
Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4133

98. Nelson DB (1990) Stationarity and persistence in the
GARCH(1,1) model. Econom Theory 6:318–334

99. Nelson DB (1991) Conditional heteroskedasticity in asset re-
turns: A new approach. Econometrica 59:347–370

100. Nelson DB, Cao CQ (1992) Inequality constraints in the uni-
variate garchmodel. J Bus Econ Stat 10:229–235

101. Newey WK, Steigerwald DS (1997) Asymptotic bias for quasi
maximum likelihood estimators in conditional heteroskedas-
ticity models. Econometrica 3:587–599

102. Nijman T, Sentana E (1996) Marginalization and contem-
poraneous aggregation in multivariate GARCH processes.
J Econom 71:71–87

103. Pantula SG (1988) Estimation of autoregressive models with
ARCH errors. Sankhya Indian J Stat B 50:119–138

104. Peng L, Yao Q (2003) Least absolute deviations estimation for
ARCH and GARCHmodels. Biometrika 90:967–975

105. Robinson PM (1991) Testing for strong serial correlation and
dynamic conditional heteroskedasticity in multiple regres-
sion. J Econom 47:67–84

106. Ross SA (1976) The arbitrage theory of capital asset pricing.
J Econ Theory 13:341–360

107. Sentana E, Fiorentini G (2001) Identification, estimation
and testing of conditionally heteroskedastic factor models.
J Econom 102:143–164

108. Sharpe WF (1964) Capital asset prices: A theory of market
equilibriumunder conditions of risk. J Finance 19:425–442

109. Shephard N (2005) Stochastic Volatility: Selected Readings.
Oxford University Press, Oxford

110. Straumann D, Mikosch T (2006) Quasi-mle in heteroscedastic
times series: a stochastic recurrenceequations approach. Ann
Stat 34:2449–2495

111. Taylor SJ (1986) Modelling Financial Time Series. Wiley, New
York

112. Tse YK (2000) A test for constant correlations in a multivariate
GARCHmodel. J Econom 98:107–127

113. Tse YK, Tsui AKC (2002) A multivariate GARCH model with
time-varying correlations. J Bus Econ Stat 20:351–362

114. van der Weide R (2002) Go-garch: A multivariate generalized
orthogonal GARCHmodel. J Appl Econom 17:549–564

115. Vrontos ID, Dellaportas P, Politis DN (2000) Full bayesian in-
ference for GARCH and EGARCH models. J Bus Econ Stat
18:187198

116. Vrontos ID, Dellaportas P, Politis D (2003) A full-factor multi-
variate garchmodel. Econom J 6:311–333

117. Wang Y (2002) Asymptotic nonequivalence of GARCHmodels
and diffusions. Ann Stat 30:754–783

118. Weiss AA (1986) Asymptotic theory for ARCHmodels: Estima-
tion and testing. Econom Theory 2:107–131

119. Yang L (2006) A semiparametric GARCHmodel for foreign ex-
change volatility. J Econom 130:365–384

120. Yang L, Härdle W, Nielsen P (1999) Nonparametric autore-
gression with multiplicative volatility and additive mean.
J Time Ser Anal 20:579–604

121. Zaffaroni P (2007) Aggregation and memory of models of
changing volatility. J Econom 136:237–249

122. Zaffaroni P (2007) Contemporaneous aggregation of GARCH
processes. J Time Series Anal 28:521–544

123. Zakoian JM (1994) Threshold heteroskedastic functions.
J Econ Dyn Control 18:931–955

Books and Reviews
Andersen T, Bollerslev T, Diebold F (2004) Parametric and nonpara-

metric measurement of volatility. In: Ait-Sahalia L, Hansen LP
(eds) Handbook of Financial Economtrics. Amsterdam (forth-
coming)

Bauwens L, Laurent S, Rombouts J (2006) Multivariate GARCHmod-
els: A survey. J Appl Econom 21:79–109

Bera A, Higgins M (1993) A survey of ARCH models: properties, es-
timation and testing. J Econ Surv 7:305–366

Bollerslev T, Chou R, Kroner K (1992) ARCH modelling in finance:
a review of the theory and empirical evidence. J Econom
52:5–59

Bollerslev T, Engle R, Nelson D (1994) ARCH models. In: Engle R,
McFadden D (eds) Handbook of Econometrics. North Holland
Press, Amsterdam, pp 2959–3038

Engle R (1995) ARCH: Selected Readings. Oxford University Press,
Oxford

Gouriéroux C (1997) ARCH Models and Financial Applications.
Springer, New York

Shephard N (1996) Statistical aspects of ARCH and stochastic
volatility. In: Cox DR, Hinkley DV, Barndorff-Nielsen OE (eds)
Time Series Models in Econometrics, Finance and Other
Fields. Chapman & Hall, London, pp 1–67

Shephard N (2005) Stochastic Volatility: Selected Readings. Oxford
University Press, Oxford

Taylor S (1986) Modelling Financial Time Series. Wiley, Chichester

Genetic and Evolutionary
Algorithms and Programming:
General Introduction
and Application to Game Playing
MICHAEL ORLOV, MOSHE SIPPER, AMI HAUPTMAN
Department of Computer Science,
Ben-Gurion University, Beer-Sheva, Israel

Article Outline

Glossary
Definition of the Subject
Introduction
Evolutionary Algorithms
A Touch of Theory
Extensions of the Basic Methodology
Lethal Applications
Evolutionary Games
Future Directions
Bibliography

Glossary

Evolutionary algorithms/evolutionary computation
A family of algorithms inspired by the workings of

Draf
t

4134 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

evolution by natural selection whose basic structure is
to:

1. produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

2. evaluate the fitness of each individual in accordance
with the problem whose solution is sought

3. while termination condition not met do
(a) select fitter individuals for reproduction
(b) recombine (crossover) individuals
(c) mutate individuals
(d) evaluate fitness of modified individuals
end while

Genome/chromosome An individual’s makeup in the
population of an evolutionary algorithm is known as
a genome, or chromosome. It can take on many forms,
including bit strings, real-valued vectors, character-
based encodings, and computer programs. The rep-
resentation issue – namely, defining an individual’s
genome (well) – is critical to the success of an evolu-
tionary algorithm.

Fitness Ameasure of the quality of a candidate solution in
the population. Also known as fitness function. Defin-
ing this function well is critical to the success of an evo-
lutionary algorithm.

Selection The operator by which an evolutionary algo-
rithm selects (usually probabilistically) higher-fitness
individuals to contribute genetic material to the next
generation.

