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2 Threshold Hamming Networks2.1 IntroductionNeural networks are frequently employed as associative memories for pattern classi�cation.The network typically classi�es input patterns into one of several memory patterns it hasstored, representing the various classes. A conventional measure used in the context ofbinary vectors is the Hamming distance, de�ned as the number of bits in which the patternvectors di�er. The Hamming network (HN) calculates the Hamming distance betweenthe input pattern and each memory pattern, and selects the memory with the smallestHamming distance, which is declared `the winner'. This network is the most straightforwardassociative memory. Originally presented in [3, 4, 5], it has received renewed attention inrecent years[6, 7].The framework we analyze is an HN storing m + 1 memory patterns �1; �2; : : : ; �m+1,each being an n-dimensional binary vector with entries �1. The (m+ 1)n memory entriesare independent with equally likely �1 values. The input pattern x is an n-dimensionalvector of �1's, randomly generated as a distorted version of one of the memory patterns,(say �m+1) such that P (xi = �im+1) = �, � > 0:5. � is the initial similarity between theinput pattern and the correct memory pattern �m+1.A typical HN, sketched in �gure 1, is composed of two subnets:1. The similarity subnet, consisting of an n-neuron input layer and an m-neuron memorylayer. Each memory layer neuron i is connected to all n input layer neurons.2. The winner-take-all (WTA) subnet, consisting of a fully connectedm-neuron topology.A memory pattern �i is stored in the network by letting the values of the connectionsbetween memory neuron i and the input-layer neurons j (j = 1; : : : ; n) beaij = �j i (1)The values of the weights Wij in the WTA subnet are chosen so that for eachi; j = 1; 2; : : : ; m+ 1 Wii = 1 ; �1=m < Wij < 0 for i 6= j : (2)1
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WTA SubnetFigure 1: A Hamming netAfter an input pattern x is presented on the input layer, the HN computation proceedsin two steps, each performed in a di�erent subnet:1. Each memory neuron i (1 � i � m+1) in the similarity subnet computes its similarityZi with the input patternZi = 12( nXj=1aijxj + n) = 12( nXj=1 �ijxj + n) : (3)2. Each memory-neuron i in the similarity subnet transfers its Zi value to its duplicatein the WTA network (via a single `identity' connection of magnitude 1). The WTAnetwork then �nds the pattern j with the maximal similarity: each neuron i in theWTA subnet sets its initial value yi(0) = Zi=n, and then computes yi(t) iteratively(t = 1; 2; : : :) by yi(t) = �00@Xj Wijyj(t� 1)1A (4)where �T is the threshold logic function�T (u) = ( u if u � T0 otherwise (5)2



These iterations are repeated until the activity levels of the WTA neurons do notchange any more, and the only memory neuron remaining active (i.e., with a positiveyi) is declared the winner. It is straightforward to see that given a winner memoryneuron i, its corresponding memory pattern �i can be retrieved on the input layerusing the weights aij . The network's performance level is the probability that thewinning memory will be the correct one, m+ 1.Since the computation of the similarity subnet is performed in a single iteration, thetime complexity of the network is primarily due to the time required for the convergenceof the WTA subnet. In a recent paper [8], the worst-case convergence time of the standardWTA network described above was shown to be of the order of �(m ln(mn)) iterations.This time complexity can be very large, as simple entropy considerations show that thecapacity of HNs is approximately given bym � q2�n�(1� �)enG(�) (6)where G(�) = ln 2 + � ln�+ (1� �) ln(1� �) : (7)As an example, if � = 0:7 (70% correct entries) and n = 400, the memory capacity ism � 107, resulting in a large overall running time of the corresponding HN.We present in this article a detailed analysis of the performance of a HN classifyingdistorted memory patterns. Based on our analysis, we show that it is possible to completelydiscard the WTA subnet by letting each memory neuron i in the similarity subnet operatethe threshold logic function �T on its calculated similarityZi. If the value of the threshold Tis properly tuned, only the neuron standing for the `correct' memory class will be activated.The resulting Threshold Hamming Network (THN) will perform correctly (with probabilityapproaching 1) in a single iteration. Thereafter, we develop a close approximation to theerror probabilities of the HN and the THN. We �nd the optimal threshold of the THN andcompare its performance with that of the original HN.
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2.2 The Threshold Hamming networkWe �rst present some sharp approximations to the binomial distribution (proofs of theseLemmas are given in [1]).Lemma 1.Let X � Bin(n; p). If xn are integers such that limn!1 xnn = � 2 (p; 1), thenP (X = xn) � 1p2�n�(1� �) expf�n[� ln �p + (1� �) ln 1� �1� p ]g (8)and P (X � xn) � 1� p(1� p� )p2�n�(1� �) expf�n[� ln �p + (1� �) ln 1� �1� p ]g (9)in the sense that the ratio between LHS and RHS converges to 1 as n!1. For the specialcase p = 12 , let G(�) = ln 2 + � ln� + (1� �) ln(1� �), thenP (X = xn) � expf�nG(�)gp2�n�(1� �) (10)P (X � xn) � expf�nG(�)g(2� 1� )p2�n�(1� �) (11)The rationale for the next two lemmas will be intuitively clear interpreting Xi (1 � i �m) as similarity between the initial pattern and (wrong) memory i, and Y as similaritywith the correct memorym+1. If we use xn as threshold, the decision will be correct if allXi are below xn and Y is above xn. We will expand on this point later.Lemma 2.Let Xi � Bin(n; 12) be independent,  2 (0; 1), and let xn be as in Lemma 1. Ifm = (2� 1� )q2�n�(1� �)�ln 1� enG(�); (12)then P (max(X1; X2; � � � ; Xm) < xn) �  (13)Lemma 3.Let Y � Bin(n; �) with � > 12 , let (Xi) and  be as in Lemma 2, and let � 2 (0; 1). Let xnbe the integer closest to n�, where� = � �s�(1� �)n z� � 12n (14)and z� is the � - quantile of the standard normal distribution, i.e.,� = 1p2� Z z��1 e�x2=2dx (15)4



