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Abstract

The automatic diagnosis of breast cancer is an important, real-world medical problem. In
this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining
two methodologies—fuzzy systems and evolutionary algorithms—so as to automatically
produce diagnostic systems. We find that our fuzzy-genetic approach produces systems
exhibiting two prime characteristics: first, they attain high classification performance (the
best shown to date), with the possibility of attributing a confidence measure to the output
diagnosis; second, the resulting systems involve a few simple rules, and are therefore
(human-) interpretable. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy systems; Genetic algorithms; Breast cancer diagnosis

www.elsevier.com/locate/artmed

1. Introduction

1.1. Moti6ation

A major class of problems in medical science involves the diagnosis of disease,
based upon various tests performed upon the patient. When several tests are
involved, the ultimate diagnosis may be difficult to obtain, even for a medical
expert. This has given rise, over the past few decades, to computerized diagnostic
tools, intended to aid the physician in making sense out of the welter of data.
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A prime target for such computerized tools is in the domain of cancer diagnosis.
Specifically, where breast cancer is concerned, the treating physician is interested in
ascertaining whether the patient under examination exhibits the symptoms of a
benign case, or whether her case is a malignant one.

A good computerized diagnostic tool should possess two characteristics, which
are often in conflict. First, the tool must attain the highest possible performance,
i.e. diagnose the presented cases correctly as being either benign or malignant.
Moreover, it would be highly desirable to be in possession of a so-called degree of
confidence : the system not only provides a binary diagnosis (benign or malignant),
but also outputs a numeric value that represents the degree to which the system is
confident about its response. Second, it would be highly beneficial for such a
diagnostic system to be human-friendly, exhibiting so-called interpretability. This
means that the physician is not faced with a black box that simply spouts answers
(albeit correct) with no explanation; rather, we would like for the system to provide
some insight as to how it derives its outputs.

In this paper we combine two methodologies—fuzzy systems and evolutionary
algorithms—so as to automatically produce systems for breast cancer diagnosis.
The major advantage of fuzzy systems is that they favor interpretability, however,
finding good fuzzy systems can be quite an arduous task. This is where evolutionary
algorithms step in, enabling the automatic production of fuzzy systems, based on a
database of training cases. There are several recent examples of the application of
fuzzy systems and evolutionary algorithms in the medical domain, though these do
not combine both methodologies in a hybrid way, as we do in this paper [2,7,14,29].

In the next two subsections we provide a brief overview of fuzzy systems and
genetic algorithms (one of the central methodologies within the field of evolutionary
algorithms). In Section 2 we describe the Wisconsin breast cancer diagnosis
(WBCD) problem, which is the focus of our interest in this paper. This is followed
by an exposition in Section 3 of evolutionary fuzzy modeling, which involves the
application of genetic algorithms to the evolution of fuzzy systems. Section 4 then
describes our particular evolutionary approach to the WBCD problem. In Section
5 we delineate our results, followed by concluding remarks in Section 6.

1.2. Fuzzy systems

Fuzzy logic is a computational paradigm that provides a mathematical tool for
representing and manipulating information in a way that resembles human commu-
nication and reasoning processes [33]. A fuzzy 6ariable (also called a linguistic
6ariable; see Fig. 1) is characterized by its name tag, a set of fuzzy 6alues (also
known as linguistic 6alues or labels), and the membership functions of these labels;
these latter assign a membership value, mlabel(u) to a given real value u(R, within
some predefined range (known as the universe of discourse). While the traditional
definitions of Boolean logic operations do not hold, new ones can be defined. Three
basic operations, and, or, and not, are defined in fuzzy logic as follows:

mA and B(u)=mA(u)�mB(u)=min{mA(u), mB(u)},
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Fig. 1. Example of a fuzzy variable with two possible fuzzy values labeled Low and High, and
orthogonal membership functions, plotted above as degree of membership versus input values. P and d
define the start point and the length of membership function edges, respectively. The orthogonality
condition means that the sum of all membership functions at any point is one. In the figure, an example
value u is assigned the membership values mLow(u)=0.8 and mHigh(u)=0.2 (as can be seen mLow(u)+
mHigh(u)=1).

mA or B(u)=mA(u)�mB(u)=max{mA(u), mB(u)},

mnot A(u)= ¬mA(u)=1−mA(u),

where A and B are fuzzy variables. Using such fuzzy operators one can combine
fuzzy variables to form fuzzy-logic expressions, in a manner akin to Boolean logic.
For example, in the domain of control, where fuzzy logic has been applied
extensively, one can find expressions such as: if room temperature is Low, then
increase ventilation fan speed.

A fuzzy inference system is a rule-based system that uses fuzzy logic, rather than
Boolean logic, to reason about data [33]. Its basic structure includes four main
components, as depicted in Fig. 2: (1) a fuzzifier, which translates crisp (real-valued)
inputs into fuzzy values; (2) an inference engine that applies a fuzzy reasoning
mechanism to obtain a fuzzy output; (3) a defuzzifier, which translates this latter
output into a crisp value; and (4) a knowledge base, which contains both an

Fig. 2. Basic structure of a fuzzy inference system.
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Table 1
Parameter classification of fuzzy inference systems

Class Parameters

Reasoning mechanismLogical
Fuzzy operators
Membership function types
Defuzzification method
Relevant variablesStructural
Number of membership functions
Number of rules
Antecedents of rulesConnective
Consequents of rules
Rule weights
Membership function valuesOperational

ensemble of fuzzy rules, known as the rule base, and an ensemble of membership
functions, known as the database.

