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Abstract Evolutionary computing methods are an attractive option for mod-
eling complex biological and biomedical systems because they are inherently
parallel, they conduct stochastic search through large solution spaces, they
capitalize on the modularity of solutions, they have flexible solution represen-
tations, they can utilize expert knowledge, they can consider multiple fitness
criteria, and they are inspired by how evolution optimizes fitness through
natural selection. Grammatical evolution (GE) is a promising example of
evolutionary computing because it generates solutions to a problem using a
generative grammar. We review here several detailed examples of GE from
the bioinformatics and systems genomics literature and end with some ideas
about the challenges and opportunities for integrating GE into biological and
biomedical discovery.

1 Introduction

Bioinformatics has its origins in the late 1970s with the convergence of
DNA sequencing, internetworking, and microcomputers. Early demand for
bioinformatics centered on the use of computers and the internet to store,
manage, manipulate, and analyze DNA sequences derived from experimental
studies in the biological and biomedical sciences. This demand exploded in
the mid-1990s with the advent of high-throughput methods for measuring
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biomolecules such as messenger RNA levels in cells and tissues [17]. This ex-
plosion of data has continued and, when combined with questions about the
complexity of biological systems, creates computational challenges that often
require machine learning and artificial intelligence (AI) approaches [6].

Evolutionary computation has emerged as a useful artificial intelligence ap-
proach for the study of complex biological systems because these methods are
inherently parallel, conduct stochastic search through large solution spaces,
capitalize on the modularity of solutions—which is an important character-
istic of biological systems, have flexible solution representations, can utilize
expert knowledge, can consider multiple fitness criteria, and are inspired by
how evolution optimizes fitness through natural selection that is understood
by biologists. Genetic programming (GP) is a population type of evolutionary
computing [14, 26]. The goal of GP is to ‘evolve’ computer programs to solve
complex problems. This is accomplished by first generating, or initializing,
a population of random computer programs that are composed of the basic
building blocks needed to solve or approximate a solution to the problem.
The power of GP is its ability to recombine building blocks to create new
solutions through an iterative process that involves selection of the best so-
lutions. GP and its many variations have been applied successfully in a wide
range of different problem domains including bioinformatics. The potential
for evolutionary methods to impact complex problem solving was discussed
in a recent editorial [27]. The goal of this chapter is to review bioinformatics
and systems genomics applications of a type of GP called grammatical evolu-
tion (GE) that generates computer programs or solutions using a grammar.
These grammar-based approaches provide tremendous flexibility.

Grammatical evolution (GE) was introduced by [25] as a variation on ge-
netic programming. Here, a Backus-Naur Form (BNF) grammar is specified
that allows a computer program or model to be constructed by a simple
genetic algorithm operating on an array of bits. BNF is a formal notation
for describing the syntax of a context-free grammar as a set of production
rules that consist of terminals and nonterminals [15]. Nonterminals form the
left-hand side of production rules while both terminals and nonterminals can
form the right-hand side. A terminal is essentially a model element while a
nonterminal is the name of a production rule. The GE approach is appealing
because only a text file specifying the grammar needs to be altered for differ-
ent applications. There is no need to modify and recompile source code during
development once the fitness function for evaluating solutions is specified.

We begin in the next section with a brief summary of GE applications
and some thoughts about the future of this approach for solving complex
biological and biomedical problems. We then review in some detail in the
next two sections a bioinformatics application of GE for machine learning
in human genetics and a systems genomics application of GE for simulating
discrete dynamical systems.
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2 A Survey of Grammatical Evolution Approaches to
Bioinformatics and Systems Genomics

A search of the phrase “grammatical evolution” on PubMed revealed only 25
publications. In addition to the studies discussed below, several other appli-
cation of GE have been reported. For example, [28] used GE to do feature se-
lection and feature engineering to analyze electroencephalogram (EEG) data
from patients experiencing epileptic seizures. In this case, the GE performed
as well as other methods and provided the added benefit of the grammar for
rapid development and testing. As another example, [4] used GE to study the
behavior of insects. They found that GE could model self-organized task spe-
cialization using low-level behavioral primitives as building blocks for more
complex behaviors. As a third example, [7] used GE to model and predict
glucose concentrations in physiological systems. The results of this study
have important implications for predicting insulin need in diabetic patients
following carbohydrate intake. More recently, [3] used grammatical genetic
programming to evolve control heuristics for heterogeneous cellular networks.
Finally, GE has been used in the context of artificial life experiments. For ex-
ample, [1] used GE to study the ecology of mathematical expressions as a way
to study biological evolution. We also searched for “grammatical evolution”
and the keyword “bioinformatics” in the genetic programming bibliography
to capture publications in computer science conferences and other venues
not captured by PubMed. This search returned 13 publications nearly all of
which will be discussed below.