Then, if Y and (Xi) are independentP (max(X1; X2; � � � ; Xm) < Y ) � P (max(X1; X2; � � � ; Xm) < xn � Y ) (16)and the RHS of (16) converges to � for m as in (12) and n!1.Bearing these three lemmas, recall that the similarities (Z1; Z2; : : : ; Zm; Zm+1) are in-dependent. If Max(Z1; Z2; : : : ; Zm; Zm+1) = Zj for a single memory neuron j, the conven-tional HN declares �j the `winning pattern'. Thus, the probability of error is the probabilityof a tie or of getting j 6= m+ 1. Let Xj be the similarity between the input vector and thej 0th memory pattern (1 � j � m), and let Y be the similarity with the `correct' memorypattern �m+1. Clearly, Xj is Bin(n; 12)-distributed, and Y is Bin(n; �)-distributed. Wenow propose a THN having a threshold value xn: As in the HN, each memory neuron in thesimilarity subnet computes its similarity with the input pattern. But now, each memoryneuron i whose similarity Xi is at least xn declares itself `the winner'. There is no WTAsubnet. An error may arise if there is a multiplicity of memory neurons declaring themselves`the winner', there is no winning pattern, or a wrong single winner. The threshold xn ischosen so as to minimize the error probability.To build a THN with probability of error not exceeding �, observe that expression (13)gives the probability  that no wrong pattern declares itself the winner, while expression (15)gives the probability � that the correct patternm+1 declares itself the winner. The productof these two terms is the probability of correct decision (i.e., the performance level) of theTHN, which should be at least 1��. Given n; � and �, a THN may be constructed by simplychoosing even error probabilities, i.e.,  = � = p1� �. Then, we determine � by (14), let xnbe the integer closest to n�, and determine the memory capacity m using (12). If m; � and� are given, a THN may be constructed in a similar manner, since it is easy to determinen from m and � by iterative procedures. Undoubtedly, the HN is superior to the THN, asexplicitly shown by inequality (16). However, as we shall see, the performance loss using theTHN can be recovered by a moderate increase in the network size n, while time complexityis drastically reduced by the abolition of the WTA subnet. In the next subsection we derivea more e�cient choice of xn (with uneven error probabilities), which yields a THN withoptimal performance. 5



2.3 The Hamming Network and an Optimal Threshold Hamming Net-workTo �nd an optimal THN, we replace the ad-hoc choice of  = � = p1� � (among all pairs(; �) for which � = 1 � �) by the choice of the threshold xn that maximizes the storagecapacity m = m(n; �; �). We also compute the error probability �(m;n; �) of the HN forarbitrary m;n and �, and compare it with �, the error probability of the THN.Let � (�) denote the standard normal density (cumulative distribution function), andlet r = �=(1� �) denote the corresponding failure rate function. Then,Lemma 4.The optimal proportion � between the two error probabilities satis�es� = 1� 1� � � r(z�)pn�(1� �) ln �1�� : (17)Proof:Let M = max(X1; X2; � � � ; Xm), and let Y denote the similarity with the `correct' memorypattern, as before. We have seen that P (M < x) � expf�m expf�nG(�)gp2�n�(1��)(2� 1� )g. SinceG0(�) = ln �(1��) , then by Taylor expansionP (M < x) = P (M < x0 + x� x0) � expf�mexpf�n[G(� + x�x0n )]gp2�n�(1� �)(2� 1� ) g �expf�mexpf�nG(�)� (x� x0) ln �(1��)gp2�n�(1� �)(2� 1� ) g = (P (M < x0))( �1�� )x0�x = ( �1�� )x0�x (18)(in accordance with Gnedenko extreme-value distribution of type 1 [9]). Similarly,P (Y < x) = expflnP (Y < x0 + x� x0)g = expflnP  Z < x0 � n�pn�(1� �) + x� x0pn�(1� �)!g� P (Y < x0) expf �(z)��(z) x � x0pn�(1� �)g = (1� �) expfr(z) x � x0pn�(1� �)g(19)where �� = 1 � �. The probability of correct recognition using a threshold x can now beexpressed asP (M < x)P (Y � x) � ( �1�� )x0�x(1� (1� �) expfr(z) x� x0pn�(1� �)g) (20)We di�erentiate expression (20) with respect to x0 � x, and equate the derivative atx = x0 to zero, to obtain the relation between  and � that yields the optimal threshold,6



i.e., that which maximizes the probability of correct recognition. This yields = expf� r(z)pn�(1� �) ln �1�� 1� �� g (21)We now approximate1�  � � ln � r(z)pn�(1� �) ln �1�� (1� �) (22)and thus the optimal proportion between the two error probabilities is� = 1� 1� � � r(z)pn�(1� �) ln �1�� : (23)Based on Lemma 4, if the desired probability of error is �, we choose = 1� ��1 + � ; � = 1� �(1 + �) : (24)We start with  = � = p1� �, obtain � from (14) and � from (17), recompute � and from (24) and iterate. The limiting values of � and  in this iterative process give themaximal capacity m (by 12) and threshold xn (as the integer closest to n�).We now compute the error probability �(m;n; �) of the original HN (with the WTAsubnet) for arbitrary m;n and �, and compare it with �.Lemma 5.For arbitrary n; � and �, let m; �; ; � and � be as calculated above. Then, the probabilityof error �(m;n; �) of the HN satis�es�(m;n; �) � �(1� �)1� e�� ln �1��� ln �1�� (��)�(1 + �)1+� � (25)where �(t) = Z 10 xt�1e�xdx (26)is the Gamma function.Proof:P (Y �M) =Xx P (Y � x)P (M = x) =Xx P (Y � x)[P (M < x+ 1)� P (M < x)] �Xx P (Y � x0)e��(x0�x) ln �1�� [(P (M < x0))( �1�� )x0�x�1 � (P (M < x0))( �1�� )x0�x ] (27)7