The decision-making process is performed by the inference engine using the rules
contained in the rule base. These fuzzy rules define the connection between input
and output fuzzy variables. A fuzzy rule has the form:

if antecedent then consequent,

where antecedent is a fuzzy-logic expression composed of one or more simple fuzzy
expressions connected by fuzzy operators, and consequent is an expression that
assigns fuzzy values to the output variables. The inference engine evaluates all the
rules in the rule base and combines the weighted consequents of all relevant rules
into a single fuzzy set using the aggregation operation. This operation is the analog
in fuzzy logic of the average operator in arithmetic [32] (Aggregation is performed
usually with the max operator).

Fuzzy modeling is the task of identifying the parameters of a fuzzy inference
system so that a desired behavior is attained [32]. With the direct approach a fuzzy
model is constructed using knowledge from a human expert. This task becomes
difficult when the available knowledge is incomplete or when the problem space is
very large, thus motivating the use of automatic approaches to fuzzy modeling.
There are several approaches to fuzzy modeling, based on neural networks
[11,16,18,31], genetic algorithms [9,17,24], and hybrid methods [8]. Selection of
relevant variables and adequate rules is critical for obtaining a good system. One of
the major problems in fuzzy modeling is the curse of dimensionality, meaning that
the computation requirements grow exponentially with the number of variables.

The parameters of fuzzy inference systems can be classified into four categories
(Table 1): logical, structural, connective, and operational. Generally speaking, this
order also represents their relative influence on performance, from most influential
(logical) to least influential (operational).
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In fuzzy modeling, logical parameters are usually predefined by the designer
based on experience and on problem characteristics. Typical choices for the
reasoning mechanism are Mamdani-type, Takagi-Sugeno-Kang (TKS)-type, and
singleton-type [32]. Common fuzzy operators are min, max, product, probabilistic
sum, and bounded sum. The most common membership functions are triangular,
trapezoidal, and bell-shaped. For defuzzification several methods have been pro-
posed with the center of area (COA) and the mean of maxima (MOM) methods
being the most popular [21,32].

Structural, connective, and operational parameters may be either predefined, or
obtained by synthesis or search methodologies. Generally, the search space, and
thus the computational effort, grows exponentially with the number of parameters.
Therefore, one can either invest more resources in the chosen search methodology,
or infuse more a priori, expert knowledge into the system (thereby effectively
reducing the search space).

1.3. Genetic algorithms

The idea of applying the biological principle of natural evolution to artificial
systems, introduced more than four decades ago, has seen impressive growth in the
past few years. Usually grouped under the term e6olutionary algorithms or e6olu-
tionary computation, we find the domains of genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming [6,15,23]. Such algorithms
are common nowadays, having been successfully applied to numerous problems
from different domains, including optimization, automatic programming, machine
learning, economics, medicine, ecology, population genetics, and hardware design.
In this paper we consider the evolutionary methodology known as genetic
algorithms.

A genetic algorithm is an iterative procedure that involves a population of
individuals, each one represented by a finite string of symbols, known as the
genome, encoding a possible solution in a given problem space. This space, referred
to as the search space, comprises all possible solutions to the problem at hand.
Genetic algorithms are usually applied to spaces which are too large to be
exhaustively searched. The symbol alphabet used is often binary, though this has
been extended in recent years to include character-based encodings, real-valued
encodings, tree representations, and other representations [23].

The standard genetic algorithm proceeds as follows: an initial population of
individuals is generated at random or heuristically. Every evolutionary step, known
as a generation, the individuals in the current population are decoded and evalu-
ated according to some predefined quality criterion, referred to as the fitness, or
fitness function. To form a new population (the next generation), individuals are
selected according to their fitness. Many selection procedures are currently in use,
one of the simplest being fitness-proportionate selection, where individuals are
selected with a probability proportional to their relative fitness. This ensures that
the expected number of times an individual is chosen is approximately proportional
to its relative performance in the population. Thus, high-fitness (‘good’) individuals
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stand a better chance of ‘reproducing’, while low-fitness ones are more likely to
disappear.

Selection alone cannot introduce any new individuals into the population, i.e. it
cannot find new points in the search space. These are generated by genetically
inspired operators, of which the most well known are crossover and mutation.
Crossover is performed with probability pc (the ‘crossover probability’ or ‘crossover
rate’) between two selected individuals, called parents, by exchanging parts of their
genomes (i.e. encodings) to form two new individuals, called offspring. In its
simplest form, substrings are exchanged after a randomly selected crossover point.
This operator tends to enable the evolutionary process to move toward ‘promising’
regions of the search space. The mutation operator is introduced to prevent
premature convergence to local optima by randomly sampling new points in the
search space. It is carried out by flipping bits at random, with some (usually small)
probability pm. Genetic algorithms are stochastic iterative processes that are not
guaranteed to converge. The termination condition may be specified as some fixed,
maximal number of generations or as the attainment of an acceptable fitness level.
Fig. 3 presents the standard genetic algorithm in pseudo-code format.

2. The Wisconsin breast cancer diagnosis problem

In this section we present the medical diagnosis problem which is the object of
our study.

Breast cancer is the most common cancer among women, excluding skin cancer.
The presence of a breast mass1 is an alert sign, but it does not always indicate a
malignant cancer. Fine needle aspiration (FNA)2 of breast masses is a cost-effective,

Fig. 3. Pseudo-code of the standard genetic algorithm.

1 Most breast cancers are detected as a lump or mass on the breast, by self-examination, by
mammography, or by both [20].

2 Fine needle aspiration is an outpatient procedure that involves using a small-gauge needle to extract
fluid directly from a breast mass [20].
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non-traumatic, and mostly non-invasive diagnostic test that obtains information
needed to evaluate malignancy.