Crossover One of the two main genetic operators applied
by an evolutionary algorithm, wherein two (or more)
candidate solutions (parents) are combined in some
pre-defined manner to form offspring.

Mutation One of the two main genetic operators applied
by an evolutionary algorithm, wherein one candidate
solution is randomly altered.

Definition of the Subject

Evolutionary algorithms are a family of search algorithms
inspired by the process of (Darwinian) evolution in na-
ture. Common to all the different family members is the
notion of solving problems by evolving an initially ran-
dom population of candidate solutions, through the appli-
cation of operators inspired by natural genetics and nat-
ural selection, such that in time fitter (i. e., better) solu-
tions emerge. The field, whose origins can be traced back
to the 1950s and 1960s, has come into its own over the past
two decades, proving successful in solving multitudinous

problems from highly diverse domains including (to men-
tion but a few): optimization, automatic programming,
electronic-circuit design, telecommunications, networks,
finance, economics, image analysis, signal processing, mu-
sic, and art.

Introduction

The first approach to artificial intelligence, the field which
encompasses evolutionary computation, is arguably due
to Turing [31]. Turing asked the famous question: “Can
machines think?” Evolutionary computation, as a subfield
of AI, may be the most straightforward answer to such
a question. In principle, it might be possible to evolve an
algorithm possessing the functionality of the human brain
(this has already happened at least once: in nature).

In a sense, nature is greatly inventive. One often won-
ders how so many magnificent solutions to the problem
of existence came to be. From the intricate mechanisms of
cellular biology, to the sandy camouflage of flatfish; from
the social behavior of ants to the diving speed of the pere-
grine falcon – nature created versatile solutions, at varying
levels, to the problem of survival. Many ingenious solu-
tions were invented (and still are), without any obvious in-
telligence directly creating them. This is perhaps the main
motivation behind evolutionary algorithms: creating the
settings for a dynamic environment, in which solutions
can be created and improved in the course of time, ad-
vancing in new directions, with minimal direct interven-
tion. The gain to problem solving is obvious.

Evolutionary Algorithms

In the 1950s and the 1960s several researchers indepen-
dently studied evolutionary systems with the idea that evo-
lution could be used as an optimization tool for engineer-
ing problems. Central to all the different methodologies is
the notion of solving problems by evolving an initially ran-
dom population of candidate solutions, through the appli-
cation of operators inspired by natural genetics and natu-
ral selection, such that in time fitter (i. e., better) solutions
emerge [9,16,19,28]. This thriving field goes by the name
of evolutionary algorithms or evolutionary computation,
and today it encompasses two main branches – genetic
algorithms [9] and genetic programming [19] – in addi-
tion to less prominent (though important) offshoots, such
as evolutionary programming [10] and evolution strate-
gies [26].

A genetic algorithm (GA) is an iterative procedure that
consists of a population of individuals, each one repre-
sented by a finite string of symbols, known as the genome,
encoding a possible solution in a given problem space.

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4135

This space, referred to as the search space, comprises
all possible solutions to the problem at hand. Generally
speaking, the genetic algorithm is applied to spaces which
are too large to be exhaustively searched. The symbol al-
phabet used is often binary, but may also be character-
based, real-valued, or any other representation most suit-
able to the problem at hand.

The standard genetic algorithm proceeds as follows: an
initial population of individuals is generated at random
or heuristically. Every evolutionary step, known as a gen-
eration, the individuals in the current population are de-
coded and evaluated according to some predefined qual-
ity criterion, referred to as the fitness, or fitness function.
To form a new population (the next generation), individ-
uals are selected according to their fitness. Many selection
procedures are available, one of the simplest being fitness-
proportionate selection, where individuals are selectedwith
a probability proportional to their relative fitness. This en-
sures that the expected number of times an individual is
chosen is approximately proportional to its relative per-
formance in the population. Thus, high-fitness (good) in-
dividuals stand a better chance of reproducing, while low-
fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals
into the population, i. e., it cannot find new points in the
search space; these are generated by genetically-inspired
operators, of which the most well known are crossover and
mutation. Crossover is performed with probability pcross
(the crossover probability or crossover rate) between two
selected individuals, called parents, by exchanging parts
of their genomes (i. e., encodings) to form one or two
new individuals, called offspring. In its simplest form, sub-
strings are exchanged after a randomly-selected crossover
point. This operator tends to enable the evolutionary pro-
cess to move toward promising regions of the search space.
The mutation operator is introduced to prevent prema-
ture convergence to local optima by randomly sampling
new points in the search space. It is carried out by flip-
ping bits at random, with some (small) probability pmut.
Genetic algorithms are stochastic iterative processes that
are not guaranteed to converge. The termination condi-
tion may be specified as some fixed, maximal number of
generations or as the attainment of an acceptable fitness
level. Figure 1 presents the standard genetic algorithm in
pseudo-code format.

Let us consider the following simple example, demon-
strating the GA’s workings. The population consists
of four individuals, which are binary-encoded strings
(genomes) of length 10. The fitness value equals the num-
ber of ones in the bit string, with pcross D 0:7 and pmut D

0:05. More typical values of the population size and the

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Figure 1
Pseudo-code of the standard genetic algorithm

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 1
The initial population

Label Genome Fitness
p1 0000011011 4
p2 1110111101 8
p3 0010000010 2
p4 0011010000 3

genome length are in the range 50–1000. Note that fit-
ness computation in this case is extremely simple, since
no complex decoding or evaluation is necessary. The ini-
tial (randomly generated) population might look as shown
in Table 1.

Using fitness-proportionate selection we must choose
four individuals (two sets of parents), with probabilities
proportional to their relative fitness values. In our exam-
ple, suppose that the two parent pairs are fp2; p4g and
fp1; p2g (note that individual p3 did not get selected as our
procedure is probabilistic). Once a pair of parents is se-
lected, crossover is effected between them with probabil-
ity pcross, resulting in two offspring. If no crossover is ef-
fected (with probability 1 � pcross), then the offspring are
exact copies of each parent. Suppose, in our example, that
crossover takes place between parents p2 and p4 at the
(randomly chosen) third bit position:

111j0111101
001j1010000

This results in offspring p01 D 1111010000 and
p02 D 0010111101. Suppose no crossover is performed
between parents p1 and p2, forming offspring that are
exact copies of p1 and p2. Our interim population (after
crossover) is thus as depicted in Table 2:

4136 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 2
The interim population

Label Genome Fitness
p01 1111010000 5
p02 0010111101 6
p03 0000011011 4
p04 1110111101 8

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 3
The resulting population

Label Genome Fitness
p001 1111010000 5
p002 0010101101 5
p003 0000011011 4
p004 1110111111 9

Next, each of these four individuals is subject to mu-
tation with probability pmut per bit. For example, suppose
offspring p02 is mutated at the sixth position and offspring
p04 is mutated at the ninth bit position. Table 3 describes
the resulting population.