We now approximate this sum by the integral of the summand: let b = �1�� and c = � ln �1�� .We have seen that the probability of incorrect performance of the WTA subnet is equal toP (Y �M) �Xx P (Y � x0)e�c(x0�x)[(P (M < x0))b(x0�x�1) � (P (M < x0))b(x0�x) ] �(1� �) Z 1�1(by�1 � by)e�cydy (28)Now we transform variables t = by ln 1 to get the integral in the forme�c(1� �) Z 10 (e�t � e�bt)( tln 1 ) �cln b dtt ln b = K1 Z 10 (e�t � e�bt)t�(1+K2)dt (29)This is the convergent di�erence between two divergent Gamma function integrals. Weperform integration by parts to obtain a representation as an integral with t�K2 instead oft�(1+K2) in the integrand. For 0 � K2 < 1, the corresponding integral converges. The �nalresult is then (1� �)1� e�cc �(1� cln b)(ln 1 ) cln b (30)Hence, we have P (Y �M) � (1� �)1� e�� ln �1��� ln �1�� �(1� �)(ln 1 )� ��(1� �)1� e�� ln �1��� ln �1�� (��)�(1 + �)1+� � (31)as claimed. Expression (25) is presented as K(�; �; �) � �, where K(�; �; �) is the factor (� 1)by which the probability of error � of the THN should be multiplied in order to get theprobability of error of the original HN with the WTA subnet. For small �, K is close to 1.However, as will be seen in the next subsection, K is typically smaller.2.4 Numerical resultsWe examined the performance of the HN and the THN via simulations (of 10000 runs each),and compared their error rates with those expected in accordance with our calculations.Due to its probabilistic characterization, the THN may perform reasonably only abovesome minimal size of n (depending on � and m). The results for such a `minimal' network,indicating the percent of errors at various m values, are presented in table 1. As evident,the experimental results corroborate the accuracy of the THN and HN calculations alreadyat this relatively small network storing a very small number of memories in relation to itscapacity. The performance of the THN is considerably worse than that of the corresponding8



HN. However, as shown in table 2, an increase of 50% in the input layer size n yields a THNwhich performs about as well as the previous HN.m 100 200 400 800 1600 3200(Threshold) (99) (100) (100) (101) (102) (102)HN: predicted 0.031 0.05 0.1 0.15 0.25 0.41experimental 0.02 0.04 0.15 0.10 0.19 0.47THN: predicted 1.1 1.47 1.96 2.57 3.33 4.27experimental 1.24 1.46 2.27 2.31 3.08 4.25Table 1: Percentage of error. n = 150, � = 0:75m 100 200 400 800 1600 3200(Threshold) (147) (147) (148) (149) (149) (150)HN: predicted 0.0002 0.0003 0.0006 0.001 0.002 0.0036experimental 0 0 0 0 0 0.01THN: predicted 0.06 0.09 0.12 0.17 0.22 0.3experimental 0.09 0.09 0.14 0.17 0.13 0.29Table 2: Percentage of error. n = 225, � = 0:75Figure 2 presents the results of theoretical calculations of the HN and THN error prob-abilities, for various values of � and m as a function of n. Note the large di�erence in thememory capacity as � varies. For graphical convenience, we have plotted log 1� versus n.As seen above, a fair `rule of thumb' is that a THN with n0 � 1:5n neurons in the inputlayer performs as well as a HN with n such neurons. To see this, simply pass a horizontalline through any error rate value �, and observe the ratio between n and n0 obtained at itsintersection with the corresponding � vs: n plots.
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Figure 2: Probability of error as a function of network size: three networks are depicted,displaying the performance at various values of � and m.10



To examine the sensitivity of the THN network to threshold variation, we have �xed� = 0:7, n = 210, m = 825, and let the threshold vary between 132 and 138. As we can seein �gure 3, the threshold value 135 is optimal, but the performance with threshold values of134 and 136 is practically identical. The magnitude of the two error types varies considerablywith the threshold value, but this variation has no e�ect on the overall performance nearthe optimum, and these two error probabilities might as well be taken equal to each other.
01234567
8910
132 133 134 135 136 137 138% error threshold
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Figure 3: Threshold sensitivity of the THN (� = 0:7, n = 210, m = 825).2.5 Final Remarks:In this section we analyzed in detail the performance of a HN and THN classifying inputsthat are distorted versions of the stored memory patterns (in contrast to randomly selectedpatterns). Given an initial input similarity �, a desired storage capacitym and performancelevel 1� �, we described how to compute the minimal THN size n required to achieve thisperformance. As we have seen, the threshold xn is determined as a function of the initialinput similarity �. Obviously, however, the THN it de�nes will achieve even higher perfor-mance when presented with input patterns having initial similarity greater than �. It wasshown that although the THN performs worse than its counterpart HN, an approximately50% increase in the THN input layer size is su�cient to fully compensate for that. Asthe WTA network of the HN may be implemented with only O(3m) connections [8], boththe THN and the HN require O(mn) connections. Hence, to perform as well as a givenHN, the corresponding THN requires � 50% more connections, but the O(m ln(mn)) timecomplexity of the HN is drastically reduced to the O(1) time complexity of the THN.11



3 Two-Iteration Optimal Signaling in Hop�eld Networks3.1 IntroductionIt is well known that a given cortical neuron can respond with a di�erent �ring patternfor the same synaptic input, depending on its �ring history and on the e�ects of modu-latory transmitters (see [10, 11] for a review). Working within the convenient frameworkof Hop�eld-like attractor neural networks (ANN) [12, 13], but motivated by the history-dependent nature of neuronal �ring, we continue our previous investigation of the two-iteration performance of feedback neural networks [14] (henceforth, M & R). We now ex-tend our analysis to the study of continuous input/output signal functions which governthe �ring rate of the neuron (such as the conventional sigmoidal function [15, 16]). Thenotion of a synchronous instantaneous `iteration' is now viewed as an abstraction of theoverall dynamics for some short length of time, during which the �ring rate does not changesigni�cantly. We analyze the performance of the network after two such iterations, or in-termediate times spans, a period su�ciently long for some signi�cant neural information tobe fed back within the network, but shorter than those the network may require for fallinginto an attractor. However, as demonstrated in subsection 3.6, the performance of history-dependent ANNs after two iterations is su�ciently high compared with that of memoryless(history-independent) models, that the analysis of two iterations becomes a viable end inits own right.Examining this general family of signal functions, we now search for the computa-tionally most e�cient history-dependent neuronal signal (�ring) function, and study itsperformance. We derive the optimal analog signal function, having the slanted sigmoidalform illustrated in �gure 4a, and show that it signi�cantly improves performance, both inrelation to memoryless dynamics and versus the performance obtained with the previousdichotomous signaling. The optimal signal function is obtained by subtracting from theconventional sigmoid signal function some multiple of the current input �eld. As shown in�gure 4a (or in �gure 4b, plotting the discretized version of the optimal signal function) theneuron's signal may have a sign opposite to the one it believes in. [17, 18] and [19] have alsoobserved that the capacity of ANNs is signi�cantly improved by using nonmonotone analogsignal functions. They studied the limit (after in�nitely many iterations) under dynamicsusing a nonmonotone function of the current input �eld, similar in form to the slantedsigmoid. The Bayesian framework we work in provides, for the �rst time, a clear intuitive12