3 A Grammatical Evolution Approach to Neural
Network Analysis of Human Genetics Data

An important goal of human genetics and genetic epidemiology is to under-
stand the mapping relationship between interindividual variation in DNA
sequences, variation in environmental exposure, and variation in disease sus-
ceptibility. In other words, how do one or more changes in an individual’s
DNA sequence increase or decrease their risk of developing disease through
complex networks of biomolecules that are hierarchically organized, highly
interactive, and dependent on environmental exposures? Understanding the
role of genomic variation and environmental context in disease susceptibil-
ity is likely to improve diagnosis, prevention, and treatment. Success in this
important public-health endeavor will depend critically on the amount of non-
linearity in the mapping of genotype to phenotype and our ability to address
it. Here, we define as nonlinear an outcome that cannot be easily predicted by
the sum of the individual genetic markers. Nonlinearities can arise from phe-
nomena such as locus heterogeneity (i.e. different DNA sequence variations
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leading to the same phenotype), phenocopy (i.e. environmentally determined
phenotypes that don’t have a genetic basis), and the dependence of genotypic
effects on environmental exposure (i.e. gene-environment interactions or plas-
tic reaction norms) and genotypes at other loci (i.e. gene-gene interactions or
epistasis). The challenges associated with detecting each of these phenomena
in big data has been reviewed and discussed by [18] who call for an analytical
retooling to address these complexities.

The limitations of the linear model and other parametric statistical ap-
proaches for modeling nonlinear interactions have motivated the develop-
ment of data mining and machine learning methods. The advantage of these
computational approaches is that they make fewer assumptions about the
functional form of the model and the effects being modeled [16]. In other
words, data mining and machine learning methods are much more consistent
with the idea of letting the data tell us what the model is rather than forcing
the data to fit a preconceived notion of what a good model should be. Neu-
ral networks represent one machine learning approach that can complement
parametric statistical approaches such as linear regression. [23, 24] introduced
a GP approach to evolving neural networks (NN) for genetic analysis where
both the architecture and the weights of the NN are optimized. This was
later extended to include a grammar for generating NN models using GE
[21]. The GENN approach was shown to be more powerful than GPNN for
detecting and modeling gene-gene interactions in population-based studies of
human disease susceptibility. More recent work has incorporated GENN into
a pipeline [10] that includes multiple different data sources and that harnesses
the power of feature selection [12, 13] (see also [9, 29]).

[10], who compared grammatical evolution neural networks (GENN) with
grammatical evolution symbolic regression (GESR), noted that, “our results
suggest that GENN is better at correctly and accurately detecting genetic
models with no main effects ... In the simulated meta-dimensional data, Lasso
had higher detection power for the full model than both GENN and GESR.
However, when we used more powerful parameter settings, GENN was also
able to identify the full model consistently ... Lasso is considerably faster than
either GENN or GESR, so if computational resources are a major limitation,
this may be the optimal method. However, Lasso is not robust to models
with no main effects, so the overall benefit of a faster analysis would need to
be weighted accordingly ...”

We now briefly review a simple example grammar for generating NN mod-
els with GE. The root of the grammar picks a node with a logistic activation
function and transfer function with a mathematical function for combining
multiple features (addition, subtraction, multiplication, division) along with
some inputs that could be additional nodes and/or features with weights.
The GE operates by generating an array of bits where each set of bits en-
codes and integer value that is used to execute the grammar. For example,
an array of bits yielding integers [0,1,1,2] would generate a NN with a single
node with a logistic activation function, a subtraction transfer function, and
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a single input of feature number three modified by a randomly generated
weight. A slightly more complex NN example that could be generated from
this grammar with the right integer set is shown in Figure 1.

<root> ::= <node> <input>
<node> ::= <activation> <transfer>
<input> ::= <input> <input> 0

| <feature> <weight> 1
| <node> <input> 2

<activation> ::= logistic 0
| linear 1

<transfer> ::= addition 0
| subtraction 1
| multiplication 2
| division 3

<feature> ::= feature 1 0
| feature 2 1
| feature 3 2

<weight> ::= random number

Fig. 1 A GE-evolved neural network with logistic activation nodes, arithmetic trans-
fer functions, numeric weights, and feature inputs.