The resulting population is that of the next generation
(i. e., p00i equals pi of the next generation). As can be seen,
the transition from one generation to the next is through
application of selection, crossover, and mutation. More-
over, note that the best individual’s fitness has gone up
from eight to nine, and that the average fitness (computed
over all individuals in the population) has gone up from
4.25 to 5.75. Iterating this procedure, the GA will eventu-
ally find a perfect string, i. e., with maximal fitness value
of ten.

Another prominent branch of the evolutionary com-
putation tree is that of genetic programming, introduced by
Cramer [7], and transformed into a field in its own right in
large part due to the efforts of Koza [19]. Basically, genetic
programming (GP) is a GA (genetic algorithm) with in-
dividuals in the population being programs instead of bit
strings.

In GP we evolve a population of individual LISP ex-
pressions1, each comprising functions and terminals. The
functions are usually arithmetic and logic operators that
receive a number of arguments as input and compute a re-
sult as output; the terminals are zero-argument functions
that serve both as constants and as sensors, the latter be-

1Languages other than LISP have been used, although LISP is still
by far the most popular within the genetic programming domain.

ing a special type of function that queries the domain
environment.

The main mechanism behind GP is precisely that of
a GA, namely, the repeated cycling through four oper-
ations applied to the entire population: evaluate-select-
crossover-mutate. However, the evaluation of a single in-
dividual in GP is usually more complex than with a GA
since it involves running a program. Moreover, crossover
and mutation need to be made to work on trees (rather
than simple bit strings), as shown in Fig. 2.

A Touch of Theory

Evolutionary computation is mostly an experimental field.
However, over the years there have been some notable the-
oretical treatments of the field, gaining valuable insights
into the properties of evolving populations.

Holland [17] introduced the notion of schemata,
which are abstract properties of binary-encoded individ-
uals, and analyzed the growth of different schemas when
fitness-proportionate selection, point mutation and one-
point crossover are employed. Holland’s approach has
since been enhanced and more rigorous analysis per-
formed; however, there were not many practical conse-
quences on the existing evolutionary techniques, since
most of the successful methods are usually much more
complex in many aspects. Moreover, the schematic anal-
ysis suffers from an important approximation of infinite
population size, while in reality schemata can vanish.

Note that theNo Free Lunch theorem states that “. . . for
any [optimization] algorithm, any elevated performance
over one class of problems is exactly paid for in perfor-
mance over another class” [32].

Extensions of the Basic Methodology

We have reviewed the basic evolutionary computation
methods. More advanced techniques are used to tackle
complex problems, where an approach of a single popula-
tion with homogeneous individuals does not suffice. One
such advanced approach is coevolution [24].

Coevolution refers to the simultaneous evolution of
two or more species with coupled fitness. Such coupled
evolution favors the discovery of complex solutions when-
ever complex solutions are required. Simplistically speak-
ing, one can say that coevolving species can either compete
(e. g., to obtain exclusivity on a limited resource) or coop-
erate (e. g., to gain access to some hard-to-attain resource).
In a competitive coevolutionary algorithm the fitness of an
individual is based on direct competition with individuals
of other species, which in turn evolve separately in their
own populations. Increased fitness of one of the species

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4137

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Figure 2
Genetic operators in genetic programming. LISP programs are depicted as trees. Crossover (top): Two sub-trees (marked in bold) are
selected from the parents and swapped. Mutation (bottom): A sub-tree (marked in bold) is selected from the parent individual and
removed. A new sub-tree is grown instead

implies a diminution in the fitness of the other species.
This evolutionary pressure tends to produce new strategies
in the populations involved so as tomaintain their chances
of survival. This arms race ideally increases the capabilities
of each species until they reach an optimum.

Cooperative (also called symbiotic) coevolutionary al-
gorithms involve a number of independently evolving
species which together form complex structures, well
suited to solve a problem. The fitness of an individual de-
pends on its ability to collaborate with individuals from
other species. In this way, the evolutionary pressure stem-
ming from the difficulty of the problem favors the devel-
opment of cooperative strategies and individuals.

Single-population evolutionary algorithms often per-
form poorly – manifesting stagnation, convergence to lo-
cal optima, and computational costliness – when con-
fronted with problems presenting one or more of the fol-
lowing features: 1) the sought-after solution is complex,
2) the problem or its solution is clearly decomposable,
3) the genome encodes different types of values, 4) strong
interdependencies among the components of the solu-
tion, and 5) components-ordering drastically affects fit-
ness [24]. Cooperative coevolution addresses effectively
these issues, consequently widening the range of applica-
tions of evolutionary computation.

Consider, for instance, the evolution of neural net-
works [33]. A neural network consists of simple units
called neurons, each having several inputs and a single
output. The inputs are assigned weights, and a weighted
sum of the inputs exceeding a certain threshold causes the
neuron to fire an output signal. Neurons are usually con-
nected using a layered topology.

When we approach the task of evolving a neural net-
work possessing some desired property naively, we will
probably think of some linearized representation of a neu-
ral network, encoding both the neuron locations in the
network, and their weights. However, evolving such a net-
work with a simple evolutionary algorithm might prove
quite a frustrating task, sincemuch information is encoded
in each individual, and it is not homogeneous, which
presents us with the difficult target of evolving the indi-
viduals as single entities.

On the other hand, this task can be dealt with more
sagely via evolving two independently encoded popula-
tions of neurons and network topologies. Stanley and Mi-
ikkulainen [30] evaluate the fitness of an individual in
one of the populations using the individuals of the other.
In addition to the simplification of individuals in each
population, the fitness is now dynamic, and an improve-
ment in the evolution of topologies triggers a correspond-

4138 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

ing improvement in the population of neurons, and vice
versa.

Lethal Applications

In this section we review a number of applications that –
though possibly not killer (death being in the eye of the
beholder. . .) – are most certainly lethal. These come from
a sub-domain of evolutionary algorithms, which has been
gaining momentum over the past few years: human-com-
petitive machine intelligence. Koza et al. [20] recently af-
firmed that the field of evolutionary algorithms “now rou-
tinely delivers high-return human-competitive machine
intelligence”, meaning, according to [20]:

� Human-competitive: Getting machines to produce
human-like results, e. g., a patentable invention, a re-
sult publishable in the scientific literature, or a game
strategy that can hold its own against humans.

