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Abstract - In this paper we focus on the problem of mam- 
mographic interpretation and in the construction of a comput- 
erized system to assess physicians in this task. We propose a 
solution based on fuzzy systems, and apply our fuzzy model- 
ing methodology-Fuzzy Coco-to find systems exhibiting both 
good performance and high interpretability. The results pre- 
sented show the capacity of Fuzzy CoCo to find systems that 
satisfy different requirements concerning the complexity of the 
solution, expressed mainly as the number of rules. 

I. Introduction 

A major class of problems in medical science involves the 
definition of treatments and procedures, based upon the in- 
terpretation of one or various tests performed upon the pa- 
tient. When several tests are involved, the ultimate decision 
may be difficult to obtain, even for a medical expert. This 
has given rise, over the past few decades, to computerized 
tools, intended to aid the physician in making sense out of the 
welter of data. A prime target for such computerized tools is 
in the domain of cancer detection. Specifically, where breast 
cancer is concerned, the treating physician is interested in as- 
certaining whether the patient under examination exhibits the 
symptoms of a benign case, or whether her case requires fur- 
ther examination. Mammography remains the principal tech- 
nique for detecting breast cancer. Its undoubtable value in 
reducing mortality notwithstanding, mammography’s positive 
predictive value (PPV) is low: only between 15 and 35% of 
mammographic-detected lesions are cancerous [3,7]. The re- 
maining 65 to 85% of biopsies, besides being costly and time- 
consuming, cause understandable stress on women facing the 
doubt of cancer. A computer-based tool that assists radiol- 
ogists during mammographic interpretation would contribute 
to increasing the PPV of biopsy recommendations. 

A good computerized tool for medical decision support 
should possess two characteristics, which are often in conflict. 
First, the tool must attain the highest possible performance, 
i.e., detecting as much as possible the malignant cases, while 
minimizing the number of unnecessary biopsies. Second, it 
would be highly beneficial for such a system to be human- 
friendly, exhibiting so-called interpretability. This means that 
the physician is not faced with a black box that simply spouts 
answers (albeit correct) with no explanation; rather, we would 

like for the system to provide some insight as to how it derives 
its outputs. 

In this paper we propose to use fuzzy logic-based systems 
exhibiting the two aforementioned characteristics, to con- 
struct a computerized tool to assist mammographic interpre- 
tation. To explore the design space of these fuzzy systems, 
we apply Fuzzy C o C e a  fuzzy modeling technique based on 
cooperative coevolution conceived to provide a good balance 
between accuracy and interpretability. 

The rest of this paper is organized as follows: In the next 
section we present briefly Fuzzy Coco, our cooperative co- 
evolutionary approach to fuzzy modeling. In Section I11 we 
describe the mammography interpretation problem, which is 
the focus of our interest herein. Section IV then describes 
the application of Fuzzy CoCo to this problem, followed by 
the results obtained, presented in Section V. Finally, we con- 
clude in Section VI. 

11. Fuzzy Coco: A Cooperative Coevolutionary 
Approach to Fuzzy Modeling 

Fuzzy CoCo is a Cooperative Coevolutionary approach to 
fuzzy modeling, wherein two coevolving species are defined: 
database (membership functions) and rule base [4]. This ap- 
proach is based primarily on the framework defined by Pot- 
ter [8]. 

In Fuzzy Coco, the fuzzy modeling problem is solved by 
two coevolving cooperative species. Individuals of the first 
species encode values which define completely all the mem- 
bership hnctions for all the variables of the system. Individ- 
uals of the second species define a set of rules of the form: 

if (v1 is A I )  and.. . (v, is A,) then (output is C), 
where the term A, indicates which one of the linguistic labels 
of fuzzy variable is used by the rule. The two evolutionary 
algorithms used to control the evolution of the two popula- 
tions are instances of a simple genetic algorithm. The genetic 
algorithms apply fitness-proportionate selection to choose the 
mating pool, and apply an elitist strategy with an elitism rate 
Er to allow a given proportion of the best individuals to sur- 
vive into the next generation. Standard crossover and muta- 
tion operators are applied with probabilities P, and P,, re- 
spectively. 