account of the non-monotone form and the seemingly bizarre sign reversal behavior. Aswe shall see, the slanted sigmoidal form of the optimal signal function is mainly a result ofcollective cooperation between neurons, whose `common goal' is to maximize the network'sperformance. It is rather striking that the resulting slanted sigmoid endows the analyticalmodel with some properties characteristic of cortical neurons' �ring; this `collectively opti-mal' function may be hard-wired into the cellular biophysical mechanisms determining eachneuron's �ring function.(a) (b)
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Figure 4: (a) A typical plot of the slanted sigmoid, Network parameters are N = 5000,K = 3000, n1 = 200 and m = 50. (b) A sketch of its discretized version.3.2 The modelOur framework is an ANN storing m + 1 memory patterns �1; �2; : : : ; �m+1, each an N-dimensional vector. The network is composed of N neurons, each of which is randomlyconnected to K other neurons. The (m+1)N memory entries are independent with equallylikely �1 values. The initial pattern X , synchronously signaled by L(� N) initially activeneurons, is a vector of �1's, randomly generated from one of the memory patterns (say� = �m+1) such that P (Xi = �i) = 1+�2 for each of the L initially active neurons andP (Xi = �i) = 1+�2 for each initially quiescent (non-active) neuron. Although �; � 2 [0; 1)are arbitrary, it is useful to think of � as being 0:5 (corresponding to an initial similarity of75%) and of � as being zero - a quiescent neuron has no prior preference for any given sign.13



Let �1 = m=n1 denote the initial memory load, where n1 = LK=N is the average numberof signals received by each neuron.We follow a Bayesian approach under which the neuron's signaling and activation deci-sions are based on the a-posteriori probabilities assigned to its two possible true memorystates, �1. We distinguish between input �elds that model incoming spikes, and generalized�elds that model history-dependent, adaptive post-synaptic potentials. Clearly, the priorprobability that neuron i has memory state +1 is�i(0) = P (�i = 1jXi; Ii) = 8>>><>>>: 1+�2 if Xi = 1, Ii = 11��2 if Xi = �1, Ii = 11+�2 if Xi = 1, Ii = 01��2 if Xi = �1; Ii = 0 (32)= 1 + (�Ii + �(1� Ii))Xi2 = 11 + e�2gi(0)where Ii = 0; 1 indicates whether neuron i has been active (i.e., transmitted a signal) in the�rst iteration, and the generalized �eld gi(0) is given bygi(0) = ( g(�)Xi if i is activeg(�)Xi if i is quiescent : (33)where g(t) = arctanh(t) = 12 log 1 + t1� t ; 0 � t < 1 : (34)We also de�ne the prior belief that neuron i has memory state +1Oi(0) = �i(0) � (1� �i(0)) = 2�i(0) � 1 = tanh(gi(0)) (35)whose possible values are �� and �� (The belief is simply a rescaling of the probabilityfrom the [0; 1] interval to [�1;+1]).The input �eld observed by neuron i as a result of the initial activity isfi(1) = 1n1 NXj=1WijIijIjXj (36)where Iij = 0; 1 indicates whether a connection exists from neuron j to neuron i and Wijdenotes its magnitude, given by the Hop�eld prescriptionWij = m+1X�=1 ��i��j ; Wii = 0: (37)As a result of observing the input �eld fi(1), which is approximately normally distributed(given �i; Xi and Ii) with mean and varianceE(fi(1)j�i; Xi; Ii) = ��i (38)14



V ar(fi(1)j�i; Xi; Ii) = �1 ; (39)neuron i changes its opinion about f�i = 1g from �i(0) to the posterior probability�i(1) = P ��i = 1jXi; Ii; fi(1)� = 11 + e�2gi(1) ; (40)with a corresponding posterior belief Oi(1) = tanh(gi(1)), where gi(1) is conveniently ex-pressed as an additive generalized �eld (see Lemma 1(II) in M & R)gi(1) = gi(0) + ��1 fi(1) : (41)We now get to the second iteration, in which, as in the �rst iteration, some of theneurons become active and signal to the network. Unlike the �rst iteration, in whichinitially active neurons had independent beliefs of equal strength and simply signaled theirstates in the initial pattern, the preamble to the second iteration �nds neuron i in possessionof a personal history (Xi; Ii; f (1)i ), as a function of which the neuron has to determine thesignal to transmit to the network. While the history-independent Hop�eld dynamics choosesign(f (1)i ) as this signal, we model the signal function as h(gi(1); Xi; Ii). This seems likefour di�erent functions of gi(1). However, by symmetry, h(gi(1);+1; Ii) should be equalto �h(�gi(1);�1; Ii). Hence, we only have two functions of gi(1) to de�ne, h1(:) for thesignals of the initially active neurons and h0(:) for the quiescent ones. For mathematicalconvenience we would like to insert into these functions random variables with unit variance.By (39) and (41), the conditional variance V ar(gi(1)j�i; Xi; Ii) is (�=�1)2�1 = (�=p�1)2. Wethus de�ne ! = �=p�1 and leth(gi(1); Xi; Ii) = XihIi(Xigi(1)=!) : (42)The �eld observed by neuron i following the second iteration (with n2 updating neuronsper neuron) is fi(2) = 1n2 NXj=1WijIijh(gj(1); Xj; Ij) ; (43)on the basis of which neuron i computes its posterior probability�i(2) = P (�i = 1jXi; Ii; fi(1); fi(2)) (44)and corresponding posterior belief Oi(2) = 2�i(2) � 1, which will be expressed in subsection4.3 as tanh(gi(2)). 15