The Wisconsin breast cancer diagnosis (WBCD) database [22] is the result of the
efforts made at the University of Wisconsin Hospital for accurately diagnosing
breast masses based solely on an FNA test [19]. Nine visually assessed characteris-
tics of an FNA sample considered relevant for diagnosis were identified, and
assigned an integer value between 1 and 10. The measured variables are as follows:
1. Clump thickness (61);
2. Uniformity of cell size (62);
3. Uniformity of cell shape (63);
4. Marginal adhesion (64);
5. Single epithelial cell size (65);
6. Bare nuclei (66);
7. Bland chromatin (67);
8. Normal nucleoli (68);
9. Mitosis (69).

The diagnostics in the WBCD database were furnished by specialists in the field.
The database itself consists of 683 cases, with each entry representing the classifica-
tion for a certain ensemble of measured values:

Case
1
2
�

683

61

5
5
�
4

62

1
4
�
8

63

1
4
�
8

···
···
···
· · ·
···

69

1
1
�
1

Diagnostic
Benign
Benign

�
Malignant

Note that the diagnostics do not provide any information about the degree of
benignity or malignancy.

There are several studies based on this database. Bennet and Mangasarian [3]
used linear programming techniques, obtaining a 99.6% classification rate on 487
cases (the reduced database available at the time). However, their solution exhibits
little understandability, i.e. diagnostic decisions are essentially black boxes, with no
explanation as to how they were attained. With increased interpretability in mind as
a prior objective, a number of researchers have applied the method of extracting
Boolean rules from neural networks [27,28,30]. Their results are encouraging,
exhibiting both good performance and a reduced number of rules and relevant
input variables. Nevertheless, these systems use Boolean rules and are not capable
of furnishing the user with a measure of confidence for the decision made. Our
preliminary work on the evolution of fuzzy rules showed that it is possible to obtain
high performance, coupled with interpretability and a confidence measure [25].

3. Evolutionary fuzzy modeling

Evolutionary algorithms are used to search large, and often complex, search
spaces. They have proven worthwhile on numerous diverse problems, able to find
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near-optimal solutions given an adequate performance (fitness) measure. Fuzzy
modeling can be considered as an optimization process where part or all of the
parameters of a fuzzy system constitute the search space. Works investigating the
application of evolutionary techniques in the domain of fuzzy modeling had first
appeared about a decade ago [12,13]. These focused mainly on the tuning of
fuzzy inference systems involved in control tasks (e.g. cart-pole balancing, liquid
level system, and spacecraft rendezvous operation). Evolutionary fuzzy modeling
has since been applied to an ever-growing number of domains, branching into
areas as diverse as chemistry, medicine, telecommunications, biology, and
geophysics.

Below we classify evolutionary fuzzy modeling techniques based on three types of
parameters which compose the search space: structural, connective, and operational
(Table 1). We then focus our attention on structural and connective parameters,
presenting the three major evolutionary approaches: Michigan, Pittsburgh, and
iterative rule learning. For a detailed bibliography on evolutionary fuzzy modeling
up to 1996, the reader is referred to [1,4].

3.1. Applying e6olution to fuzzy modeling

Depending on several criteria—including the available a priori knowledge
about the system, the size of the parameter set, and the availability and complete-
ness of input/output data—artificial evolution can be applied in different stages
of the fuzzy parameters search. Three of the four types of fuzzy parameters in
Table 1 can be used to define targets for evolutionary fuzzy modeling: structural
parameters, connective parameters, and operational parameters. As noted in Sec-
tion 1.2, logical parameters are usually predefined by the designer based on
experience.

3.1.1. Knowledge tuning (operational parameters)
The evolutionary algorithm is used to tune the knowledge contained in the fuzzy

system by finding membership function values. An initial fuzzy system is defined by
an expert. Then, the membership function values are encoded in a genome, and an
evolutionary algorithm is used to find systems with high performance. Evolution
often overcomes the local-minima problem present in gradient descent-based
methods.

Using as example the WBCD problem, an initial fuzzy rule base is defined by an
expert. An example fuzzy rule in this case would be: if (62 is Low) and (66 is Low)
then (output is benign). The evolutionary algorithm then fine-tunes the membership
functions, i.e. the P and d values defining Low and High (Fig. 1).

One of the major shortcomings of knowledge tuning is its dependency on the
initial setting of the knowledge base.

3.1.2. Beha6ior learning (connecti6e parameters)
In this approach, one supposes that extant knowledge is sufficient in order to

define the membership functions; this determines, in fact, the maximum number of
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rules [32]. The genetic algorithm is used to find either the rule consequents, or an
adequate subset of rules to be included in the rule base.

As the membership functions are fixed and predefined, this approach lacks
the flexibility to modify substantially the system behavior. Furthermore, as the
number of variables and membership functions increases, the curse of dimensional-
ity becomes more pronounced and the interpretability of the system decreases
rapidly.

3.1.3. Structure learning (structural parameters)
In many cases, the available information about the system is composed

almost exclusively of input/output data, and specific knowledge about the
system structure is scant. In such a case, evolution has to deal with the simulta-
neous design of rules, membership functions, and structural parameters.
Some methods use a fixed-length genome encoding a fixed number of fuzzy
rules along with the membership function values. In this case the designer
defines some structural constraints according to the available knowledge of the
problem characteristics. Other methods use variable-length genomes to allow
evolution to discover the optimal size of the rule base. In the WBCD ex-
ample, evolutionary structure learning is carried out by encoding within the
genome an entire fuzzy system (this is known as the Pittsburgh approach, see
below).