An individual undergoing fitness evaluation establishes co- 
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TABLE I 
VARIABLES CORRESPONDING TO A PATIENT’S CLINICAL DATA. 

v1 Age [28-821 years 

w2 Menstrual history 1 Premenopausal 

713 Family history 1 None 

2 Postmenopausal 

2 Second familiar 
3 First familiar 
4 Contralateral 
5 Homolateral 

operations with one or more representatives of the other 
species, i.e., it is combined with individuals from the other 
species to construct fuzzy systems. The fitness value assigned 
to the individual depends on the performance of the fuzzy sys- 
tems it participated in. Representatives, or cooperators, are 
selected both fitness-proportionally and randomly from the 
last generation since they have already been assigned a fitness 
value. In Fuzzy CoCo, N,f cooperators are probabilistically 
selected according to their fitness, usually the fittest individu- 
als, thus favoring the exploitation of known good solutions. 
The other N,, cooperators are selected randomly from the 
population to represent the diversity of the species, maintain- 
ing in this way exploration of the search space. For a more 
detailed exposition of Fuzzy CoCo see [4]. 

111. The mammography interpretation problem 
The Catalonia Mammography Database, which is the ob- 

ject of our study, was collected at the Duran y Reynals hospital 
in Barcelona. It consists of 15 input attributes and a diagnostic 
result indicating whether or not a carcinoma was detected after 
a biopsy. The 15 input attributes include three clinical char- 
acteristics (Table I) and two groups of six radiologic features, 
according to the type of lesion found in the mammography: 
mass or microcalcifications (Table 11). 

A radiologist fills out a reading form for each mammogra- 
phy, assigning values for the clinical characteristics and for 
one of the groups of radiologic features. Then, the radiolo- 
gist interprets the case using a five-point scale: (1) benign; (2) 
probably benign; (3) indeterminate; (4) probably malignant; 
(5) malignant. According to this interpretation a decision is 
made on whether to practice a biopsy on the patient or not. 
The Catalonia database contains data corresponding to 227 
cases. Each case is examined by three different readers-for 
a total of 68 1 readings-but only diverging readings are kept. 
The actual number of readings in the database is 5 16, among 
which 187 are positive (malignant) cases and 329 are negative 
(benign) cases. 

Fig. 1. Proposed system. 
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IV. An evolved fuzzy system to assess mammographic 
interpretation 

A. Proposed solution 

The solution scheme we propose to construct the 
mammographic-interpretation assessment tool is depicted in 
Figure 1. It consists of a reading form, a fuzzy subsystem 
and a threshold unit. Based on the 15 input attributes 
collected with the reading form, the fuzzy system computes a 
continuous appraisal value of the malignancy of a case. The 
threshold unit then outputs a biopsy recommendation accord- 
ing to the fuzzy system’s output. The threshold value used 
in this system is 3, which corresponds to the “indeterminate” 
diagnostic. Fuzzy CoCo is applied to design the fuzzy system 
in charge of appraising malignancy. 

B. Fuzzy-parameter setup 

We used prior knowledge about the Catalonia database to 
guide our choice of fuzzy parameters. In addition, we took 
into account the following five semantic criteria, defining con- 
straints on the membership-function parameters [5,6]:  (1) dis- 
tinguishability; (2) justifiable number of elements; (3) cover- 
age; (4) normalization; and (5) complementarity, as well as 
the following three syntactic criteria, constraining the encod- 
ing of the rules [2,5]: (1) completeness; (2 )  simplicity; and (3) 
readability. Following the parameter classification presented 
in [4], we delineate below the fuzzy system’s set-up: 

Logical parameters: singleton-type fuzzy systems; min- 
max fuzzy operators; orthogonal, trapezoidal input mem- 
bership functions; weighted-average defuzzification. 
Structural parameters: two input membership functions 
(Low and High; two output singletons (benign and malig- 
nant); a user-configurable number of rules. The relevant 
variables are one of Fuzzy COCO’S evolutionary objec- 
tives. 
Connective parameters: the antecedents and the conse- 
quent of the rules are searched by Fuzzy Coco. The al- 
gorithm also searches for the consequent of the default 
rule. All rules have unitary weight. 
Operational parameters: the input membership-function 
values are to be found by Fuzzy Coco. For the output 
singletons we used the values 1 and 5 ,  for benign and 
malignant, respectively. 



TABLE I1 
VARIABLES CORRESPONDING TO RADIOLOGIC FEATURES. THERE ARE TWO GROUPS OF VARIABLES USED TO DESCRIBE THE 

MAMMOGRAPHIC EXISTENCE OF MICROCALCIFICATIONS AND MASSES (LEFT AND RIGHT COLUMNS RESPECTIVELY). 

