking into account the above cri-
teria, we delineate below the fuzzy-system setup:

1) Logical parameters: singleton-type fuzzy systems;
min-max fuzzy operators; orthogonal, trapezoidal
input membership functions; weighted-average de-
fuzzification.

2) Structural parameters: two input membership functions
(LowandHigh); two output singletons (benignandma-
lignant); a user-configurable number of rules. The rel-
evant variables are one of Fuzzy CoCo’s objectives.

3) Connective parameters: the antecedents and the conse-
quent of the rules are searched by Fuzzy CoCo. The
algorithm also searches for the consequent of the de-
fault rule which plays the role of anelsecondition. All
rules have unitary weight.

4) Operational parameters: the input membership func-
tion values are to be found by Fuzzy CoCo. For the
output singletons we used the values 2 and 4, which are
the values used in the WBCD database for designing
benignandmalignant, respectively (note that these two
values are represented in the genome by a single bit as
presented below).

Fuzzy CoCo is thus used to search for four parameters: 1)
input membership function values, 2) relevant input variables,
3) antecedents, and 4) consequents of rules. These search goals
are more ambitious than those defined in our previous work
[28]–[30], as the consequence of rules are added to the search
space. The genomes of the two species are constructed as fol-
lows:

Species 1: Membership functions. There are nine variables
( – ), each with two parameters, and , defining

Fig. 6. Fuzzy variables for the WBCD problem. All the variables have two
labels:Low andHigh, and orthogonal membership functions.P andd define
the start point and the length of membership-function edges, respectively.

TABLE II
GENCODING ENCODING OFPARAMETERS FORBOTH SPECIES.GENOME

LENGTH FORMEMBERSHIPFUNCTIONS IS 54 BITS.GENOME LENGTH FOR

RULES IS19 � N + 1, WHEREN DENOTES THENUMBER OFRULES.
NOTE: IN AN EARLY WORK, PARAMETERSPAND d WERE ALLOWED TO

TAKE ON VALUES IN THE RANGE AND f1; 2; :::; 10gAND f0;1; :::; 7g,
RESPECTIVELY [28]. IN LATER WORKS THESETWO PARAMETERSWERE

RESTRICTED TO THEVALUES PRESENTEDBELOW.

the start point and the length of the membership-function
edges, respectively (Fig. 6).
Species 2: Rules. Theth rule has the form:

if ( is ) and and ( is ), then (outputis ),
can take on the values: 1 (Low), 2 (High), or 0 or 3

(Other). bit can take on the values: 0 (Benign) or 1
(Malignant). Relevant variables are searched for implicitly
by letting the algorithm choose nonexistent membership
functions (0 or 3) as valid antecedents. In such a case, the
respective variable is considered irrelevant.

Table II delineates the parameters encoding for both species’
genomes, which together describe an entire fuzzy system. Note
that in our previous work both membership functions and rules
were encoded in the same genome, i.e., there was only one
species.

To evolve the fuzzy inference system, we applied a Fuzzy
CoCo algorithm with the same evolutionary parameters for both
species. Values and ranges of values used for these parame-
ters were defined according to preliminary tests performed on
benchmark problems (mostly function-optimization problems
found in Potter [33]). Table III delineates these values (Sec-
tion VI presents a brief discussion concerning the criteria to de-
fine the best combinations of parameter values). The algorithm
terminates when the maximum number of generations, ,
is reached (we set , i.e., dependent
on the number of rules used in the run), or when the increase
in fitness of the best individual over five successive generations
falls below a certain threshold ( in our experiments).
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TABLE III
FUZZY COCO SET-UP FOR THEWBCD PROBLEM

Our fitness function combines two criteria: 1)
—classification performance, computed as the percentage

of cases correctly classified and 2) —the maximum
number of variables in the longest rule. The fitness function
is given by , where . , the
percentage of correctly diagnosed cases, is the most important
measure of performance. measures the linguistic integrity
(interpretability), penalizing systems with a large number
of variables in their rules. The value was calculated to
allow to occasion a fitness difference only among systems
exhibiting similar classification performance. The fitness
value assigned to an individual is the maximum of the fitness
values obtained by the fuzzy systems it participated in
(where .