In this paper we stop at the above two information-exchange iterations and let eachneuron express its �nal choice of sign asXi(2) = sign(Oi(2)) : (45)The performance of the network is measured by the �nal similaritySf = P (Xi(2)) = 1 + 1N PNj=1Xj(2)�j2 (46)(where the last equality holds asymptotically).Our �rst task is to present (as simple as possible) an expression for the performanceunder arbitrary architecture and activity parameters, for general signal functions h0 andh1. Then, using this expression, our main goal is to �nd the best choice of signal functionswhich maximize the performance attained. We �nd these functions when there are either norestrictions on their range set or they are restricted to the values f�1; 0; 1g, and calculatethe performance achieved in Gaussian, random and multi-layer patterns of connectivity.The optimal choice will be shown to be the slanted sigmoidh(gi(1); Xi; Ii) = Oi(1) � cfi(1) (47)for some c in (0; 1). We present explicitly all formulas, providing their derivation in [2].3.3 Rationale for nonmonotone Bayesian signaling3.3.1 Non-monotonicityThe common Hop�eld convention is to have neuron i signal sign(fi(1)). Another possibility,studied in M & R, is to signal the preferred sign only if this preference is strong enough,otherwise remain silent. However, an even better performance was seen to be achieved bycounterintuitive signals which are not monotone in gi(1) [17, 19, 14]. In fact, precisely thoseneurons that are most convinced of their signs should signal the sign opposite to the onethey so strongly believe in! We would like to o�er now an intuitive explanation for thisseeming pathology, and proceed later to the mathematics leading to it.In the initial pattern, the di�erent entries Xi and Xj are conditionally independentgiven �i and �j . This is not the case for the input �elds fi(1) and fj (1), whose correlationis proportional to the synaptic weight Wij (M & R). For concreteness, let � = 0:5 and�1 = 0:25 and suppose that neuron i has observed an input �eld fi(1) = 3. Neuron i nowknows that either its true memory state is �i = +1 in which case the `noise' in the input16



�eld is 3� � = 2:5 (i.e., �ve standard deviations above the mean) or its true memory stateis �i = �1 and the noise is 3 + � = 3:5 (or seven standard deviations above the mean). Ina Gaussian distribution, deviations of �ve or seven standard deviations are very unusual,but seven is so much more unusual than �ve, that neuron i is practically convinced that itstrue state is +1. However, neuron i knows that its input �eld fi(1) is grossly inicted withnoise and since the input �eld fj (1) of neuron j is correlated with its own, neuron i wouldwant to warn neuron j that its input �eld has unusual noise too and should not be believedon face value. Neuron i, a good student of Regression Analysis, wants to tell neuron j,without knowing the weight Wij , to subtract from its �eld a multiple of Wijfi(1). This isaccomplished, to the simultaneous bene�t of all neurons j, by signaling a multiple of �fi(1).We see that neuron i, out of `purely altruistic traits', has a conict between the positive actof signaling its assessed true sign and the negative act of signaling the opposite as a meansof correcting the �elds of its peers. It is not surprising that this inhibitory behavior is thedominant one only when �eld values are strong enough.3.3.2 The Potential of Bayesian UpdatingNeuron i starts with a prior probability �i(0) = P (�i = +1) and after observing input �eldsfi(1); fi(2); : : : ; fi(t) computes the posterior probability�i(t) = P ��i = +1jfi(1); fi(2); : : : ; fi(t)� (48)It now signals hi(t) = h(t) ��i(0); fi(1); fi(2); : : : ; fi(t)� (49)and computes the new input �eldfi(t+1) =Xj WijIijhj (t) : (50)This description proceeds inductively.The stochastic process �i(0); �i(1); �i(2); : : : is of the formXt = E(ZjY1; Y2; : : : ; Yt)where Z = If�i=+1g is a (bounded) random variable and the Y-process adds in every stagesome more information to the data available earlier. Such a process is termed a Martingalein Probability theory. The following facts are well known, the �rst being actually the usualde�nition 17



1. For all t, E(Xt+1jY1; Y2; : : : ; Yt) = Xt a:s:(where a.s. means `almost surely' or `except for an event with probability zero'.)2. In particular, E(Xt) is the same for all t.3. If the �nite interval [a; b] is such that P (a � Xt � b) = 1 for all t and 	 is a convexfunction on [a; b], then for all t,E(	(Xt+1)jY1; Y2; : : : ; Yt) � 	(Xt) a:s:4. In particular, for all t, E(	(Xt)) � E(	(Xt+1))5. (A special case of Doob's Martingale Convergence Theorem)For every bounded Martingale (Xt) there is a random variable X such thatXt ! X as t!1 ; a:s:and in fact the Martingale is the sequence of `opinions' about X : For all t,Xt = E(X jY1; Y2; : : : ; Yt) a:s:6. In particular, E(X) = E(Xt) and E(	(X)) � E(	(Xt)) for all t, for any convexfunction 	 de�ned on [a; b].A neuron with posterior probability �i(t) as in (48) decides momentarily that its truestate is +1 if �i(t) > 1=2 and �1 if �i(t) < 1=2. The strength of belief, or con�dence in thepreferred state, is given by the convex function 	(x) =Max(x; 1� x) applied to the [0; 1]-bounded Martingale (�i(t)). For largeN , the current similarity of the network, or proportionof neurons whose preferred state is the correct one, is mathematically characterized asE �	(�i(t))�. By the above, Bayesian updatings are always such that every neuron has awell de�ned �nal decision about its state (we may call this a `�xed point') and the network'ssimilarity increases with every iteration, being at the `�xed point' even higher. This holdstrue for arbitrary signal functions h, and not only for those that are in some sense optimal.By the above, whatever similarity we achieve after two Bayesian iterations is a lower boundfor what can be achieved by more iterations, unlike memoryless Hop�eld dynamics whichare known to do reasonably well at the beginning even below capacity, in which case theyconverge eventually to random �xed points [20].18