Structure learning permits to specify other criteria related to the interpretability
of the system, such as the number of membership functions and the number of
rules. On the other hand, the strong interdependency among the parameters
involved in this form of learning may slow down, or even prevent altogether, the
convergence of the genetic algorithm.

3.2. Three approaches to beha6ior and structure learning

Both connective and structural parameters modeling can be viewed as rule base
learning processes with different levels of complexity. They can thus be assimilated
within other methods from machine learning, taking advantage of experience
gained in this latter domain. In the evolutionary algorithm community there are
two major approaches for evolving such rule systems: the Michigan approach and
the Pittsburgh approach [23]. A more recent method has been proposed specifically
for fuzzy modeling: the iterative rule learning approach [10]. These three ap-
proaches are presented below.

3.2.1. The Michigan approach
Each individual represents a single rule. The fuzzy inference system is represented

by the entire population. Since several rules participate in the inference process, the
rules are in constant competition for the best action to be proposed, and cooperate
to form an efficient fuzzy system. The cooperative–competitive nature of this
approach renders difficult the decision of which rules are ultimately responsible for
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Fig. 4. Proposed diagnosis system. Note that the fuzzy subsystem displayed to the left is in fact the entire
fuzzy inference system of Fig. 2.

good system behavior. It necessitates an effective credit assignment policy to ascribe
fitness values to individual rules.

3.2.2. The Pittsburgh approach
Here, the evolutionary algorithm maintains a population of candidate fuzzy

systems, each individual representing an entire fuzzy system. Selection and genetic
operators are used to produce new generations of fuzzy systems. Since evaluation is
applied to the entire system, the credit assignment problem is eschewed. This
approach allows to include additional optimization criteria in the fitness function,
thus affording the implementation of multi-objective optimization. The main short-
coming of this approach is its computational cost, since a population of full-fledged
fuzzy systems has to be evaluated each generation.

3.2.3. The iterati6e rule learning approach
As in the Michigan approach, each individual encodes a single rule. An evolu-

tionary algorithm is used to find a single rule, thus providing a partial solution. The
evolutionary algorithm is used iteratively for the discovery of new rules, until an
appropriate rule base is built. To prevent the process from finding redundant rules
(i.e. rules with similar antecedents), a penalization scheme is applied each time a
new rule is added. This approach combines the speed of the Michigan approach
with the simplicity of fitness evaluation of the Pittsburgh approach. However, as
with other incremental rule base construction methods, it can lead to a non-optimal
partitioning of the antecedent space.

4. Evolving fuzzy systems for the WBCD problem

The solution scheme we propose for the WBCD problem is depicted in Fig. 4. It
consists of a fuzzy system and a threshold unit. The fuzzy system computes a
continuous appraisal value of the malignancy of a case, based on the input values.
The threshold unit then outputs a benign or malignant diagnostic according to the
fuzzy system’s output.

In order to evolve the fuzzy model we must make some preliminary decisions
about the fuzzy system itself and about the genetic algorithm encoding. In this
section we describe our choices, followed in the next section by a presentation of
our results.
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4.1. Fuzzy system parameters

Previous knowledge about the WBCD problem and about some of the extant
rule-based models represents valuable information to be used for our choice of
fuzzy parameters. When defining our setup we took into consideration the follow-
ing results, described in previous works:
� Small number of rules. Systems with no more than four rules have been shown to

obtain high performance [25,27].
� Small number of 6ariables. Rules with no more than four antecedents have

proven adequate [25,28,30].
� Monotonicity of the input 6ariables. Simple observation of the input and output

spaces shows that higher-valued variables are associated with malignancy.
Some fuzzy models forgo interpretability in the interest of improved perfor-

mance. Where medical diagnosis is concerned, interpretability—also called linguis-
tic integrity—is the major advantage of fuzzy systems. This motivated us to take
into account the following semantic criteria, defining constraints on the fuzzy
parameters [5,26]:
� Distinguishability. Each linguistic label should have semantic meaning and the

fuzzy set should clearly define a range in the universe of discourse. For example,
to describe variable Clump thickness (61) we can use two labels: Thick and Diffuse
(we opted for Low and High). Their membership functions are defined using
parameters P and d (Fig. 1).

� Justifiable number of elements. The number of membership functions of a
variable should be compatible with the number of conceptual entities a human
being can handle. This number should not exceed the limit of 792 distinct
terms. The same criterion is applied to the number of variables in the rule
antecedent. For example, the following would be considered an adequate rule:

if (61 is High) and (62 is High) and (64 is High) and (66 is Low)

and (68 is Low) then (output is benign).

� Co6erage. Any element from the universe of discourse should belong to at least
one of the fuzzy sets. That is, its membership value must be different than zero
for at least one of the linguistic labels. Referring to Fig. 1, we see that any value
along the x-axis belongs to at least one fuzzy set (Low, High, or both); no value
lies outside the range of all sets.

� Normalization. Since all labels have semantic meaning, then, for each label, at
least one element of the universe of discourse should have a membership value
equal to one. In Fig. 1, we observe that both Low and High have elements with
membership value equal to 1.

� Orthogonality. For each element of the universe of discourse, the sum of all its
membership values should be equal to one (e.g. in Fig. 1 a Low membership
value of 0.8 entails a High membership value of 0.2).
Referring to Table 1, and taking into account the above criteria, we delineate

below the fuzzy system setup:
(i) Logical parameters
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� Reasoning mechanism: singleton-type fuzzy system, meaning that consequents of
rules (i.e. output membership functions) are real values (also called singletons),
rather than fuzzy ones.