Microcalcifications Mass 
Disposition V ~ O  Morphology 
1 Round 
2 Indefinite 
3 Triangular or Trapezoidal 
4 Linear or Ramified 

Other signs of group form 
1 None 
2 
3 Undulating contour 
4 Both previous 

Maximum diameter of group 
[3-1201 ~ll~ll 

Number 
1 <10 
2 10to30 
3 >30 

Morphology 
1 Ringshaped 
2 Regular sharp-pointed 
3 Too small to determine 
4 Irregular sharp-pointed 
5 Vermicular, ramified 

Size irregularity 
1 Veryregular 
2 Sparingly regular 

Major axis in direction of nipple 

1 Oval 
2 Round 
3 Lobulated 
4 Polilobulated 
5 Irregular 

1 Well delimited 
2 Partially well delimited 
3 Poorly delimited 
4 Spiculated 

1 Not 
2 Yes 

2113 Focal distortion 
1 Not 
2 Yes 

1114 Focal asymmetry 
1 Not 
2 Yes 

2'11 Margins 

2112 Density greater than parenchyma 

2115 Maximum diameter 
[5-801 IINII 

-~ - 

3 Very irregular 

C. Genome encodings 

Fuzzy COCO thus searches for four parameters: input 
membership-function values, relevant input variables, and an- 
tecedents and consequents of rules. To encode these param- 
eters into both species' genomes, which together describe an 
entire fuzzy system, it is necessary to take into account the 
heterogeneity of the input variables as explained below. 

1. Species 1: Membership functions. The fifteen input 
variables (VI - 015) present three different types of val- 
ues: continuous ('u1,vg, and VIS), discrete (713 - 215 and 
v7 - v ~ I ) ,  and binary (212 and v12 - 7114). It is not neces- 
sary to encode membership functions for binary variables 
as they can only take on two values. The membership- 
function genome encodes the remaining 11 variables- 
three continuous and eight discrete-each with two pa- 
rameters PI and Pz, defining the membership-function 
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apices. Table 111 delineates the parameters encoding the 
membership-function genome. 

TABLE 111 
GENOME ENCODING OF PARAMETERS FOR 

MEMBERSHIP-FUNCTION SPECIES. GENOME LENGTH IS 106 
BITS. 

Variable type Qty Params. Bits Total bits 
Continuous 3 2  7 42 
Discrete 8 2  4 64 

Total Genome Length 106 

2. Species 2: Rules. The i-th rule has the form: 
if (211 is Af)  and ... and ( ~ 1 5  is Af,) then (output 
is d), where Ai can take on the values: 1 (Low), 2 
(High), or 0 or 3 (don t-care). Ci can take on the val- 



ues: 1 (benign) or 2 (malignant). However, as men- 
tioned before, each database case presents three clin- 
ical characteristics and six radiologic features accord- 
ing to the type of lesion found: mass or microcalcifi- 
cations (note that only a few special cases contain data 
for both groups). To take advantage of this fact, the rule- 
base genome encodes, for each rule, 11 parameters: the 
three antecedents of the clinical-data variables, the six 
antecedents of one radiological-feature group, an extra 
bit to indicate whether the rule applies for mass or micro- 
calcifications, and the rule consequent. Furthermore, the 
genome contains an additional parameter corresponding 
to the consequent of the default rule. Relevant variables 
are searched for implicitly by allowing the algorithm to 
choose non-existent membership functions as valid an- 
tecedents (A; = 0 or Ai = 3); in such case the respec- 
tive variable is considered irrelevant, and removed from 
the rule. Table IV delineates the parameters encoding the 
rules genome. 

TABLE IV 
GENOME ENCODING OF PARAMETERS FOR RULES SPECIES. 

GENOME LENGTH I S  20 X N, 4- 1 BITS, WHERE N, DENOTES 
THE NUMBER OF RULES. 

Parameters QtY Bits Total bits 

Radiologic data 6 x N r  2 12 x N, 

Consequents N r + l  1 Nr + 1 

Clinical data 3 x N r  2 6 x Nr 

Rule-type selector N?. 1 Nr 

Total Genome Length 2OxNv+1 

TABLE V 
FUZZY COCO SET-UP. 

Parameter Values 

Maximum generations G,,, 

Mutation probability P, (0.005,O.Ol) 

Population size N p  90 

Crossover probability P, 1 

Elitism rate E, { 0.1,0.2} 
“Fit” cooperators N,f 1 
Random cooperators N,, 1 

700 + 200N, 

TABLE VI 

COMPUTE THE EXPRESSIONS ARE: TRUE POSITIVE (TP): THE 

DIAGNOSTIC PERFORMANCE MEASURES. THE VALUES USED TO 

NUMBER OF POSITIVE CASES CORRECTLY DETECTED, TRUE 
NEGATIVE (TN): THE NUMBER OF NEGATIVE CASES CORRECTLY 
DETECTED, FALSE POSITIVE (FP): THE NUMBER OF NEGATIVE 

CASES DIAGNOSED AS POSITIVE, AND FALSE NEGATIVE (FN): 
THE NUMBER OF POSITIVE CASES DIAGNOSED AS NEGATIVE. 