3.4 Performance3.4.1 Architecture parametersThis subsection introduces and illustrates certain parameters whose relevance will becomeapparent in subsection 3.4.3. There are N neurons in the network and K incoming synapsesprojecting on every neuron. If there is a synapse from neuron i to neuron j, the probabilityis r2 that there is a synapse from neuron j to neuron i. If there are synapses from i to j andfrom j to k, the probability is r3 that there is a synapse from i to k. If there are synapsesform i to each of j and k, and from j to l, the probability is r4 that there is a synapse fromk to l.We saw in M & R that Bayesian neurons are adaptive enough to make r2 irrelevant forperformance, but that r3 and r4, which we took simply to be K=N assuming fully randomconnectivity, are of relevance. It is clear that if each neuron is connected to its K closestneighbors, then r2 is 1 and r3 and r4 are large. For fully connected networks all three areequal to 1.For Gaussian connectivity, if neurons i and j are at a distance x from each other, thenthe probability that there is a synapse from j to i isP (synapse) = pe� x22s2 (51)where p 2 (0; 1] and s2 > 0 are parameters. Since the sum of n independent and identicallydistributed Gaussian random vectors is Gaussian with variance n times as large as that ofthe summands, we get that in d-dimensional spacerk = Z �pe� 12s2 Pdi=1 xi2� e� 12s2(k�1)Pdi=1 xi2(2�(k� 1)s2)d=2 dx1dx2 : : :dxd (52)= pkd=2 Z e� 12s2((k�1)=k)Pdi=1 xi2(2�s2((k� 1)=k))d=2dx1dx2 : : : dxd = pkd=2 :Thus, in 3-dimensional space, r2 = p=(2p2), r3 = p=(3p3), r4 = p=8, depending on theparameter p but not on s.For multilayered networks in which there is full connectivity between consecutive layersbut no other connections, r2 and r4 are equal to 1 and r3 is 0 (unless there are three layerscyclically connected, in which case r3 = 1 as well).19



3.4.2 One-iteration performanceClearly, if neuron i had to choose for itself a sign on the basis of one iteration, this signwould have been Xi(1) = sign(Oi(1)) : (53)Hence, letting ! = �=p�1, if P (Xi = �i) = (1 + t)=2 (where t is either � or �), then afterone iteration (similar to [21]),P (Xi(1) = �i) = P (�i(1) > 0:5j�i = 1) = P �g(t)Xi + ��1 fi(1) > 0j�i = 1� (54)= 1 + t2 P �g(t) + ��1 (� +p�1Z) > 0�+ 1� t2 P ��g(t) + ��1 (� +p�1Z) > 0�= 1 + t2 ��! + g(t)! �+ 1� t2 ��! � g(t)! �where Z is a standard normal random variable and � is its distribution function. LettingQ�(x; t) = 1 + t2 �(x+ g(t)x ) + 1� t2 �(x� g(t)x ) ; 0 � t < 1; x > 0 ; (55)we see that (54) is expressible as Q�(!; t). Since the proportion of initially active neuronsis n1=K, the similarity after one iteration isS1 = n1KQ� (!; �) + �1� n1K �Q� (!; �) : (56)As for the relation between the current similarity S1 and the initial similarity, observe thatQ�(x; t) is strictly increasing in x and converges to 1+t2 as x # 0. Hence, S1 strictly exceedsthe initial similarity n1K 1+�2 + �1� n1K � 1+�2 . Furthermore, S1 is a strictly increasing functionof n1 (= m=�1).3.4.3 The second iterationIn order to analyze the e�ect of a second iteration, it is necessary to identify the (asymptotic)conditional distribution of the new input �eld fi(2), de�ned by (43), given (�i; Xi; Ii; fi(1)).Under a working paradigm that, given �i; Xi and Ii, the input �elds (fi(1); fi(2)) are jointlynormally distributed, the conditional distribution of fi(2) given (�i; Xi; Ii; fi(1)) should benormal with mean depending linearly on fi(1) and variance independent of fi(1). Moreexplicitly, if (U; V ) are jointly normally distributed with correlation coe�cient� = Cov(U; V )=(�U�V ), thenE(V jU) = E(V ) + �(�V =�U)(U �E(U)) (57)20



and V ar(V jU) = V ar(V )(1� �2) : (58)Thus, the only parameters needed to de�ne dynamics and evaluate performance areE(fi(2)j�i; Xi; Ii); Cov(fi(1); fi(2)j�i; Xi; Ii) and V ar(fi(2)j�i; Xi; Ii). In terms of these, theconditional distribution of fi(2) given (�i; Xi; Ii; fi(1)) is normal withE(fi(2)j�i; Xi; Ii; fi(1)) = (59)= E(fi(2)j�i; Xi; Ii) + Cov(fi(1); fi(2)j�i; Xi; Ii)V ar(fi(1)j�i; Xi; Ii) �fi(1) �E(fi(1)j�i; Xi; Ii)�and V ar(fi(2)j�i; Xi; Ii; fi(1)) = V ar(fi(2)j�i; Xi; Ii)� Cov2(fi(1); fi(2)j�i; Xi; Ii)V ar(fi(1)j�i; Xi; Ii) : (60)Assuming a model of joint normality, as in M & R, we rigorously identify limiting expressionsfor the three parameters of the model. Although we do not have as yet su�cient formalevidence pointing to the correctness of the joint normality assumption, the simulation resultspresented in subsection 3.6 fully support the adequacy of this common model.In M & R we proved that E(fi(2)j�i; Xi; Ii) is a linear combination of �i and XiIi, whichwe denote by E(fi(2)j�i; Xi; Ii) = ���i + bXiIi : (61)We also proved that Cov(fi(1); fi(2)j�i; Xi; Ii) and V ar(fi(2)j�i; Xi; Ii) are independent of(�i; Xi; Ii). These parameters determine the regression coe�cienta = Cov(fi(1); fi(2)j�i; Xi; Ii)V ar(fi(1)j�i; Xi; Ii) (62)and the residual variance �2 = V ar(fi(2)j�i; Xi; Ii; fi(1)) : (63)These facts remain true in the current more general framework. We present in [2]formulas for a; b; �� and �2, whose derivation is cumbersome. The posterior probability thatneuron i has memory state +1 is (see (40) and Lemma 1(II) in M & R)�i(2) = P (�i = 1jXi; Ii; fi(1); fi(2)) = (64)= 11 + expf�2 hgi(1) + ���a��2 �fi(2) � afi(1) � bXiIi�ig21