� Fuzzy operators: min and max.
� Input membership function type: orthogonal, trapezoidal (see Fig. 1).
� Defuzzification method: weighted average.

(ii) Structural parameters
� Relevant variables: there is insufficient a priori knowledge to define them,

therefore this will be one of the genetic algorithm’s objectives.
� Number of input membership functions: two membership functions, denoted

Low and High are used (Fig. 1).
� Number of output membership functions: two singletons are used, corresponding

to the benign and malignant diagnostics.
� Number of rules: in our approach, this is a user-configurable parameter. Based

on our previous results [25], we limited the number of rules to be between 1 and
5. The rules themselves are to be found by the genetic algorithm.
(iii) Connective parameters

� Antecedents of rules: to be found by the genetic algorithm.
� Consequent of rules: the algorithm finds rules for the benign diagnostic; the

malignant diagnostic is an else condition (see below).
� Rule weights: active rules have a weight of value 1, and the else condition has a

weight of 0.25.
(iv) Operational parameters

� Input membership function values: to be found by the genetic algorithm.
� Output membership function values: following the WBCD database, we used a

value of 2 for benign and 4 for malignant.

4.2. The genetic algorithm

We apply Pittsburgh-style structure learning, using a genetic algorithm to search
for three parameters. The genome, encoding relevant variables, input membership
function values, and antecedents of rules, is constructed as follows:
� Membership function parameters. There are nine variables (61–69), each with

two parameters P and d, defining the start point and the length of the
membership function edges, respectively (Fig. 1).

� Antecedents. The i-th rule has the form:

if (6l is A1
i ) and…and (69 is A9

i ) then (output is benign),

where Aj
i represents the membership function applicable to variable 6j. Aj

i can
take on the values: 1 (Low), 2 (High), or 0 or 3 (Other).

� Relevant variables are searched for implicitly by letting the algorithm choose
non-existent membership functions as valid antecedents; in such a case the
respective variable is considered irrelevant. For example, the rule

if (6l is High) and (62 is Other) and (63 is Other) and (64 is Low)

and (65 is Other) and (66 is Other) and (67 is Other)

and (68 is Low)and (69 is Other) then (output is benign),
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Table 2
Parameters encoding of an individual’s genomea

Quantity Total bitsParameter Values Bits

9(1–8) 27P 3
d 3 9 27(1–8)

(0–3) 2 9Nr 18NrA

a Total genome length is 54+18Nr, where Nr denotes the number of rules (Nr is set a priori to a value
between 1 and 5, and is fixed during the genetic algorithm run).

is interpreted as: if (6l is High) and (64 is Low) and (68 is Low) then (output is
benign).
Table 2 delineates the parameters encoding, which together form a single individu-
al’s genome. Fig. 5 shows a sample genome.

To evolve the fuzzy inference system, we used a genetic algorithm with a fixed
population size of 200 individuals, and fitness-proportionate selection (Section 1.3).
The algorithm terminates when the maximum number of generations, Gmax is
reached (we set Gmax=2000+500(Nr, i.e. dependent on the number of rules used

Fig. 5. Example of a genome for a single-rule system, (a) Genome encoding. The first 18 positions
encode the parameters P and d for the nine variables 6l–69. The rest encode the membership function
applicable for the nine antecedents of the rule; (b) Interpretation. Database and rule base of the
single-rule system encoded by (a). The parameters P and d are interpreted as illustrated in Fig. 1.
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in the run), or when the increase in fitness of the best individual over five successive
generations falls below a certain threshold (in our experiments we used threshold
values between 2×10−7 and 4×10−6).

Our fitness function combines three criteria: (1) Fc: classification performance,
computed as the percentage of cases correctly classified; (2) Fe: the quadratic
difference between the continuous appraisal value (in the range [2,4]) and the
correct discrete diagnosis given by the WBCD database (either 2 or 4); and (3) F6:
the average number of variables per active rule. The fitness function is given by
F=Fc−aF6−bFe, where a=0.05 and b=0.01 (these latter values were derived
empirically). Fc, the ratio of correctly diagnosed cases, is the most important
measure of performance. F6 measures the linguistic integrity (interpretability),
penalizing systems with a large number of variables per rule (on average). Fe adds
selection pressure towards systems with low quadratic error.

5. Results

This section describes the results obtained when applying the methodology
described in Section 4. We first delineate in Section 5.1 the success statistics relating
to the evolutionary algorithm. Then, in Section 5.2, we describe in full three evolved
fuzzy systems—a three-rule system, a two-rule system, and a one-rule system—that
exemplify our approach. In Section 5.3, we discuss the issue of obtaining a
confidence measure of the system’s output, going beyond a mere binary, benign–
malignant classification. Finally, in Section 5.4, we briefly describe two further
experiments that we carried out.

5.1. The genetic algorithm…

The evolutionary experiments performed fall into three categories, in accordance
with the data repartitioning into two distinct sets: training set and test (or
evaluation) set. The three experimental categories are: (1) training set contains all
683 cases of the WBCD database, while the test set is empty; (2) training set
contains 75% of the WBCD cases, and the test set contains the remaining 25% of
the cases; (3) training set contains 50% of the WBCD cases and the test set contains
the remaining 50% of the cases. In the last two categories, the choice of training-set
cases is done randomly, and is performed anew at the outset of every evolutionary
run. The number of rules per system was also fixed at the outset, to be between one
and five, i.e. evolution seeks a system with an a priori given number of rules (the
choice of number of rules per system determines the final structure of the genome,
as presented in Table 2).

