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1 General Introduction

This chapter reviews the work presented in [1, 2], concerned with the development of fast
and efficient variants of the Hamming and Hopfield networks. In the first part, we analyze
in detail the performance of a Hamming network, the most basic and fundamental neural
network classification paradigm. We show that if the activation function of the memory
neurons in the original Hamming network is replaced by a an appropriately chosen simple
threshold function, the ‘winner-take-all’ subnet of the Hamming network (known to be the
essential factor determining the time complexity of the network’s computation) may be
altogether discarded. Under some conditions, the resulting Threshold Hamming Network
correctly classifies the input patterns in a single iteration, with probability approaching 1.

In the second part of this chapter, we present a methodological framework describ-
ing the two-iteration performance of Hopfield-like attractor neural networks with history-
dependent, Bayesian dynamics. We show that the optimal signal (activation) function has
a slanted sigmoidal shape, and provide an intuitive account of activation functions with a
non-monotone shape. We show that even in situations where the input patterns are applied
to only a small subset of the network neurons (and little information is hence conveyed to
the network), optimal signaling allows for the fast convergence of the Hopfield network to

the correct memory states in just two iterations.



2 Threshold Hamming Networks

2.1 Introduction

Neural networks are frequently employed as associative memories for pattern classification.
The network typically classifies input patterns into one of several memory patterns it has
stored, representing the various classes. A conventional measure used in the context of
binary vectors is the Hamming distance, defined as the number of bits in which the pattern
vectors differ. The Hamming network (HN) calculates the Hamming distance between
the input pattern and each memory pattern, and selects the memory with the smallest
Hamming distance, which is declared ‘the winner’. This network is the most straightforward
associative memory. Originally presented in [3, 4, 5], it has received renewed attention in
recent years

[6, 7].

The framework we analyze is an HN storing m + 1 memory patterns £, ¢2,..., ™11,
each being an n-dimensional binary vector with entries 1. The (m + 1)n memory entries
are independent with equally likely 41 values. The input pattern z is an n-dimensional
vector of +1’s, randomly generated as a distorted version of one of the memory patterns,
(say €™*1) such that P(z; = &™%') = a, a > 0.5. a is the initial similarity between the
input pattern and the correct memory pattern Em"'l.

A typical HN, sketched in figure 1, is composed of two subnets:

1. The similarity subnet, consisting of an n-neuron input layer and an m-neuron memory

layer. Each memory layer neuron i is connected to all n input layer neurons.
2. The winner-take-all (WTA) subnet, consisting of a fully connected m-neuron topology.

A memory pattern ¢ is stored in the network by letting the values of the connections

between memory neuron % and the input-layer neurons j (j = 1,...,n) be
aij = &' (1)

The values of the weights W;; in the WTA subnet are chosen so that for each
,j=1,2,...,m+1

Wi=1, -1/m<W;<0 fori#j. (2)
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Figure 1: A Hamming net

After an input pattern z is presented on the input layer, the HN computation proceeds

in two steps, each performed in a different subnet:

1. Each memory neuron ¢ (1 < 2 < m+1) in the similarity subnet computes its similarity

Z; with the input pattern
1, 1,
Z; = E(Zaijmj—l_n): E(ijmj—l—n) . (3)

2. Each memory-neuron ¢ in the similarity subnet transfers its Z; value to its duplicate
in the WTA network (via a single ‘identity’ connection of magnitude 1). The WTA
network then finds the pattern 7 with the maximal similarity: each neuron ¢ in the
WTA subnet sets its initial value y;(0) = Z;/n, and then computes y;(¢) iteratively
(t=1,2,..) by

¥:(t) = G0 (Z Wijy;(t — 1)) (4)

where Or is the threshold logic function

ifu>T
otherwise

Or(u) = { "0‘
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These iterations are repeated until the activity levels of the WTA neurons do not
change any more, and the only memory neuron remaining active (i.e., with a positive
;) is declared the winner. It is straightforward to see that given a winner memory
neuron i, its corresponding memory pattern & can be retrieved on the input layer
using the weights a;;. The network’s performance level is the probability that the

winning memory will be the correct one, m + 1.

Since the computation of the similarity subnet is performed in a single iteration, the
time complexity of the network is primarily due to the time required for the convergence
of the WTA subnet. In a recent paper [8], the worst-case convergence time of the standard
WTA network described above was shown to be of the order of ®(mlIn(mn)) iterations.
This time complexity can be very large, as simple entropy considerations show that the

capacity of HNs is approximately given by

m & \/2rna(l — a)eC(*) (6)

where

G(a)=In2+alha+(1-a)ln(l —a). (7)

As an example, if @ = 0.7 (70% correct entries) and n = 400, the memory capacity is
m ~ 107, resulting in a large overall running time of the corresponding HN.