� High-return: Defined by Koza et al. as a high artificial-
to-intelligence ratio (A/I), namely, the ratio of that
which is delivered by the automated operation of the
artificial method to the amount of intelligence that is
supplied by the human applying the method to a par-
ticular system.

� Routine: The successful handling of new problems once
the method has been jump-started.

� Machine intelligence: To quote Arthur Samuel, getting
“machines to exhibit behavior, which if done by hu-
mans, would be assumed to involve the use of intelli-
gence.”

Indeed, as of 2004 the major annual event in the
field of evolutionary algorithms – GECCO (Genetic and
Evolutionary Computation Conference; see www.sigevo.
org) – boasts a prestigious competition that awards
prizes to human-competitive results. As noted at www.
human-competitive.org: “Techniques of genetic and evo-
lutionary computation are being increasingly applied to
difficult real-world problems – often yielding results that
are not merely interesting, but competitive with the work
of creative and inventive humans.”

We now describe some winners from the HU-
MIES competition at www.human-competitive.org. Lohn
et al. [22] won a Gold Medal in the 2004 competition
for an evolved X-band antenna design and flight proto-
type to be deployed on NASA’s Space Technology 5 (ST5)
spacecraft:

The ST5 antenna was evolved to meet a challenging
set of mission requirements, most notably the com-
bination of wide beamwidth for a circularly-polar-
ized wave and wide bandwidth. Two evolutionary

algorithms were used: one used a genetic algorithm
style representation that did not allow branching in
the antenna arms; the second used a genetic pro-
gramming style tree-structured representation that
allowed branching in the antenna arms. The highest
performance antennas from both algorithms were
fabricated and tested, and both yielded very simi-
lar performance. Both antennas were comparable in
performance to a hand-designed antenna produced
by the antenna contractor for the mission, and so
we consider them examples of human-competitive
performance by evolutionary algorithms [22].

Preble et al. [25] won a gold medal in the 2005 compe-
tition for designing photonic crystal structures with large
band gaps. Their result is “an improvement of 12.5% over
the best human design using the same index contrast plat-
form.”

Recently, Kilinç et al. [18] was awarded the Gold
Medal in the 2006 competition for designing oscillators us-
ing evolutionary algorithms, where the oscillators possess
characteristics surpassing the existing human-designed
analogs.

Evolutionary Games

Evolutionary games is the application of evolutionary
algorithms to the evolution of game-playing strategies
for various games, including chess, backgammon, and
Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in the 1950s,
games have been part and parcel of this lively field. In
1957, a year after the Dartmouth Conference that marked
the official birth of AI, Alex Bernstein designed a program
for the IBM 704 that played two amateur games of chess.
In 1958, Allen Newell, J. C. Shaw, and Herbert Simon
introduced a more sophisticated chess program (beaten
in thirty-five moves by a ten-year-old beginner in its last
official game played in 1960). Arthur L. Samuel of IBM
spent much of the fifties working on game-playing AI pro-
grams, and by 1961 he had a checkers program that could
play rather decently. In 1961 and 1963 Donald Michie de-
scribed a simple trial-and-error learning system for learn-
ing how to play Tic-Tac-Toe (or Noughts and Crosses)
called MENACE (for Matchbox Educable Noughts and
Crosses Engine). These are but examples of highly pop-
ular games that have been treated by AI researchers since
the field’s inception.

http://www.sigevo.org
http://www.sigevo.org
http://www.human-competitive.org
http://www.human-competitive.org
http://www.human-competitive.org

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4139

Why study games? This question was answered by Su-
san L. Epstein, who wrote:

There are two principal reasons to continue to do
research on games. . . . First, human fascination with
game playing is long-standing and pervasive. An-
thropologists have catalogued popular games in al-
most every culture. . . . Games intrigue us because
they address important cognitive functions. . . . The
second reason to continue game-playing research
is that some difficult games remain to be won,
games that people play very well but computers do
not. These games clarify what our current approach
lacks. They set challenges for us to meet, and they
promise ample rewards [8].

Studying games may thus advance our knowledge in
both cognition and artificial intelligence, and, last but not
least, games possess a competitive angle which coincides
with our human nature, thus motivating both researcher
and student alike.

Even more strongly, Laird and van Lent [21] pro-
claimed that,

. . . interactive computer games are the killer appli-
cation for human-level AI. They are the application
that will soon need human-level AI, and they can
provide the environments for research on the right
kinds of problems that lead to the type of the incre-
mental and integrative research needed to achieve
human-level AI [21].

Evolving Game-Playing Strategies

Recently, evolutionary algorithms have proven a powerful
tool that can automatically design successful game-playing
strategies for complex games [2,3,13,14,15,27,29].

1. Chess (endgames) Evolve a player able to play
endgames [13,14,15,29].While endgames typically con-
tain but a few pieces, the problem of evaluation is still
hard, as the pieces are usually free to move all over the
board, resulting in complex game trees – both deep and
with high branching factors. Indeed, in the chess lore
much has been said and written about endgames.

2. Backgammon Evolve a full-fledged player for the non-
doubling-cube version of the game [2,3,29].

3. Robocode A simulation-based game in which robotic
tanks fight to destruction in a closed arena (robocode.
alphaworks.ibm.com). The programmers implement
their robots in the Java programming language, and
can test their creations either by using a graphical en-
vironment in which battles are held, or by submitting

them to a central web site where online tournaments
regularly take place. Our goal here has been to evolve
Robocode players able to rank high in the international
league [27,29].

A strategy for a given player in a game is a way of spec-
ifying which choice the player is to make at every point in
the game from the set of allowable choices at that point,
given all the information that is available to the player at
that point [19]. The problem of discovering a strategy for
playing a game can be viewed as one of seeking a computer
program. Depending on the game, the programmight take
as input the entire history of past moves or just the current
state of the game. The desired program then produces the
next move as output. For some games one might evolve
a complete strategy that addresses every situation tackled.
This proved to work well with Robocode, which is a dy-
namic game, with relatively few parameters, and little need
for past history.

Another approach is to couple a current-state evalu-
ator (e. g., board evaluator) with a next-move generator.
One can go on to create a minimax tree, which consists
of all possible moves, counter moves, counter counter-
moves, and so on; for real-life games, such a tree’s size
quickly becomes prohibitive. The approach we used with
backgammon and chess is to derive a very shallow, single-
level tree, and evolve smart evaluation functions. Our ar-
tificial player is thus had by combining an evolved board
evaluator with a simple program that generates all next-
move boards (such programs can easily be written for
backgammon and chess).

In what follows we describe the definition of six items
necessary in order to employ genetic programming: pro-
gram architecture, set of terminals, set of functions, fitness
measure, control parameters, and manner of designating
result and terminating run.