A total of 120 evolutionary runs were performed, all of which found systems
whose classification performance exceeds 94.5%. In particular, considering the best
individual per run (i.e. the evolved system with the highest classification success
rate), 78 runs led to a fuzzy system whose performance exceeds 96.5%, and of these,
eight runs found systems whose performance exceeds 97.5%; these results are
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Fig. 6. Summary of results of 120 evolutionary runs. The histogram depicts the number of systems
exhibiting a given performance level at the end of the evolutionary run. The performance considered is
that of the best individual of the run, measured as the overall percentage of correctly classified cases over
the entire database.

summarized in Fig. 6. Table 3 presents the average performance obtained by the
genetic algorithm over all 120 evolutionary runs, divided according to the three
experimental categories discussed above (a more detailed account of our results can
be found in Table 7, which lists the top evolved 45 systems).

Table 4 compares our best systems with the top systems obtained by four other
rule-based diagnostic approaches. The first three approaches, those of Setiono [27],
Setiono and Liu [28], and Taha and Ghosh [30], involve Boolean rule bases
extracted from trained neural networks; the last approach is our own previous work
[25]. The evolved fuzzy systems described in this paper can be seen to surpass those
obtained by these four previous approaches in terms of both performance and
simplicity of rules. As shown in Table 4, we obtained the highest-performance
systems for all five rule-base sizes, i.e. from one-rule systems all the way up to

Table 3
Summary of results of 120 evolutionary runs, divided according to the three experimental categories
discussed in the text (i.e. the three classes which differ in the training-set to test-set ratio)a

Number of variablesTraining/test ratio (%) Performance
Training set (%) Overall (%)Test set (%)

96.97– 3.32–100/0
96.02 96.76 3.4675/25 97.00

97.71 3.4150/50 96.2394.73

a The table lists the average performance over all 120 runs, where the averaging is done over the best
individual of each run. The performance value denotes the percentage of cases correctly classified. Three
such performance values are shown, (1) performance over the training set; (2) performance over the test
set; and (3) overall performance, considering the entire database. In addition, the average number of
variables per rule is also shown.
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Table 4
Comparison of the best systems evolved by our approach with the top systems obtained by four other rule-based diagnostic approachesa

Peña and Sipper [25](%) This work (%)Setiono [27] (%)Rules-per-system Setiono and Liu [28] (%) Taha and Ghosh [30](%)

96.35 (3) 97.07 (4)1 95.42 (2) – –
96.65 (7) 97.36 (3)–2 ––

– 97.80 (4.7)97.14 (4)3 97.21 (4) –
– 97.80 (4.8)–– –4

5 – – 96.19 (1.8)b – 97.51 (3.4)

a The first three approaches—those of Setiono [27], Setiono and Liu [28], and Taha and Ghosh [30]—involve Boolean rule bases extracted from trained
neural networks; the last approach is our own previous work [25]. Shown above are the classification performance values of the top systems obtained by
these approaches, along with the average number of variables-per-rule given in parentheses. Results are divided into five classes, in accordance with the
number of rules-per-system, going from one-rule systems to five-rule ones.

b Note that Taha and Ghosh [30] obtained slightly better results for the five-rules case by directly using their trained neural networks, rather than the
extracted rule-based systems. Herein, our interest lies with these latter, rule-based systems.
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Fig. 7. The best evolved, fuzzy diagnostic system with three rules. It exhibits an overall classification rate
of 97.8%, and an average of 4.7 variables per rule.

five-rule systems. Not only is high performance exhibited, but, moreover, our fuzzy
approach enables the introduction of a confidence measure of the diagnostic
decision (see Section 5.3). In contrast, the Boolean rule-based systems [27,28,30]
provide but a single binary value, indicating whether the case in question is benign
or malignant. Compared with our previous work [25], the current approach not
only improves performance, but also obtains systems with less antecedents per rule
(which are thus more easily comprehensible).

5.2. …and the fuzzy systems it disco6ered

We next describe three of our top-performance systems, which serve to exemplify
the solutions found by our evolutionary approach. The first system, delineated in
Fig. 7, consists of three rules (note that the else condition is not counted as an
active rule). Taking into account all three criteria of performance classification rate,
number of rules per system, and average number of variables per rule this system
can be considered the top one over all 120 evolutionary runs. It obtains 98.7%
correct classification rate over the benign cases, 97.07% correct classification rate
over the malignant cases3, and an overall classification rate (i.e. over the entire
database) of 97.8%.

A thorough test of this three-rule system revealed that the second rule (Fig. 7) is
never actually used; in the fuzzy literature this is known as a rule that never fires,
i.e. is triggered by none of the input cases. Thus, it can be eliminated altogether
from the rule base, resulting in a two-rule system (also reducing the average number
of variables per rule from 4.7 to 4).

3 The WBCD database contains 444 benign cases and 239 malignant cases.
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Fig. 8. The best evolved, fuzzy diagnostic system with two rules. It exhibits an overall classification rate
of 97.36%, and an average of three variables per rule.

Can the genetic algorithm automatically discover a two-rule system, i.e. without
recourse to any post-processing (such as that described in the previous paragraph)?
Our results have shown that this is indeed the case; one such solution is presented
in Fig. 8. It obtains 97.3% correct classification rate over the benign cases, 97.49%
correct classification rate over the malignant cases, and an overall classification rate
of 97.36%.

Finally, Fig. 9 delineates the best one-rule system found through our evolution-
ary approach. It obtains 97.07% correct classification rate over the benign cases,
97.07% correct classification rate over the malignant cases, and an overall classifica-
tion rate of 97.07%.