We present in this article a detailed analysis of the performance of a HN classifying
distorted memory patterns. Based on our analysis, we show that it is possible to completely
discard the WTA subnet by letting each memory neuron ¢ in the similarity subnet operate
the threshold logic function @7 on its calculated similarity Z;. If the value of the threshold T’
is properly tuned, only the neuron standing for the ‘correct’ memory class will be activated.
The resulting Threshold Hamming Network (THN) will perform correctly (with probability
approaching 1) in a single iteration. Thereafter, we develop a close approximation to the
error probabilities of the HN and the THN. We find the optimal threshold of the THN and

compare its performance with that of the original HN.



2.2 The Threshold Hamming network

We first present some sharp approximations to the binomial distribution (proofs of these
Lemmas are given in [1]).
Lemma 1.
Let X ~ Bin(n,p). If ,, are integers such that lim, ,%* = 8 € (p, 1), then
1-p

Y g
P(X =z,) ~ exp{—n[81n » +(1-4)n ﬁ]} (8)

1
V2rB(l—B)

and

I-p B 1-5
(L 2)vammB( B exp{—n[81n » + (1= F)n— p]} (9)

in the sense that the ratio between LHS and RHS converges to 1 as n — oo. For the special
case p = %, let G(B) =In2+BInB + (1 — B)In(1 — B), then
exp{—nG(B)}

P(X > z,) ~

P(X = z,) ~ N o) (10)
P(X > 2,) ~ — SPLEnCGO)} (11)

2% ) amnp(—B)
The rationale for the next two lemmas will be intuitively clear interpreting X; (1 < i <
m) as similarity between the initial pattern and (wrong) memory ¢, and Y as similarity
with the correct memory m + 1. If we use z,, as threshold, the decision will be correct if all
X; are below z,, and Y is above z,,. We will expand on this point later.
Lemma 2.

Let X; ~ Bin(n, %) be independent, v € (0, 1), and let z,, be as in Lemma 1. If

m= (2 %) SenB(1 — B) (ln %) enG(8), (12)
then
P(maz(X1, X2, -+, Xm) < &n) v (13)

Lemma 3.
Let Y ~ Bin(n,a) with o > , let (X;) and v be as in Lemma 2, and let 5 € (0,1). Let @,

be the integer closest to nf3, where

1- 1
B=oa- L( - a)z,,—% (14)

and z, is the 7 - quantile of the standard normal distribution, i.e.,

1 =
n:ﬁ/_ e ™ 2dg (15)
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Then, if Y and (X;) are independent
P (maz(Xy,Xa,- -, Xm) <Y) > P(maz(X1, X2, -+, Xm) <z, <Y) (16)

and the RHS of (16) converges to yn for m as in (12) and n — oo.

Bearing these three lemmas, recall that the similarities (Z1, Zs, ..., Zm, Zm+1) are in-
dependent. If Max(Zy,Z,, ..., Zm, Zm+1) = Z; for a single memory neuron j, the conven-
tional HN declares ¢7 the ‘winning pattern’. Thus, the probability of error is the probability
of a tie or of getting j # m 4 1. Let X; be the similarity between the input vector and the
j'th memory pattern (1 < 7 < m), and let Y be the similarity with the ‘correct’ memory
pattern ™!, Clearly, X; is Bin(n, %)—distributed, and Y is Bin(n, o)-distributed. We
now propose a THN having a threshold value #,,: Asin the HN, each memory neuron in the
similarity subnet computes its similarity with the input pattern. But now, each memory
neuron ¢ whose similarity X; is at least z,, declares itself ‘the winner’. There is no WTA
subnet. An error may arise if there is a multiplicity of memory neurons declaring themselves
‘the winner’, there is no winning pattern, or a wrong single winner. The threshold z,, is
chosen so as to minimize the error probability.

To build a THN with probability of error not exceeding €, observe that expression (13)
gives the probability y that no wrong pattern declares itself the winner, while expression (15)
gives the probability 77 that the correct pattern m+1 declares itself the winner. The product
of these two terms is the probability of correct decision (i.e., the performance level) of the
THN, which should be at least 1 —€. Given n, € and o, a THN may be constructed by simply
choosing even error probabilities, i.e., ¥ = 7 = /1 — €. Then, we determine 3 by (14), let z,,
be the integer closest to nf3, and determine the memory capacity m using (12). If m, ¢ and
a are given, a THN may be constructed in a similar manner, since it is easy to determine
n from m and € by iterative procedures. Undoubtedly, the HN is superior to the THN, as
explicitly shown by inequality (16). However, as we shall see, the performance loss using the
THN can be recovered by a moderate increase in the network size n, while time complexity
is drastically reduced by the abolition of the WTA subnet. In the next subsection we derive
a more efficient choice of z,, (with uneven error probabilities), which yields a THN with

optimal performance.