Once a grammar is specified a genetic algorithm or any other optimization
approach that operates on an array of bits can be applied. Neural networks
constructed and optimized in this manner provide tremendous flexibility for
modeling complex patterns in big data. A key question is whether these
methods could be extended to deep learning or whether smaller networks
optimized using GE could approximate the performance of much larger NN.
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4 A Grammatical Evolution Approach to Systems
Genomics Modeling and Simulation

Understanding how interindividual differences in DNA sequences map onto
interindividual differences in phenotypes is a central focus of human genetics.
Genotypes contribute to the expression of phenotypes through a hierarchical
network of biochemical, metabolic, and physiological systems. The availabil-
ity of biological information at all levels in the hierarchical mapping between
genotype and phenotype has given rise to a new field called systems biology.
One goal of systems biology is to develop a bioinformatics framework for inte-
grating multiple levels of biological information through the development of
theory and tools that can be used for mathematical modeling and simulation
[11]. The promise of both human genetics and systems biology is improved
human health through the improvement of disease diagnosis, prevention, and
treatment. We illustrate here the use of GE to discover and optimize Petri
net models of discrete dynamical systems.

Petri nets are a type of directed graph that can be used to model dis-
crete dynamical systems [2]. [5] demonstrated that Petri nets could be used
to model molecular interactions in biochemical systems. The core Petri net
consists of two different types of nodes: places and transitions. Using the
biochemical systems analogy of [5], places represent molecular species. Each
place has a certain number of tokens that represent the number of molecules
for that particular molecular species. A transition is analogous to a molecular
or chemical reaction and is said to fire when it acquires tokens from a source
place and, after a possible delay, deposits tokens in a destination place. To-
kens travel from a place to a transition or from a transition to a place via arcs
with specific weights or bandwidths. While the number of tokens transferred
from place to transition to place is determined by the arc weights (or band-
widths), the rate at which the tokens are transferred is determined by the
delay associated with the transition. Transition behavior is also constrained
by the weights of the source and destination arcs. A transition will only fire
if two preconditions are met: 1) if the source place can completely supply the
capacity of the source arc and, 2) if the destination place has the capacity
available to store the number of tokens provided by the full weight of the
destination arc. Transitions without an input arc act as if they are connected
to a limitless supply of tokens. Similarly, transitions without an output arc
can consume a limitless supply of tokens. The firing rate of the transition can
be immediate, delayed deterministically, or delayed stochastically, depending
on the complexity needed. The fundamental behavior of a Petri net can be
controlled by varying the maximum number of tokens a place can hold, the
weight of each arc, and the firing rates of the transitions.

[19, 20] developed a BNF grammar for Petri nets in BNF. For the Petri
net models, the terminal set includes, for example, the basic building blocks
of a Petri net: places, arcs, and transitions. The nonterminal set includes
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the names of production rules that construct the Petri net. For example,
a nonterminal might name a production rule for determining whether an
arc has weights that are fixed or genotype-dependent. We show below the
production rule that was executed to begin the model building process for
the study by [20].

<root> ::= <pick_a_gene> <pick_a_gene> <pick_a_gene>
<net_iterations> <expr> <transition> <transition> <place_noarc>

When the initial <root> production rule is executed, a single Petri net
place with no entering or exiting arc (i.e. <place noarc>) is selected and a
transition leading into or out of that place is selected. The arc connecting the
transition and place can be dependent on the genotypes of the genes selected
by <pick a gene>. The nonterminal <expr> is a function that allows the
Petri net to grow. The production rule for <expr> is shown below.

<expr> ::= <expr> <expr> 0
| <arc> 1
| <transition> 2
| <place> 3

Here, the selection of one of the four nonterminals (0, 1, 2, or 3) on the
right-hand side of the production rule is determined by a combination of bits
in the genetic algorithm.

The base or minimum Petri net that is constructed using the <root>
production rule consists of a single place, two transitions, and an arc that
connects each transition to the place. Multiple calls to the production rule
<expr> by the genetic algorithm chromosome can build any connected Petri
net. In addition, the number of times the Petri net is to be iterated is selected
with the nonterminal <net iterations>. Many other production rules define
the arc weights, the genotype-dependent arcs and transitions, the number
of initial tokens in a place, the place capacity, etc. All decisions made in
the building of the Petri net model are made by each subsequent bit or
combination of bits in the genetic algorithm chromosome.

Figure 2 shows an example Petri net constructed by [20]. This model was
evolved using GE to map genotypic variation across different genes to disease
susceptibility determined by levels of protein product. Here, the GE evolved
different arcs (A) connecting transitions (T) to molecular species (P) to be
dependent on different genotypic values at a particular gene. Thus, the GE
was able to evolve both the structure of the network and the parameter
settings to reach some target behavior.
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Fig. 2 A GE-evolved Petri net with different arcs (A) connecting transitions (T) to
molecular species or places (P). Each arc, transition, and place has several different
parameters evolved by the GE that govern its behavior.