from which we obtain the �nal belief Oi(2) = 2�i(2)� 1 = tanh(gi(2)), where gi(2) should bede�ned asgi(2) = � ��1 � (�� � a�)a�2 � fi(1) + ��� � a��2 � fi(2) + ( g(�)Xi if Ii = 0�g(�)� b(���a�)�2 �Xi otherwise(65)to yield the �nal decision Xi(2) = sign(gi(2)). Since (fi(1); fi(2)) are jointly normally dis-tributed given (�i; Xi; Ii), any linear combination of the two, such as the one in expres-sion (65), is normally distributed. After identifying its mean and variance, a standardcomputation reveals that the �nal similarity S2 = P (Xi(2) = �i) - our global measure ofperformance - is given by a formula similar to expression (56) for S1, with heavier activityn� than n1: S2 = n1KQ� � �p�� ; ��+ �1� n1K �Q�� �p�� ; �� (66)where �� = mn� = mn1 +m � ��=��a� �2 : (67)In agreement with the ever-improving nature of Bayesian updatings, S2 exceeds S1 just asS1 exceeds the initial similarity. Furthermore, S2 is an increasing function of j ��=��a� j.3.5 Optimal signaling and performanceBy optimizing over the factor j ��=��a� j determining performance, we show in [2] that theoptimal signal functions areh1(y) = R�(y; �)� 1 ; h0(y) = R�(y; �) (68)where R� is R�(y; t) = 1� (1 + r3!2) [tanh(!y) � c(!y � g(t))] (69)and c is a constant in (0; 1).The nonmonotone form of these functions, illustrated in �gure 4, is clear. Neuronsthat have already signaled +1 in the �rst iteration have a lesser tendency to send positivesignals than quiescent neurons. The signaling of quiescent neurons which receive no priorinformation (� = 0) has a symmetric form.The signal function of the initially active neurons may be shifted without a�ectingperformance: if instead of taking h1(y) to be R�(y; �)� 1 we take it to be R�(y; �)� 1 +�22



for some arbitrary �, we will get the same performance because the e�ect of such � on thesecond iteration input �eld fi(2) would be (see (43)) the addition of1n2 NXj=1WijIij�XjIj = �n1n2fi(1) (70)which history-based Bayesian updating rules can fully adapt to. As shown in [2], � appearsnowhere in (��=�� a) nor in � but it a�ects a. Hence, � may be given several roles:� Setting the ratio of the coe�cients of fi(1) and fi(2) in (65) to a desired value, mim-icking the passive decay of the membrane potential.� Making the �nal decision Xi(2) (see (65)) free of fi(1), by letting the coe�cient of thelatter vanish. A judicious choice of the value of the reexivity parameter r2 (which,just as �, doesn't a�ect performance) can make the �nal decisionXi(2) free of whetherthe neuron was initially quiescent or active. For the natural choice � = 0 this willmake the �nal decision free of the initial state as well and become simply the usualhistory-independent Hop�eld rule Xi(2) = sign(fi(2)), except that fi(2) is the result ofcarefully tuned slanted sigmoidal signaling.� We may take � = 1 in which case both functions h0 and h1 are given simply byR�(y; t), where t = � or � depending on whether the neuron is initially active orquiescent. Let us express this signal explicitly in terms of history. By Table 1 andexpression (42), the signal emitted by neuron i (whether it is active or quiescent) ish �gi(1); Xi; Ii� = XihIi �Xigi(1)=!� = (71)1 + r3!2� Xi htanh(Xigi(1))� c(Xigi(1) � g(t))i =1+ r3!2� htanh(gi(1))� c �gi(1) �Xig(t)�i = 1 + r3!2� htanh(gi(1))� cfi(1)i :We see that the signal is essentially equal to the sigmoid (see expression (41))tanh(gi(1)) = 2�i(1)� 1, modi�ed by a correction term depending only on the currentinput �eld, in full agreement with the intuitive explanations of subsection 2. Thiscorrection is never too strong; note that c is always less than 1. In a fully-connectednetwork c is simply c = 11 + !2 ;i.e., in the limit of low memory load (! ! 1), the best signal is simply a sigmoidalfunction of the generalized input �eld.23