5.3. Diagnostic confidence

Up until now we have been using the evolved fuzzy systems to ultimately produce
a binary classification value—benign or malignant—with no finer gradations.
Going back to Fig. 4, we note that the diagnostic system comprises in fact two
subsystems: the first subsystem consists of the (evolved) fuzzy system, which, upon

Fig. 9. The best evolved, fuzzy diagnostic system with one rule. It exhibits an overall classification rate
of 97.07%, and a rule with four variables.
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presentation of an input (in our case, a WBCD database entry) proceeds to
pro-duce a continuous appraisal value; this value is then passed along to the
second subsystem—the threshold unit—which produces the final binary output
(benign or malignant). The first subsystem (the fuzzy system) is the one evolved
in our approach. The threshold subsystem simply outputs malignant if the app-
raisal value is above a fixed threshold value, and outputs benign otherwise.
The threshold value is assigned by the user through knowledge of the problem at
hand.

To gain an intuitive understanding of how a classification value is computed, let
us sketch a simple example. Referring to the system of Fig. 4, assume that the
following values are presented as inputs (these represent case c145 of the WBCD
database):

n3 n4n1 n5 n6 n7 n8 n9n2

1 1 2 1 4 8 14 3Value

The membership value of each variable is then computed in accordance with the
(evolved) database of Fig. 7:

n3 n4 n5 n6n1 n7 n8 n9n2

1 1 1 10.8 11 0.4 1mLow

mHigh 00.2 0 0 0 0 0.6 00

This completes the fuzzification phase (the ‘fuzzifier’ unit of Fig. 2). Having
computed these membership values, the inference engine (Fig. 2) can now go on to
compute the so-called truth value of each rule. This truth value is computed by
applying the fuzzy ‘and’ operator (Section 1.2) to combine the antecedent clauses
(the membership values) in a fuzzy manner; this results in the output truth value,
namely, a continuous value which represents the rule’s degree of activation. Thus,
a rule is not merely either activated or not, but in fact is activated to a certain
degree represented by a value between 0 and 1. In our example, the rule activation
values are as follows (remember that we ‘chucked out’ rule 2, since it was found to
never fire):

Rule 1 Rule 3 Default
0.4 0.4 0.25Truth value
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The inference engine (Fig. 2) now goes on to apply the aggregation operator
(Section 1.2), combining the continuous rule activation values to produce a fuzzy
output with a certain truth value (the point marked ‘fuzzy output’ in Fig. 2). The
defuzzifier then kicks in (Fig. 2), producing the final continuous value of the fuzzy
inference system; this latter value is the appraisal value that is passed on to the
threshold unit (Fig. 4). In our example the appraisal value is 2.48.

In general, the appraisal value computed by our evolved fuzzy systems is in the
range [2,4]. We chose to place the threshold value at 3, with inferior values classified
as benign, and superior values classified as malignant. Thus, in our example, the
appraisal value of 2.48 is classified as benign—which is correct.

This case in the WBCD database produces an appraisal value (2.48) which is
among the closest to the threshold value. Most other cases result in an appraisal
value that lies close to one of the extremes (i.e. close to either 2 or 4). Thus, in a
sense, we can say that we are somewhat less confident where this case is concerned,
with respect to most other entries in the WBCD database; specifically, the appraisal
value can accompany the final output of the diagnostic system, serving as a
confidence measure. This demonstrates a prime advantage of fuzzy systems,
namely, the ability to output not only a (binary) classification, but also a measure
representing the system’s confidence in its output. (The three-rule system of Fig. 7
computes intermediate appraisal values (between, say, 2.4 and 3.6) for 39 cases;
these might thus be considered the cases for which we are somewhat less confident
about the output.)

5.4. Further experiments

In this section we describe two further experiments carried out; these are aimed
at searching for systems with yet better performance than obtained hitherto—
though possibly at the expense of some other aspect of the resulting system.

As noted in Section 4.1, fuzzy systems offer a major advantage in terms of
(possible) linguistic integrity, i.e. interpretability by humans. With this goal in mind,
the experiments described previously were constrained: we limited both the number
of rules per system, as well as the number of variables per rule. This latter
constraint was incorporated by favoring systems with few variables-per-rule via the
F6 coefficient: lower F6, meaning fewer variables-per-rule, entails higher overall
fitness.

Can higher-performance systems be obtained by eliminating the F6 factor (albeit
at the cost of reduced interpretability due to more complicated rules)? This was the
aim of our first of the two experiments described herein. We eliminated not only the
F6 measure but also the Fe factor, the resulting fitness function thus containing
solely Fc. Our intent was to provide selection pressure for but one goal: overall
classification performance. With this aim in mind we were also more ‘generous’
with the number of rules per system: whereas previously this was set to a (fixed)
value between one and five, herein we set this value to be between three and seven.

We performed a total of 31 evolutionary runs, the results of which are summa-
rized in Table 5. We note that our previous best system (Fig. 7) obtained 97.8%
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Table 5
Results of evolutionary runs in which the variables-per-rule constraint has been removeda

Best system (%)Rules-per-system Average (%)

3 97.49 (5.4)97.66 (5.3)
97.63 (5.4)98.24 (5.8)4
97.63 (5.6)97.95 (6)5

98.10 (6.2) 97.77 (5.4)6
7 97.88 (5.2)97.95 (5)

98.24 (5.8) 97.68 (5.4)Total

a Results are divided into five classes, in accordance with the number of rules-per-system, going from
three-rule systems to seven-rule ones. We performed 5–7 runs per class, totaling 31 runs in all; shown
above are the resulting best systems as well as the average per class. Results include the overall
classification performance and the average number of variables-per-rule in parentheses.

overall classification performance, while Table 5 shows an evolved system with a
98.24% classification rate. This latter system is thus able to correctly classify three
additional cases. This small improvement in performance carries, however, a price:
the slightly better system comprises four rules with an average of 5.8 variables per
rule, whereas the previous one (Fig. 7) contains but three rules with an average of
4.7 variables per rule; we have thus traded off interpretability for performance. The
judgment of whether this is worthwhile or not is entirely dependent on the human
user. It is noteworthy that this choice (interpretability versus performance) can be
easily implemented in our approach.