We stated earlier that cooperative coevolution reduces the
computational cost of the search process. In order to measure
this cost we calculate the maximum number of fuzzy-system
evaluations performed by a single run of Fuzzy CoCo. Each
generation, the individuals of each population are eval-
uated times (where . The total number of
fuzzy-system evaluations per run is thus .
This value ranged from evaluations for a one-rule
system search, up to evaluations for a seven-rule
system (using typical parameter values: , ,
and ). The number of fuzzy-system evaluations re-
quired by our single-population approach was, on the average,

for a one-rule system and for a seven-rule
system [30]. This shows that Fuzzy CoCo produces markedly
better results using similar computational resources.

V. RESULTS

A total of 495 evolutionary runs were performed, all of
which found systems whose classification performance ex-
ceeds 96.7%. In particular, considering the best individual per
run (i.e., the evolved system with the highest classification suc-
cess rate), 241 runs led to a fuzzy system whose performance
exceeds 98.0%, and of these, 81 runs found systems whose
performance exceeds 98.5%.2

Table IV compares our best systems with the top systems
obtained in our previous work [30] and with the systems ob-
tained by Setiono’s NeuroRule approach [41] (note that the re-

2Note: In our earlier work, involving a standard genetic algorithm applied
to the WBCD problem [30], we used cross-validation methods (basically, we
performed three sets of experiments, with different repartitions of the 683-case
WBCD database into training cases and test cases. We observed that small fuzzy
systems (i.e., with a small number of rules) are relatively little prone to overfit-
ting (at least for this problem). Thus, we decided to eschew a cross-validation
study herein, opting to use the entire WBCD database in all experiments.

TABLE IV
COMPARISON OF THESYSTEMS EVOLVED BY FUZZY COCO WITH THE TOP

SYSTEMS OBTAINED USING SINGLE-POPULATION EVOLUTION [30] AND WITH

THOSEOBTAINED BY SETIONO’S NEURORULE APPROACH[41]. SHOWN BELOW

ARE THE CLASSIFICATION PERFORMANCEVALUES OF THETOP SYSTEMS

OBTAINED BY THESEAPPROACHES, ALONG WITH THE NUMBER OFVARIABLES

OF THELONGESTRULE IN PARENTHESES. RESULTS AREDIVIDED INTO SEVEN

CLASSES, INACCORDANCEWITH THE NUMBER OFRULES PER SYSTEM, GOING

FROM ONE-RULE SYSTEMS TOSEVEN-RULE ONES

Fig. 7. The best evolved fuzzy diagnostic system with seven rules. It exhibits
an overall classification rate of 98.98% and its longest rule includes five
variables.

sults presented by these two works were the best reported to
date for genetic-fuzzy and neuro-Boolean rule systems, respec-
tively, and that they were compared with other previous ap-
proaches such as [40], [42], [43]). The evolved fuzzy systems
described in this paper can be seen to surpass those obtained
by other approaches in terms of performance, while still con-
taining simple, interpretable rules. As shown in Table IV, we
obtained higher-performance systems for all rule-base sizes but
one, i.e., from two-rule systems all the way up to seven-rule sys-
tems, while all our one-rule systems perform as good as the best
system reported by Setiono.

We next describe two of our top-performance systems, which
serve to exemplify the solutions found by Fuzzy CoCo. The first
system, delineated in Fig. 7, presents the highest classification
performance evolved to date. It consists of seven rules (note that
the else condition is not counted as an active rule) with the
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Fig. 8. The best evolved, fuzzy diagnostic system with two rules. It exhibits
an overall classification rate of 98.54%, and a maximum of five variables in the
longest rule.

longest rule including 5 variables. This system obtains an overall
classification rate (i.e., over the entire database) of 98.98%.