Example: Chess

As our purpose is to create a schema-based program that
analyzes single nodes thoroughly, in a way reminiscent of
human thinking, we did not perform deep lookahead.

We evolved individuals represented as LISP programs.
Each such program receives a chess endgame position as
input, and, according to its sensors (terminals) and func-
tions, returns an evaluation of the board, in the form of
a real number.

Our chess endgame players consist of an evolved LISP
program, together with a piece of software that generates
all possible (legal) next-moves and feeds them to the pro-
gram. The next-move with the highest score is selected

http://robocode.alphaworks.ibm.com
http://robocode.alphaworks.ibm.com

4140 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

(ties are broken stochastically). The player also identifies
when the game is over (either by a draw or a win).

Program Architecture As most chess players would
agree, playing a winning position (e. g., with material ad-
vantage) is very different than playing a losing position,
or an even one. For this reason, each individual contains
not one but three separate trees: an advantage tree, an even
tree, and a disadvantage tree. These trees are used accord-
ing to the current status of the board. The disadvantage
tree is smaller, since achieving a stalemate and avoiding
exchanges requires less complicated reasoning. Most ter-
minals and functions were used for all trees.

The structure of three trees per individual was pre-
served mainly for simplicity reasons. It is actually possi-
ble to coevolve three separate populations of trees, without
binding them to form a single individual before the end of
the experiment. This would require a different experimen-
tal setting, and is one of our future-work ideas.

Terminals and Functions While evaluating a position,
an expert chess player considers various aspects of the
board. Some are simple, while others require a deep un-
derstanding of the game. Chase and Simon found that
experts recalled meaningful chess formations better than
novices [6]. This led them to hypothesize that chess skill
depends on a large knowledge base, indexed through thou-
sands of familiar chess patterns.

We assumed that complex aspects of the game board
are comprised of simpler units, which require less game
knowledge, and are to be combined in some way. Our
chess programs use terminals, which represent those rela-
tively simple aspects, and functions, which incorporate no
game knowledge, but supply methods of combining those
aspects. As we used strongly typed GP [23], all functions
and terminals were assigned one ormore of two data types:
Float and Boolean. We also included a third data type,
named Query, which could be used as any of the former
two. We also used ephemeral random constants (ERCs).

The Terminal Set We developed most of our terminals
by consulting several high-ranking chess players.2 The ter-
minal set examined various aspects of the chessboard, and
may be divided into three groups:

Float values, created using the ERC mechanism. ERCs
were chosen at random to be one of the following six
values:˙1 � f 12 ;

1
3 ;

1
4g �MAX (MAX was empirically set to

1000), and the inverses of these numbers. This guaranteed

2The highest-ranking player we consulted was Boris Gutkin, ELO
2400, International Master, and fully qualified chess teacher.

that when a value was returned after some group of fea-
tures has been identified, it was distinct enough to engen-
der the outcome.

Simple terminals, which analyzed relatively simple as-
pects of the board, such as the number of possible moves
for each king, and the number of attacked pieces for each
player. These terminals were derived by breaking relatively
complex aspects of the board into simpler notions. More
complex terminals belonged to the next group (see below).
For example, a player should capture his opponent’s piece
if it is not sufficiently protected, meaning that the number
of attacking pieces the player controls is greater than the
number of pieces protecting the opponent’s piece, and the
material value of the defending pieces is equal to or greater
than the player’s. Adjudicating these considerations is not
simple, and therefore a terminal that performs this entire
computational feat by itself belongs to the next group of
complex terminals.

The simple terminals comprising this second group
were derived by refining the logical resolution of the pre-
vious paragraphs’ reasoning: Is an opponent’s piece at-
tacked? How many of the player’s pieces are attacking
that piece? How many pieces are protecting a given op-
ponent’s piece? What is the material value of pieces at-
tacking and defending a given opponent’s piece? All these
questions were embodied as terminals within the second
group. The ability to easily embody such reasoning within
the GP setup, as functions and terminals, is a major asset
of GP.

Other terminals were also derived in a similar manner.
See Table 4 for a complete list of simple terminals. Note
that some of the terminals are inverted – we would like
terminals to always return positive (or true) values, since
these values represent a favorable position. This is why we
used, for example, a terminal evaluating the player’s king’s
distance from the edges of the board (generally a favorable
feature for endgames), while using a terminal evaluating
the proximity of the opponent’s king to the edges (again,
a positive feature).

Complex terminals: these are terminals that check the
same aspects of the board a human player would. Some
prominent examples include: the terminal OppPieceCan-
BeCaptured considering the capture of a piece; checking if
the current position is a draw, a mate, or a stalemate (espe-
cially important for non-even boards); checking if there is
a mate in one or two moves (this is the most complex ter-
minal); the material value of the position; comparing the
material value of the position to the original board – this
is important since it is easier to consider change than to
evaluate the board in an absolute manner. See Table 5 for
a full list of complex terminals.

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4141

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 4
Simple terminals for evolving chess endgame players.Opp: opponent,My: player

Terminal Description
B=NotMyKingInCheck() Is the player’s king not being checked?
B=IsOppKingInCheck() Is the opponent’s king being checked?
F=MyKingDistEdges() The player’s king’s distance form the edges of the board
F=OppKingProximityToEdges() The opponent’s king’s proximity to the edges of the board
F=NumMyPiecesNotAttacked() The number of the player’s pieces that are not attacked
F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces
F=ValueMyPiecesAttacking() The material value of the player’s pieces which are attacking
F=ValueOppPiecesAttacking() The material value of the opponent’s pieces which are attacking
B=IsMyQueenNotAttacked() Is the player’s queen not attacked?
B=IsOppQueenAttacked() Is the opponent’s queen attacked?
B=IsMyFork() Is the player creating a fork?
B=IsOppNotFork() Is the opponent not creating a fork?
F=NumMovesMyKing() The number of legal moves for the player’s king
F=NumNotMovesOppKing() The number of illegal moves for the opponent’s king
F=MyKingProxRook() Proximity of my king and rook(s)
F=OppKingDistRook() Distance between opponent’s king and rook(s)
B=MyPiecesSameLine() Are two or more of the player’s pieces protecting each other?
B=OppPiecesNotSameLine() Are two or more of the opponent’s pieces protecting each other?
B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of his pieces?
B=IsMyKingProtectingPiece() Is the player’s king protecting one of his pieces?