5 The Future of Grammatical Evolution Approaches to
Bioinformatics and Systems Genomics

The potential impact of evolutionary computation in the biological and
biomedical sciences is enormous [27]. Grammatical evolution has a place in
this future given its flexible grammar-based method for representing solutions
to complex problems. We list here several computational challenges that will
need to be addressed for application of GE to biological problems. We then
end with some of the hot new biological problems that GE might be useful
for.

The most important challenge of using GE or other similar approaches is
the inherent complexity of biological systems. Biological systems are driven by
molecular, physiological, anatomical, environmental, and social interactions.
Layer on top of this big data from technologies such as high-throughput DNA
sequencing and the modeling challenges become manyfold more significant.
No computational modeling approach is immune to these challenges. Here
are a few research topics that will need to be explored in the coming years.
First, what is the best way to adapt GE to handle diverse data types coming
from different sources and technologies? [12, 13] have started to address this
with the GENN system described above. Second, what is the best way to
integrate expert knowledge into GE to help identify and exploit good build-
ing blocks? This is important to provide the GE with some direction in an
effectively infinite search space. Fortunately, there are many sources of expert
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knowledge for biological systems including literature sources such as PubMed
and biological knowledge bases such as the hetionet database that integrates
29 different sources of information about genes, diseases, drugs, pathways,
anatomies, processes, etc. [8]. Third, what is the best way to parallelize GE
for use in cluster or cloud computing technology? Fourth, what is the best
way to store GE results and to create knowledge from those results that can
in turn be used by the GE in future runs? Fifth, what is the best way to
perform multiobjective optimization? This is important for biological prob-
lems where there are often multiple fitness objectives. For example, using
GE to identify genetic risk factor for disease could benefit from rewarding
models for the drugability of the genes it is finding in addition to measures
such as classification accuracy. This helps the GE reward models with genes
that are actionable in addition to being predictive. Finally, what is the best
way to interpret GE models and results? This is perhaps the most important
challenge because at the end of the day biologists want actionable results.
They want to be able to learn something from a GE result that will make it
easy for them to design a validation experiment. This is not easy and is an
area where many machine learning and artificial intelligence efforts fall short.
If we want to solve the world’s most complex problems, we need to keep in
mind the ability to derive impact from those solutions. This is something the
deep learning community is struggling with.

Regarding the interpretability issue it is worth mentioning the work of [30].
They developed a system dubbed G-PEA (GP Post-Evolutionary Analysis),
for use with tree-based GP. First, one defines a functionality-based similarity
score between expressions, which G-PEA uses to find subtrees that carry out
similar semantic tasks. Then, the system clusters similar sub-expressions from
a number of independently-evolved fit solutions, thus identifying important
semantic building blocks ensconced within the hard-to-read GP trees. These
blocks help identify the important parts of the evolved solutions and are a
crucial step in understanding how they work. Though developed within the
context of tree-based GP, ideas from G-PEA may well transfer to GE.

An emergent, important theme in artificial intelligence is that of usability
and accessibility to a person not versed with machine learning. Towards this
end [22] have developed PennAI, an accessible artificial intelligence whose
ultimate goal is to deliver an open-source, user-friendly AI system that is
specialized for machine learning analysis of complex data in the biomedical
and healthcare domains. It would be interesting to examine the use of GE
within the context of PennAI.

The biological and biomedical sciences are changing rapidly. We highlight
here a few hot areas where GE could be focused in the coming years. First,
cell biology and genomics continues to be transformed by high-throughput
technologies such as DNA sequencing, mass spectrometry, and imaging. Each
of these technologies generates massive amounts of data about different
molecules and cellular processes. A central challenge in bioinformatics is the
integration of these data to facilitate new scientific questions. Understanding
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how different molecular and cellular levels interact to influence a biologi-
cal process or outcome is a place where grammatical evolution can have a
significant impact given its inherent flexibility for program or solution rep-
resentation. Second, mobile devices and remote sensors are starting to have
a big impact on the biological and biomedical sciences. Remote sensors can
track animals and plants in ecological settings while wearable devices can
measure physiology and behavior of human subjects in their natural environ-
ment. These new technologies generate massive amounts of heterogeneous
data that often have a time component adding an additional dimension of
complexity. This is an area that could greatly benefit from GE. Finally, elec-
tronic health records (EHR) have exploded over the last several years for
capturing, storing, integrating, and managing health data. There is an un-
precedented opportunity to develop and apply methods such as GE for iden-
tifying patterns of health measures that are predictive of disease outcomes
and drug response, for example. This is an emerging area that needs ma-
chine learning and artificial intelligence strategies for improving health and
healthcare. An example application is the use of GE for real-time monitor-
ing of patient data synced with clinical decision support systems that can
provide instantaneous alerts to clinicians about patient characteristics that
are urgent. Some of the technical challenges mentioned above will need to be
solved for GE use in these domains to become a reality.
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