Performance criteria 20-rule 

Sensitivity 

Specificity 

Accuracy 

Positive predictive value 
(PPV) 

T P  
T P  + F N  

T N  
T N  -t F P  

T P  + T N  
T P + T N  + F P  + F N  

T P  
T P + F P  

D. Evolutionary parameters 

Table V delineates values and ranges of values of the evo- 
lutionary parameters. The algorithm terminates when the 
maximum number of generations, G,,,, is reached (we set 
G,,, = 700 + 200 x N,, i.e., dependent on the number of 
rules used in the run), or when the increase in fitness of the 
best individual over five successive generations falls below a 
certain threshold in our experiments). Note that muta- 
tion rates are relatively higher than those used with a simple 
genetic algorithm. 

ble VI provides expressions for four of these measures which 
are important for evaluating the performance of our systems. 
Three df them are used in the fitness function, the last one is 
used in Section V to support the analysis of the results. Be- 
sides these criteria, the fitness function provides extra selec- 
tive pressure based on two syntactic criteria: simplicity and 
readability (see [ 5 ] ) .  

Our fitness function combines the following five criteria: 1) 
F,,,, : sensitivity, or true-positive ratio, computed as the per- 
centage of positive cases correctly classified; 2) Fspec: speci- 
ficity, or true-negative ratio, computed as the percentage of 
negative cases correctly classified (note that there is usually an 
important trade-off between sensitivity and specificity which 
renders difficult the satisfaction of both criteria); 3) F,,,: clas- 
sification Performance, computed as the percentage of cases 
correctly classified; 4) F, : rule-base size fitness, computed as 
the Percentage of unused rules (i.e., the number of rules that 

E. Fitness function 

the main function of the proposed system is the assess- 
merit of a medical diagnosis, our fitness definition takes into 
account medical diagnostic The most commonly em- 
ployed measures of the validity of diagnostic procedures are 
the sensitivity and specificity, the likelihood ratios, the predic- 
tive values, and the overall classification (accuracy) [ 11. Ta- 
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are never fired and can thus be removed altogether from the 
system); and 5) F,: rule-length fitness, computed as the aver- 
age number of don t-cure antecedents (i.e., unused variables) 
per rule. 

The fitness function is computed in three steps-basic 
fitness, accuracy reinforcement, and size reduction-as ex- 
plained below: 

1. Basic fitness. Based on sensitivity and specificity, it is 
given by 

Fsens + aFspec Fi = 
l + c r  ’ 

where the weight factor a = 0.3 reflects the greater im- 
portance of sensitivity. 

2. Accuracy reinforcement. Given by 

where P = 0.01. FLcc = Fa,, when Facc > 0.7; FLcc = 
0 elsewhere. This step slightly reinforces the fitness of 
high-accuracy systems. 

3. Size reduction. Based on the size of the fuzzy system, it 
is given by 

where y = 0.01. Fsixe = (F,. + F,) if Fa,, > 0.7 and 
Fsens > 0.98; Fsize = 0 elsewhere. This step rewards 
top systems exhibiting a concise rule set, thus directing 
evolution toward more interpretable systems. 

V. Results 

This section describes the results obtained when applying 
the methodology described in Section IV. We first delineate 
the success statistics relating to the evolutionary algorithm. 
Then, we present the diagnostic performance of two selected 
evolved fuzzy systems that exemplify our approach. 

A total of 65 evolutionary runs were performed, all of 
which found systems whose fitness exceeds 0.83. In partic- 
ular, considering the best individual per run (i.e., the evolved 
system with the highest fitness value), 42 runs led to a fuzzy 
system whose fitness exceeds 0.88 , and of these, 6 runs found 
systems whose fitness exceeds 0.9; these results are summa- 
rized in Figure 2. 

Table VI1 shows the results of the best systems obtained. 
The maximum number of rules per system was fixed at the 
outset to be between ten and twenty-five. 