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 5
Complex terminals for evolving chess endgame players. Opp: opponent, My: player. Some of these terminals perform lookahead,
while others compare with the original board

Terminal Description
F=EvaluateMaterial() The material value of the board
B=IsMaterialIncrease() Did the player capture a piece?
B=IsMate() Is this a mate position?
B=IsMateInOne() Can the opponent mate the player after this move?
B=OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s pieces without retaliation?
B=MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s pieces without retaliation?
B=IsOppKingStuck() Do all legal moves for the opponent’s king advance it closer to the edges?
B=IsMyKingNotStuck() Is there a legal move for the player’s king that advances it away from the edges?
B=IsOppKingBehindPiece() Is the opponent’s king two or more squares behind one of his pieces?
B=IsMyKingNotBehindPiece() Is the player’s king not two or more squares behind one of my pieces?
B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?
B=IsMyPieceNotPinned() Are all the player’s pieces not pinned?

Since some of these terminals are hard to compute, and
most appear more than once in the individual’s trees, we
used a memoization scheme to save time [1]: After the first
calculation of each terminal, the result is stored, so that
further calls to the same terminal (on the same board) do
not repeat the calculation. Memoization greatly reduced
the evolutionary run-time.

The Function Set The function set used included the
If function, and simple Boolean functions. Although our
tree returns a real number, we omitted arithmetic func-
tions, for several reasons. First, a large part of contempo-
rary research in the field of machine learning and game
theory (in particular for perfect-information games) re-
volves around inducing logical rules for learning games

4142 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing, Table 6
Function set of GP chess player individual. B: Boolean, F: Float

Function Description
F=If3(B1, F1, F2) If B1 is non-zero, return F1, else return F2
B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise
B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise
B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise
B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise
B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise
B=Not(B1) Return 0 if B1 is non-zero, 1 otherwise

(for example, see [4,5,11]). Second, according to the play-
ers we consulted, while evaluating positions involves con-
sidering various aspects of the board, some more impor-
tant than others, performing logical operations on these
aspects seems natural, while mathematical operations does
not. Third, we observed that numeric functions some-
times returned extremely large values, which interfered
with subtle calculations. Therefore the scheme we used
was a (carefully ordered) series of Boolean queries, each
returning a fixed value (either an ERC or a numeric termi-
nal, see below). See Table 6 for the complete list of func-
tions.

Fitness Evaluation As we used a competitive evaluation
scheme, the fitness of an individual was determined by its
success against its peers. We used the random-two-ways
method, in which each individual plays against a fixed
number of randomly selected peers. Each of these encoun-
ters entailed a fixed number of games, each starting from
a randomly generated position in which no piece was at-
tacked.

The score for each gamewas derived from the outcome
of the game. Players thatmanaged tomate their opponents
received more points than those that achieved only a ma-
terial advantage. Draws were rewarded by a score of low
value and losses entailed no points at all.

The final fitness for each player was the sum of all
points earned in the entire tournament for that generation.

Control Parameters and Run Termination We used
the standard reproduction, crossover, and mutation oper-
ators. The major parameters were: population size – 80,
generation count – between 150 and 250, reproduction
probability – 0.35, crossover probability – 0.5, and muta-
tion probability – 0.15 (including ERC).

Results We pitted our top evolved chess-endgame play-
ers against two very strong external opponents: 1) A pro-

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 7
Percent of wins, advantages, and draws for best GP-EndChess
player in tournament against two top competitors

%Wins %Advs %Draws
Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

gram we wrote (‘Master’) based upon consultation with
several high-ranking chess players (the highest being Boris
Gutkin, ELO 2400, International Master); 2) CRAFTY –
a world-class chess program, which finished second in the
2004World Computer Speed Chess Championship (www.
cs.biu.ac.il/games/). Speed chess (blitz) involves a time-
limit per move, which we imposed both on CRAFTY and
on our players. Not only did we thus seek to evolve good
players, but ones that play well and fast. Results are shown
in Table 7. As can be seen, GP-EndChess manages to hold
its own, and even win, against these top players. For more
details on GP-EndChess see [13,29].

Deeper analysis of the strategies developed [12] re-
vealed several important shortcomings, most of which
stemmed from the fact that they used deep knowledge and
little search (typically, they developed only one level of the
search tree). Simply increasing the search depth would not
solve the problem, since the evolved programs examine
each board very thoroughly, and scanning many boards
would increase time requirements prohibitively. And so
we turned to evolution to find an optimal way to over-
come this problem: How to add more search at the ex-
pense of less knowledgeable (and thus less time-consum-
ing) node evaluators, while attaining better performance.
In [15] we evolved the search algorithm itself , focusing on
the Mate-In-N problem: find a key move such that even
with the best possible counter-plays, the opponent can-
not avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve sev-

http://www.cs.biu.ac.il/games/
http://www.cs.biu.ac.il/games/

Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing G 4143

eral instances of the Mate-In-N problem, for the hardest
ones developing 47% less game-tree nodes than CRAFTY.
Improvement is thus not over the basic alpha-beta algo-
rithm, but over a world-class program using all standard
enhancements [15].

Finally, in [14], we examined a strong evolved chess-
endgame player, focusing on the player’s emergent capa-
bilities and tactics in the context of a chess match. Us-
ing a number of methods we analyzed the evolved player’s
building blocks and their effect on play level. We con-
cluded that evolution has found combinations of build-
ing blocks that are far from trivial and cannot be explained
through simple combination – thereby indicating the pos-
sible emergence of complex strategies.

Example: Robocode

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls the
tank activities, which can be interrupted on various occa-
sions, called events. The program is limited to four lines
of code, as we were aiming for the HaikuBot category, one
of the divisions of the international league with a four-line
code limit. Themain loop contains one line of code that di-
rects the robot to start turning the gun (and the mounted
radar) to the right. This insures that within the first gun
cycle, an enemy tank will be spotted by the radar, trigger-
ing a ScannedRobotEvent. Within the code for this event,
three additional lines of code were added, each controlling
a single actuator, and using a single numerical input that
was supplied by a genetic programming-evolved sub-pro-
gram. The first line instructs the tank to move to a distance
specified by the first evolved argument. The second line
instructs the tank to turn to an azimuth specified by the
second evolved argument. The third line instructs the gun
(and radar) to turn to an azimuth specified by the third
evolved argument (Fig. 3).