In addition to the above seven-rule system, evolution found
systems with between two and six rules exhibiting excellent
classification performance, i.e., higher than 98.5% (Table IV).
Among these systems, we consider as the most interesting
the system with the smallest number of conditions (i.e., the
total number of variables in the rules). Fig. 8 presents one
such two-rule system, containing a total of eight conditions,
and which obtains an overall classification rate of 98.54%; its
longest rule has five variables.

The improvement attained by Fuzzy CoCo, while seemingly
slight (1–2%) is in fact quite significant. A 1% improvement
implies seven additional cases which are classified correctly.
At the performance rates in question (above 97%) every addi-
tional case is hard-won. Indeed, try as we did with the simple
genetic algorithm [30]—tuning parameters and tweaking the
setup—we arrived at a performance impasse. Fuzzy CoCo, how-
ever, readily churned out better-performance systems that were
able to classify a significant number of additional cases; more-
over, these systems were evolved in less time.

VI. DISCUSSION ANDFUTURE WORK

A. Fuzzy CoCo and Its Application

We propose Fuzzy CoCo as a methodology for mod-
eling fuzzy systems and have conceived it to allow a high
degree of freedom in the type of fuzzy systems it can de-
sign. Fuzzy CoCo can be used to model Mamdani-type,
Takagi–Sugeno–Kang-type, and singleton-type fuzzy models
[12]. The rules can contain an arbitrary number of antecedents
(i.e., zero, one, or many) for the same variable. The designer is
free to choose the type of membership functions used for each
variable and the way they are parameterized. The membership
functions can be defined either as shared by all fuzzy rules, or
per-rule; the former (used by us in Section IV) improves inter-
pretability. If membership functions are defined independently
for each rule (thus partitioning the input space in a scattered
way [16]), better numeric precision might be attained at the
cost of interpretability—a tradeoff at the user’s disposal. Fuzzy
CoCo is thus highly general and generic.

To better exploit the features of Fuzzy CoCo, the following
considerations should be taken into account before applying it
to a given problem.

1) Rule-base compactness. The existence of a rules species
in Fuzzy CoCo favors the design of systems containing
a small subset of all the possible rules. The size of this
subset (i.e., the number of rules) is predefined by the user.

2) Known number of membership functions. In order to en-
code the genomes of the rules and membership functions
species, it is necessary to predefine the number of mem-
bership functions for each variable. This number can be
set to a relatively high value and Fuzzy CoCo will seek
automatically an efficient subset of the membership func-
tions.

3) Availability of training data. Since Fuzzy CoCo is a
heuristic search method, it needs a sufficient amount of
training data in order to measure fitness.

B. Parameter Selection

Fuzzy CoCo requires the designer to define a number of in-
terdependent parameters (i.e., number of rules, population size,
number of cooperators, elitism rate, and mutation and crossover
probabilities). Although Section III-B presented some criteria
to define these parameters, we further discuss this issue below.

1) For a given problem, searching for a compact fuzzy rule
base is harder than searching for a slightly bigger system,
even if the genome is larger for this latter search. The
reason for this apparent contradiction is that a less com-
pact fuzzy system (i.e., with more rules) can cover a larger
part of the problem space. However, if evolution seeks too
many rules, the fitness landscape becomes too “flat” (in-
tuitively, an abundance of low-performance hills, rather
than a few high-performance mountains), thus rendering
the search more difficult. For each problem there exists a
range of ideal rule-base sizes (for the WBCD problem, it
seems to be between four and seven rules).

2) As noted in Section III-B, the number of selected fit and
random cooperators ( and ), are parameters re-
lated, respectively, with exploitation and exploration ca-
pabilities of Fuzzy CoCo. However, in contrast to elitism
and mutation, these two parameters do not affect directly
the genetic pool of the next generation (only affecting it
indirectly by permitting Fuzzy CoCo to evaluate more ac-
curately individual fitness).

3) As the number of fuzzy-system evaluations per genera-
tion depends on the size of the (two) populations
and on the number of cooperators, these two param-
eters have to be set according to the available computing
resources.

4) Based on the simulations carried out on the WBCD
problem, we have derived some qualitative relationships
between various parameters of Fuzzy CoCo. These are
given in Table V.