To obtain a discretized version of the slanted sigmoid, we let the signal be sign(h(y))as long as jh(y)j is big enough - where h is the slanted sigmoid. The resulting signal, as afunction of the generalized �eld, is (see �gure 4a and 4b)hj(y) = 8><>: +1 y < �1(j) or �4(j) < y < �5(j)�1 y > �6(j) or �2(j) < y < �3(j)0 otherwise (72)where �1 < �1(0) < �2(0) � �3(0) < �4(0) � �5(0) < �6(0) < 1 and �1 < �1(1) < �2(1) ��3(1) < �4(1) � �5(1) < �6(1) <1 de�ne, respectively, the �ring pattern of the neurons thatwere silent or active in the �rst iteration. To �nd the best such discretized version of theoptimal signal, we search numerically for the activity level v which maximizes performance.Every activity level v, used as a threshold on jh(y)j, de�nes the (at most) twelve parameters�i(j) (which are identi�ed numerically via the Newton-Raphson method) as illustrated in�gure 4b.3.6 ResultsUsing the formulation presented in the previous subsection, we investigate numerically thetwo-iteration performance achieved in several network architectures with optimal analogand discretized signaling.Figure 5 displays the performance achieved in the network, when the input signal isapplied only to the small fraction (4%) of neurons which are active in the �rst iteration(expressing possible limited resources of input information). While low activity is enforcedin the �rst iteration, the number of neurons allowed to become active in the second iterationis not restricted, and best performance is typically achieved when about 70% of the neuronsin the network are active (both with optimal signaling and with the previous, heuristicsignaling). We see that (for K > 1000) near perfect �nal similarity is achieved even whenthe 96% initially quiescent neurons get no initial clue as to their true memory state, if norestrictions are placed on the second iteration activity level. The performance loss due todiscretization is not considerable.
24
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Figure 5: Two-iteration performance in a low-activity network as a function of connectivityK. Network parameters are N = 5000, m = 50, n1 = 200, � = 0:5 and � = 0.Figure 6 illustrates the performance when connectivity and the number of signals re-ceived by each neuron are held �xed, but the network size is increased. A region of decreasedperformance is evident at mid-connectivity (K � N=2) values, due to the increased residualvariance. Hence, for neurons capable of formingK connections on the average, the networkshould either be fully connected or have a size N much larger than K. Since (unavoid-able eventually) synaptic deletion would sharply worsen the performance of fully connectednetworks, cortical ANNs should indeed be sparsely connected. As evident, performance ap-proaches an upper limit (the performance achieved with r3 = 0 and r4 = 0) as the networksize is increased, and any further increase in the network size is unrewarding. The �nalsimilarity achieved in the fully connected network (with N = K = 200) should be noted. Inthis case, the memory load (0:2) is signi�cantly above the critical capacity of the Hop�eldnetwork [22], but optimal history-dependent dynamics still manage to achieve a rather hightwo-iterations similarity (0.975) from initial similarity 0.75. This is in agreement with the�ndings of [18, 17], who show that nonmonotone dynamics increase capacity.25
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Figure 6: Two-iteration performance in a full-activity network as a function of network sizeN . Network parameters are n1 = K = 200, m = 40 and � = 0:5.Our theoretical predictions have been extensively examined by network simulations, andalready in relatively small-scale networks close correspondence is achieved. For example,simulating a fully-connected network storing 100 memories with 500 neurons, the perfor-mance achieved with discretized dynamics under initial full activity (averaged over 100trials, with � = 0:5 and � = 0) was 0:969 versus the 0:964 predicted theoretically. Whenm, n1 and K were reduced by half (i.e., N = 500, K = 250,m = 50 and n1 = 250) thepredicted performance was 0:947 and that achieved in simulation was 0:946. When m, n1and K were further reduced by half (into K = 125, m = 25 and n1 = 125) the predictedperformance was 0:949 and that actually achieved was 0:953. In a larger network, withN = 1500, K = 500, m = 50, n1 = 250, � = 0:5 and � = 0, the predicted performance is0:977 and that obtained numerically was 0:973.
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Figure 7: Two-iteration performance achieved with various network architectures, as afunction of the network connectivity K. Network parameters are N = 5000, n1 = 200,m = 50, � = 0:5 and � = 0.Figure 7 illustrates the performance achieved with various network architectures, allsharing the same network parameters N;K;m and input similarity parameters n1; �; �, butdi�ering in the spatial organization of the neurons' synapses. Five di�erent con�gurationsare examined, characterized by di�erent values of the architecture parameters r3 and r4, asdescribed in subsection 3.4.1. The upper bound on the �nal similarity that can be achievedin ANNs in two iterations is demonstrated by letting r3 = 0 and r4 = 0. A lower bound(i.e., the worst possible architecture) on the performance gained with optimal signalinghas been calculated by letting r4 = 1 and searching for r3 values that yielded the worstperformance (such values began around 0:6 and increased to � 0:8 as K was increased).The performance of the Multi-layered architecture was calculated by letting r4 = 1 andr3 = 0. Finally, the worst performance achievable with 2-D and 3-D Gaussian connectivity(corresponding to p = 1 in (51)) has been demonstrated by letting r3 = 1=3,r4 = 1=4 andr3 = 1=(3p3),r4 = 1=8 respectively. As evident, even in low-activity sparse-connectivityconditions, the decrease in performance with Gaussian connectivity (in relation, say, to theupper bound) does not seem considerable. Hence, history-dependent ANNs can work well27



in a cortical-like architecture. It is interesting but not surprising to see that 3-D Gaussian-connectivity architecture is superior to the 2-D one along the whole connectivity range.Random connectivity, with r3 = r4 = K=N , is not displayed but is slightly above theperformance achieved with 3-D Gaussian connectivity.3.7 DiscussionWe have shown that Bayesian history-dependent dynamics make performance increase withevery iteration, and that two iterations already achieve high similarity. The Bayesian frame-work gives rise to the slanted-sigmoid as the optimal signal function, displaying the non-monotone shape proposed by [18]. The two-iteration performance has been analyzed interms of general connectivity architectures, initial similarity and activity level.The optimal signal function has some interesting biological perspectives. The possiblyasymmetric form of the function, where neurons that have been silent in the previousiteration have an increased tendency to �re in the next iteration versus previously activeneurons, is reminiscent of the bi-threshold phenomenon observed in biological neurons (see[23] for a review), where the threshold of neurons held at a hyperpolarized potential for aprolonged period of time is signi�cantly lowered. As we have shown in subsection 3.5, theprecise value of the parameter � leads to di�erent biological interpretations of the slantedsigmoid signal function. The most obvious one is letting � set the ratio of the coe�cients offi(1) and fi(2) so as to mimic the decay of the membrane voltage. Perhaps more important,the �nding that history-dependent neurons can maintain optimal performance in face of abroad range of � values points out that neuromodulators may change the form of the signalfunction without changing the performance of the network. Obviously, the history-freevariant of the optimal �nal decision is not resilient to such modulatory changes.The performance of ANN models can be heavily a�ected by dynamics, as exhibitedby the sharp improvements obtained by �ne tuning the neuron's signal function. Whenthere is a sizable evolutionary advantage to �ne tuning, theoretical optimization becomesan important research tool: the solutions it provides and the qualitative features it deemscritical may have their parallels in reality. In addition to the computational e�ciency ofnonmonotone signaling, the numerical investigations presented in the previous subsectionpoint out to a few more features with possible biological relevance:� In an e�cient associative network, input patterns should be applied with high �delity28
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