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Figure 3
Robocode player’s code layout (HaikuBot division)

Genetic and Evolutionary Algorithms and Programming: Gen-
eral Introduction and Appl. to Game Playing, Table 8
Robocode representation. a Terminal set. b Function set
(F: Float)

Terminal Description
Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the

player
Y() Returns the current vertical position of the

player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative

to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative

to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the

range [�1; 1]
Random() Returns a random real number in the range

[�1; 1]
Zero() Returns the constant 0

Function Description
Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denomi-

nator non-zero, otherwise return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return

value of third argument, else return value of
fourth argument

IfPositive(F, F, F) If first argument is positive, return value of
second argument, else return value of third
argument

Fire(F) If argument is positive, execute fire
command with argument as firepower and
return 1; otherwise, do nothing and return 0

Terminal and Function Sets We divided the terminals
into three groups according to their functionality [27], as
shown in Table 8:

1. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such as

4144 G Genetic and Evolutionary Algorithms and Programming: General Introduction and Appl. to Game Playing

last enemy azimuth, current tank position, and energy
levels.

2. Numerical constants: Two terminals, one providing the
constant 0, the other being an ERC (ephemeral random
constant). This latter terminal is initialized to a random
real numerical value in the range [�1; 1], and does not
change during evolution.

3. Fire command: This special function is used to curtail
one line of code by not implementing the fire actuator
in a dedicated line.

Fitness Measure We explored two different modes of
learning: using a fixed external opponent as teacher, and
coevolution – letting the individuals play against each
other; the former proved better. However, not one exter-
nal opponent was used to measure performance but three,
these adversaries downloaded from the HaikuBot league
(robocode.yajags.com). The fitness value of an individual
equals its average fractional score (over three battles).

Control Parameters and Run Termination The ma-
jor evolutionary parameters [19] were: population size –
256, generation count – between 100 and 200, selec-
tion method – tournament, reproduction probability – 0,
crossover probability – 0.95, and mutation probability –
0.05. An evolutionary run terminates when fitness is ob-
served to level off. Since the game is highly nondetermin-
istic a lucky individual might attain a higher fitness value
than better overall individuals. In order to obtain a more
accurate measure for the evolved players we let each of
them do battle for 100 rounds against 12 different adver-
saries (one at a time). The results were used to extract the
top player – to be submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very first tour-
nament it came in third, later climbing to first place of
28 (robocode.yajags.com/20050625/haiku-1v1.html). All
other 27 programs, defeated by our evolved strategy, were
written by humans. For more details on GP-Robocode
see [27,29].

Backgammon: Major Results

We pitted our top evolved backgammon players against
Pubeval, a free, public-domain board evaluation function
written by Tesauro. The program – which plays well –
has become the de facto yardstick used by the growing
community of backgammon-playing program developers.
Our top evolved player was able to attain a win percent-
age of 62.4% in a tournament against Pubeval, about 10%

higher (!) than the previous topmethod.Moreover, several
evolved strategies were able to surpass the 60% mark, and
most of them outdid all previous works. For more details
on GP-Gammon see [2,3,29].

Future Directions

Evolutionary computation is a fast growing field. As
shown above, difficult, real-world problems are being tack-
led on a daily basis, both in academia and in industry. In
the future we expect major developments in the under-
lying theory. Partly spurred by this we also expect major
new application areas to succumb to evolutionary algo-
rithms, and many more human-competitive results. Ex-
pecting such pivotal breakthroughs may seem perhaps
a bit of overreaching, but one must always keep in mind
Evolutionary Computation’s success in Nature.

Bibliography

1. Abelson H, Sussman GJ, Sussman J (1996) Structure and In-
terpretation of Computer Programs, 2nd edn. MIT Press, Cam-
bridge

2. Azaria Y, Sipper M (2005) GP-Gammon: Genetically program-
ming backgammon players. Genet Program Evolvable Mach
6(3):283–300. doi:10.1007/s10710-005-2990-0

3. Azaria Y, Sipper M (2005) GP-Gammon: Using genetic pro-
gramming to evolve backgammon players. In: Keijzer M, Tet-
tamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceed-
ings of 8th European Conference on Genetic Programming
(EuroGP2005). Lecture Notes in Computer Science, vol 3447.
Springer, Heidelberg, pp 132–142. doi:10.1007/b107383

4. BainM (1994) Learning logical exceptions in chess. PhD thesis,
University of Strathclyde, Glasgow, Scotland. citeseer.ist.psu.
edu/bain94learning.html

5. BonannoG (1989) The logic of rational play in games of perfect
information. Papers 347, California Davis – Institute of Govern-
mental Affairs. http://ideas.repec.org/p/fth/caldav/347.html

6. Charness N (1991) Expertise in chess: The balance between
knowledge and search. In: Ericsson KA, Smith J (eds) Toward
a general theory of Expertise: Prospects and limits. Cambridge
University Press, Cambridge

7. Cramer NL (1985) A representation for the adaptive genera-
tion of simple sequential programs. In: Grefenstette JJ (ed) Pro-
ceedings of the 1st International Conference on Genetic Algo-
rithms. Lawrence ErlbaumAssociates, Mahwah, pp 183–187

8. Epstein SL (1999) Game playing: The next moves. In: Proceed-
ings of the Sixteenth National Conference on Artificial Intelli-
gence. AAAI Press, Menlo Park, pp 987–993

9. Fogel DB (2006) Evolutionary Computation: Toward aNew Phi-
losophy of Machine Intelligence, 3rd edn. Wiley-IEEE Press,
Hoboken

10. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence
Through Simulated Evolution. Wiley, New York

11. Fürnkranz J (1996) Machine learning in computer chess: The
next generation. Int Comput Chess Assoc J 19(3):147–161.
citeseer.ist.psu.edu/furnkranz96machine.html

http://robocode.yajags.com
http://robocode.yajags.com/20050625/haiku-1v1.html
http://dx.doi.org/10.1007/s10710-005-2990-0
http://dx.doi.org/10.1007/b107383
http://citeseer.ist.psu.edu/bain94learning.html
http://citeseer.ist.psu.edu/bain94learning.html
http://ideas.repec.org/p/fth/caldav/347.html
http://citeseer.ist.psu.edu/furnkranz96machine.html

Genetic-Fuzzy Data Mining Techniques G 4145

12. Hauptman A, Sipper M (2005) Analyzing the intelligence of
a genetically programmed chess player. In: Late Breaking Pa-
pers at the 2005 Genetic and Evolutionary Computation Con-
ference, distributed on CD-ROM at GECCO-2005, Washing-
ton DC

13. HauptmanA, SipperM (2005) GP-EndChess: Using genetic pro-
gramming to evolve chess endgame players. In: Keijzer M, Tet-
tamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceed-
ings of 8th European Conference on Genetic Programming
(EuroGP2005). Lecture Notes in Computer Science, vol 3447.
Springer, Heidelberg, pp 120–131. doi:10.1007/b107383