C. Present and Future of Fuzzy CoCo

Our promising results have incited us to engage in further in-
vestigation of this approach. We are currently pursuing two av-
enues of research: 1) application of Fuzzy CoCo to more com-
plex diagnosis problems and 2) improving and expanding upon
the methodology presented herein. Our goal is to provide an
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TABLE V
QUALITATIVE RELATIONSHIPS BETWEEN FUZZY COCO PARAMETERS.

DELINEATED BELOW ARE CRITERIA TO GUIDE THE CHOICE OF THENUMBER

OF COOPERATORSN , THE MUTATION PROBABILITY P (EXPRESSED AS A

FUNCTION OF THEGENOME’S LENGTH,L ), AND THE ELITISM RATE E , ALL

THREE AS AFUNCTION OF THEDESIREDSIZE OF THERULE BASE (EXPRESSED

IN TERM OF NUMBER OF RULES), AND THE DESIREDPOPULATION SIZE

(EXPRESSED INTERM OFPERCENTAGE OF THETYPICAL POPULATION SIZE OF A

SINGLE-POPULATION ALGORITHM; PREVIOUS WORK HAS SHOWN THAT FOR

THE WBCD PROBLEM THIS TYPICAL SIZE IS APPROXIMATELY 200). FOR

EXAMPLE, IF THE USERWISHES TOEMPLOY A LARGE POPULATION WITH FEW

RULES THEN SHE SHOULD SETN , P , AND E TO VALUES WITHIN THE

RANGES SPECIFIED IN THEUPPER-RIGHT QUADRANT OF THE TABLE. NOTE

THAT THE LINGUISTIC LABELS USED IN THE TABLE CAN BE GIVEN A FUZZY

INTERPRETATION, i.e., ONE CAN DEFINE MEMBERSHIPFUNCTIONS FORLABELS

SUCH AS “M ANY,” “SOME,” AND “FEW”

approach for automatically producing high-performance, inter-
pretable fuzzy systems for real-world problems. We have re-
cently applied Fuzzy CoCo to the problem of iris classification
[6], [21], obtaining excellent results [27], [].

As regards the application of Fuzzy CoCo, and given that it
is a fuzzy modeling technique, possible applications of this ap-
proach should be found in domains where the main character-
istics of fuzzy systems—linguistic interpretability, processing
of imprecise and uncertain information, nonlinear and complex
variable mapping—are desired. Moreover, Fuzzy CoCo is par-
ticularly well suited for problems where a reduced set of (small)
rules is preferred. Thus, some of the possible applications are
medical diagnostic and prognostic systems, data mining and
knowledge discovery in databases, financial data managing, pat-
tern recognition, and time-series analysis and forecasting.

Concerning the expansion of the methodology, we have two
short-term goals:

1) Study the tuning of the genetic-algorithm parameters
according to each species characteristics (e.g., encoding
schemes, elitism rates, or mutation probabilities).

2) Explore the application of different evolutionary algo-
rithms for each species (e.g., evolution strategies for the
evolution of membership functions).

In the long term we plan to test some novel ideas that could
improve Fuzzy CoCo:

1) Coevolution of species, one species for each of the
rules in addition to the membership-function species.

2) Coexistence of several Fuzzy CoCo instances (each one
set to evolve systems with a different number of rules),
permitting migration of individuals among them so as to
increase the exploration and the diversity of the search
process.

3) Apply the strategy of rising and death of species proposed
by Potter and DeJong [34] in order to evolve systems with
variable numbers of rules and membership functions.

VII. CONCLUDING REMARKS

We presented Fuzzy CoCo, a novel, cooperative coevolu-
tionary approach to fuzzy modeling. We applied Fuzzy CoCo
to the WBCD problem, comparing it with other approaches
applied to the same problem. Our coevolved systems attained
higher classification performance and required less computa-
tion to obtain the diagnostic systems. We then discussed the
merits of the approach and its application. We hope Fuzzy
CoCo proves to be a powerful tool in the fuzzy modeler’s
toolkit.
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