As mentioned before, our fitness function includes two syn- 
tactic criteria to favor the evolution of good diagnostic sys- 
tems exhibiting interpretable rule bases. Concerning the sim- 
plicity of the rule base, rules that are encoded in a genotype 

0-7803-7280-8/02/$10.00 02002 IEEE 841 

1 1 1  15 

10 

5 

0082 083  084  085 086 087 OW 089 0 9  091 ( 2 

Fig. 2. Summary of results of 65 evolutionary runs. The histogram 
depicts the number of systems exhibiting a given fitness value at 
the end of the evolutionary run. The fitness considered is that of 
the best individual of the run. 

but that never fire are removed from the phenotype (the final 
system), rendering it more interpretable. Moreover, to im- 
prove readability, the rules are allowed (and encouraged) to 
contain don t-cure conditions. The relatively low values of 
R,jj and V, in Table VI1 confirm the reinforced interpretabil- 
ity of the evolved fuzzy systems. 

TABLE VI1 
RESULTS OF THE BEST SYSTEMS EVOLVED. RESULTS ARE 
DIVIDED INTO FOUR CLASSES, IN ACCORDANCE WITH THE 

MAXIMUM NUMBER OF RULES-PER-SYSTEM, GOING FROM 
10-RULE SYSTEMS TO 25-RULE ONES. SHOWN BELOW ARE THE 

FITNESS VALUES OF THE TOP SYSTEMS AS WELL AS THE 

AVERAGE FITNESS PER CLASS, ALONG WITH THE NUMBER OF 
RULES WHICH EFFECTIVELY USED BY THE SYSTEM (&ff) AND 

THE AVERAGE NUMBER OF VARIABLES PER RULE (x). 
Max. Best individual Average per class 
rules Fitness R,ff V, Fitness R,ff V, 
10 0.8910 9 2.22 0.8754 9.17 2.52 
15 0.8978 12 2.50 0.8786 12.03 2.62 
20 0.9109 17 2.41 0.8934 14.15 2.59 
25 0.9154 17 2.70 0.8947 15.78 2.76 

Table VI11 shows the diagnostic performance measures of 
two selected evolved systems. The first system, which is the 
top one over all 65 Fuzzy COCO runs, is a 17-rule system ex- 
hibiting a sensitivity of 99.47% (i.e., it detects all but one of 
the positive cases), and a specificity of 68.69% (i.e., 226 of the 
329 negative cases are correctly detected as benign). The sec- 
ond system is the best found when searching for ten-rule sys- 
tems. The sensitivity and the specificity of this 9-rule system 



TABLE VI11 
DIAGNOSTIC PERFORMANCE OF TWO SELECTED EVOLVED 

SYSTEMS. SHOWN BELOW ARE THE SENSITIVITY, THE 
SPECIFICITY, THE ACCURACY, AND THE POSITIVE PREDICTIVE 

VALUE (PPV) OF TWO SELECTED EVOLVED SYSTEMS. IN 
PARENTHESES ARE THE VALUES, EXPRESSED IN NUMBER OF 
CASES, LEADING TO SUCH PERFORMANCE MEASURES. THE 

17-RULE SYSTEM IS THE TOP SYSTEM. THE 9-RULE SYSTEM IS 
THE BEST FOUND WHEN SEARCHING FOR TEN-RULE SYSTEMS. 

17-rule 9-rule 
Sensitivity 99.47% (186/187) 98.40% (184/187) 
Specificity 68.69% (226/329) 64.13% (21 1/329) 
Accuracy 79.84% (412/516) 76.55% (395/516) 
PPV 64.36% (186/289) 60.93% (184/302) 

are, respectively, 98.40% and 64.13%. As mentioned in Sec- 
tion I, the usual positive predictive value (PPV) of mammog- 
raphy ranges between 15 and 35%. As shown in Table VIII, 
Fuzzy CoCo increases this value beyond 60%--64.36% for 
the 17-rule system-while still exhibiting a very high sensi- 
tivity. 

VI. Concluding Remarks 

We presented the application of Fuzzy Coco, a fuzzy mod- 
eling technique based on cooperative coevolution, to the de- 
sign of a fuzzy mammographic-interpretation assessment tool 
exhibiting both good performance and high interpretability. In 
fuzzy modeling, the interpretability-accuracy trade-off is of 
crucial import, imposing several conditions on the input and 
output membership functions as well as on the rule definition. 
As Fuzzy CoCo is highly configurable, it facilitates the man- 
agement of the mentioned trade-off. 

Applying Fuzzy CoCo to breast-cancer diagnosis we con- 
centrated on increasing the interpretability of solutions, ob- 
taining excellent results. We note, however, that the consis- 
tency of the entire rule base and its compatibility with the 
specific domain knowledge can only be assessed by further in- 
teraction with medical experts (radiologists, oncologists). Be- 
sides, the developed tool must be fine-tuned through fbrther 
tests submitted to the subjective reading of different radiolo- 
gists. 
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