14. Hauptman A, Sipper M (2007) Emergence of complex strate-
gies in the evolution of chess endgame players. Adv Complex
Syst 10(1):35–59. doi:10.1142/s0219525907001082

15. Hauptman A, Sipper M (2007) Evolution of an efficient search
algorithm for the mate-in-n problem in chess. In: Ebner M,
O’Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds)
Proceedings of 10th European Conference on Genetic Pro-
gramming (EuroGP2007). Lecture Notes in Computer Sci-
ence vol. 4455. Springer, Heidelberg, pp 78–89. doi:10.1007/
978-3-540-71605-1_8

16. Holland JH (1975) Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence. University of Michigan Press, AnnAr-
bor (2nd edn. MIT Press, Cambridge, 1992)

17. Holland JH (1992) Adaptation in Natural and Artificial Systems,
2nd edn. MIT Press, Cambridge

18. Kilinç S, Jain V, Aggarwal V, CamU (2006) Catalogue of variable
frequency and single-resistance-controlled oscillators employ-
ing a single differential difference complementary current con-
veyor. Frequenz: J RF-Eng Telecommun 60(7–8):142–146

19. Koza JR (1992) Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press, Cam-
bridge

20. Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G
(2003) Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer, Norwell

21. Laird JE, van Lent M (2000) Human-level AI’s killer application:
Interactive computer games. In: AAAI-00: Proceedings of the
17th National Conference on Artificial Intelligence. MIT Press,
Cambridge, pp 1171–1178

22. Lohn JD, Hornby GS, Linden DS (2005) An evolved antenna
for deployment on NASA’s Space Technology 5 mission. In:
O’Reilly UM, Yu T, Riolo R, Worzel B (eds) Genetic Programming
Theory and Practice II, Genetic Programming, vol 8, chap 18.
Springer, pp 301–315. doi:10.1007/0-387-23254-0_18

23. Montana DJ (1995) Strongly typed genetic programming. Evol
Comput 3(2):199–230. doi:10.1162/evco.1995.3.2.199

24. Peña-Reyes CA, Sipper M (2001) Fuzzy CoCo: A cooperative-
coevolutionary approach to fuzzy modeling. IEEE Trans Fuzzy
Syst 9(5):727–737. doi:10.1009/91.963759

25. Preble S, LipsonM, Lipson H (2005) Two-dimensional photonic
crystals designed by evolutionary algorithms. Appl Phys Lett
86(6):061111. doi:10.1063/1.1862783

26. Schwefel HP (1995) Evolution and Optimum Seeking. Wiley,
New York

27. Shichel Y, Ziserman E, SipperM (2005) GP-Robocode: Using ge-
netic programming to evolve robocode players. In: Keijzer M,
Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Ge-
netic Programming: 8th European Conference, EuroGP 2005,
Lausanne, Switzerland, March 30–April 1, 2005. Lecture Notes

in Computer Science, vol 3447. Springer, Berlin, pp 143–154.
doi:10.1007/b107383

28. Sipper M (2002) Machine Nature: The Coming Age of Bio-In-
spired Computing. McGraw-Hill, New York

29. Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) Designing an
evolutionary strategizing machine for game playing and be-
yond. IEEE Trans Syst, Man, Cybern, Part C: Appl Rev 37(4):583–
593

30. Stanley KO, Miikkulainen R (2002) Evolving neural networks
through augmenting topologies. Evol Comput 10(2):99–127.
doi:10.1162/106365602320169811

31. Turing AM (1950) Computing machinery and intelli-
gence. Mind 59(236):433–460. http://links.jstor.org/sici?
sici=0026-4423(195010)2:59:236<433:CMAI>2.0.CO;2-5

32. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82. doi:10.1109/
4235.585893

33. Yao X (1999) Evolving artificial neural networks. Proc IEEE
87(9):1423–1447. doi:10.1009/5.784219

Genetic-FuzzyData Mining
Techniques
TZUNG-PEI HONG1, CHUN-HAO CHEN2,
VINCENT S. TSENG2

1 Department of Computer Science and Information
Engineering, National University of Kaohsiung,
Kaohsiung, Taiwan

2 Department of Computer Science and Information
Engineering, National Cheng–Kung University,
Tainan, Taiwan

Article Outline

Glossary
Definition of the Subject
Introduction
Data Mining
Fuzzy Sets
Fuzzy Data Mining
Genetic Algorithms
Genetic-Fuzzy Data Mining Techniques
Future Directions
Bibliography

Glossary

Data mining Data mining is the process of extracting de-
sirable knowledge or interesting patterns from exist-
ing databases for specific purposes. The common tech-
niques include mining association rules, mining se-
quential patterns, clustering, and classification, among
others.

http://dx.doi.org/10.1007/b107383
http://dx.doi.org/10.1142/s0219525907001082
http://dx.doi.org/10.1007/978-3-540-71605-1_8
http://dx.doi.org/10.1007/978-3-540-71605-1_8
http://dx.doi.org/10.1007/0-387-23254-0T1	extbackslash _18
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1009/91.963759
http://dx.doi.org/10.1063/1.1862783
http://dx.doi.org/10.1007/b107383
http://dx.doi.org/10.1162/106365602320169811
http://links.jstor.org/sici?sici=0026-4423(195010)2:59:236�egingroup
uppercase {count@ 60}elax elax uccode `unhbox voidb@x �group
let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef
accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor
accent@spacefactor uppercase {gdef 0{~}}endgroup 0433:CMAI�egingroup
uppercase {count@ 62}elax elax uccode `unhbox voidb@x �group
let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef
accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor
accent@spacefactor uppercase {gdef 0{~}}endgroup 02.0.CO;2-5
http://links.jstor.org/sici?sici=0026-4423(195010)2:59:236�egingroup
uppercase {count@ 60}elax elax uccode `unhbox voidb@x �group
let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef
accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor
accent@spacefactor uppercase {gdef 0{~}}endgroup 0433:CMAI�egingroup
uppercase {count@ 62}elax elax uccode `unhbox voidb@x �group
let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef
accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor
accent@spacefactor uppercase {gdef 0{~}}endgroup 02.0.CO;2-5
http://links.jstor.org/sici?sici=0026-4423(195010)2:59:236<433:CMAIT1	extgreater
2.0.CO;2-5
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1009/5.784219

	Binder1 2141
	Binder1 2142
	Binder1 2143
	Binder1 2144
	Binder1 2145
	Binder1 2146
	Binder1 2147
	Binder1 2148
	Binder1 2149
	Binder1 2150
	Binder1 2151
	Binder1 2152
	Binder1 2153