As explained in Section 4.1, the active rules diagnose benignity, with the default
diagnosis being malignancy; this means that the if conditions have benign as a
consequent, whereas the else condition has malignant as a consequent. Our second
experiment sought to find out what would happen if this were reversed, i.e. could

Table 6
Results of evolutionary runs in which the default diagnosis is benign (rather than malignant)a

Best system (%) AverageRules-per-system

1 94.73 (2) 94.44 (2)
2 96.93 (1.5) 96.34 (1.8)

97.36 (2)3 96.57 (1.7)
97.07 (1.8)4 97.00 (2)
97.80 (2.8)5 96.52 (2.2)

97.68 (1.9)97.80 (2.8)Total

a Results are divided into five classes, in accordance with the number of rules-per-system, going from
one-rule systems to five-rule ones. We performed 4–6 runs per class, totaling 27 runs in all; shown above
are the resulting best systems as well as the average per class. Results include the overall classification
performance and the average number of variables-per-rule in parentheses. Note that we slightly modified
the genomic representation (Section 4.2), such that if consequents are malignant, and the else consequent
is benign.
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Fig. 10. The best evolved, fuzzy diagnostic system with active rules encoding malignant cases. It exhibits
an overall classification rate of 97.80%, and an average of 2.8 variables per rule.

better systems be evolved with benignity as the default diagnosis? Table 6 delineates
the results of 27 evolutionary runs. While we did not improve upon the results of
the malignancy-default systems of Section 5.1, we did note a tendency toward a
smaller number of variables-per-rule. The highest-performance system found in this
experiment is fully specified in Fig. 10. It comprises five rules with an average of 2.8
variables-per-rule, exhibiting the same overall performance (97.8%) as the three-
rule, 4.7 average-variables-per-rule system of Fig. 7. This nicely illustrates the
tradeoff between these two parameters: number of rules per system and average
number of variables per rule.

6. Concluding remarks

In this paper we applied a combined fuzzy-genetic approach to the Wisconsin
breast cancer diagnosis problem. Our evolved systems exhibit both characteristics
outlined in Section 1: first, they attain high classification performance (the best
shown to date), with the possibility of attributing a confidence measure to the
output diagnosis; second, the resulting systems involve a few simple rules, and are
therefore interpretable.

Our experience to date suggests that the fuzzy-genetic approach is highly effective
where such medical diagnosis problems are concerned. We are currently pursuing
two avenues of research: (1) application of the fuzzy-genetic approach to more
complex diagnosis problems; and (2) improving and expanding upon the methodol-
ogy presented herein (e.g. by making use of recent advances in evolutionary
computation). Our underlying goal is to provide an approach for automatically
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Table 7
Summary of top 45 evolutionary runs (of 120) described in Section 5.1, divided according to the three experimental categories discussed in the text (i.e. the three classes which
differ in the training-set to test-set ratio)a

100%/0% 50%/50%75%/25%

Fitness Training Test Performance Variables Fitness Training Test Performance VariablesPerformance VariablesRules Fitness

95.91 97.07 4 0.9637 97.66 95.600.9553 96.6397.46 3396.780.95481
95.32 96.78 3 0.9607 97.370.9548 95.01 96.19 396.78 3 0.9597 97.27
96.49 96.78 3 0.9607 97.37 95.0196.88 96.193 30.95570.9533 96.63

97.270.9576 97.66 97.36 3 0.9603 97.95 95.89 96.93 497.36 3.5 0.95982
97.070.9593 96.49 96.93 3.5 0.9579 97.08 96.77 96.93 397.22 3 0.9548

94.74 96.78 2.5 0.9636 97.95 94.4397.46 96.19 3.50.9648397.070.9578
97.270.9548 97.66 97.36 3.33 0.9659 97.66 95.89 96.78 2.6797.8 4.67 0.95773

97.08 97.22 3.67 0.9546 97.37 95.8997.27 96.630.9554 40.95574.3397.66
97.270.9594 95.91 96.93 3.33 0.9626 97.95 95.01 96.49 3.7697.22 3 0.9577
97.270.9543 98.25 97.51 4.25 0.9755 99.12 95.6 97.36 3.597.8 4.75 0.9524

96.49 96.93 3.25 0.971 98 95.8997.07 97.36 3.750.95634.597.510.9529
94.15 96.780.9594 3.75 0.965 98.25 95.31 96.78 3.7597.22 3 0.9591 97.66
97.08 97.51 3.8 0.9586 97.66 96.7797.66 97.223.4 3.80.95875 0.9599 97.51

97.660.9483 97.08 97.51 4 0.9756 98.83 94.72 96.78 397.36 5 0.9575
0.9561 97.27 96.49 97.07 3.6 0.9623 98.25 95.01 96.63 4.20.9584 97.36 3.4

a For each of the 45 evolved systems, the table lists its fitness value, its performance, and its average number of variables-per-rule. As explained in Section 5.1, the performance
value denotes the percentage of cases correctly classified. Three such performance values are shown, (1) performance over the training set; (2) performance over the test set; and
(3) overall performance, considering the entire database.
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producing high-performance, interpretable systems for real-world diagnosis
problems.
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