2.3 The Hamming Network and an Optimal Threshold Hamming Net-
work

To find an optimal THN, we replace the ad-hoc choice of ¥ = 7 = /1 — € (among all pairs
(7v,n) for which v = 1 — €) by the choice of the threshold z, that maximizes the storage
capacity m = m(n, ¢, o). We also compute the error probability e¢(m,n, a) of the HN for
arbitrary m, n and «, and compare it with ¢, the error probability of the THN.

Let ¢ (®) denote the standard normal density (cumulative distribution function), and
let » = ¢/(1 — ®) denote the corresponding failure rate function. Then,

Lemma 4.

The optimal proportion § between the two error probabilities satisfies

5= 11—« r(zn) (17)

T 1-n " \/na(l—a)ln% '
Proof:

Let M = maz(X1, X2, -+, Xm), and let Y denote the similarity with the ‘correct’ memory

exp{—nG(8)}
V/2mnB(1-B)(2- &

pattern, as before. We have seen that P(M < z) ~ exp{-m )}. Since

G'(f) =In Uf;ﬂ)’ then by Taylor expansion

P(M < IU) = P(M <zog+wx— mo) ~ exP{_meXp{_”[G(ﬂ—l- z;io )])}

V2rnB(1-6)(2 - 5
exXp1—n — T — & IlL zo—x g —2
explom PO IR IDh  (p(ur < s =T )

V2B - A)(2- })

(in accordance with Gnedenko extreme-value distribution of type 1 [9]). Similarly,

P(Y < z)=exp{ln P(Y < 2o + & — z0)} = exp{ln P (Z < \/na(_l I \/noz(_l = a))}
$(z) 2=

®*(2) no(l — a)} = (1 — n) exp{r(2) — o

no(l — o)

where ®* = 1 — ®. The probability of correct recognition using a threshold z can now be

~ P(Y < zo)exp{

H(19)

expressed as

zo—

(1= (1= myexp{r() =)

We differentiate expression (20) with respect to ¢ — #, and equate the derivative at

P(M < 2)P(Y > &) ~ 478 (20)

z = z¢ to zero, to obtain the relation between v and 7 that yields the optimal threshold,



i.e., that which maximizes the probability of correct recognition. This yields

r(z) 1-—19
v = exp{- } (21)
vnra(l —a)ln % U]
We now approximate
r(z)
l-y~-Inyx (1-mn) (22)
vna(l —a)ln %
and thus the optimal proportion between the two error probabilities is
1_
=T r(z) . (23)
1_77 \/na(l—a)lnm
Based on Lemma 4, if the desired probability of error is ¢, we choose
de €
=1-— =1-— . 24
2 rs " a19) (24)

We start with v = 57 = /1 — ¢, obtain 8 from (14) and § from (17), recompute 7 and 7y
from (24) and iterate. The limiting values of 8 and 7 in this iterative process give the
maximal capacity m (by 12) and threshold z,, (as the integer closest to nj3).

We now compute the error probability e(m,n, o) of the original HN (with the WTA
subnet) for arbitrary m,n and o, and compare it with .

Lemma 5.
For arbitrary n, a and ¢, let m, 8,+,n and § be as calculated above. Then, the probability

of error ¢(m, n, @) of the HN satisfies

1- e i’ (8)?
€
§ln£5; (148

e(m,n,a) =~ T'(1 -4) (25)

where
I'(t) = / 2l da (26)
0
is the Gamma function.

Proof:

PY<M)=) PY<z)P(M=z)=) PY <z)P(M<z+1)-P(M<z)]~

— (P(M < 20)) 8™ "] (27)

B8 )zo —x—1

STP(Y < mo)e PN TB[(P(M < a,)) (75



We now approximate this sum by the integral of the summand: let b = B andc=46ln 1%

1-8 8-
We have seen that the probability of incorrect performance of the WTA subnet is equal to

P(Y < M)~ Y P(Y < 2o)e (™ =)[(P(M < 20))"™ ™" — (P(M < 20))"™ "] »

(1-n) /oo (7 —4")e"¥dy (28)

— o0

Now we transform variables ¢t = b¥ ln% to get the integral in the form

—c(1 _ *® -t _—bt t = di _ /°° —t _ —bty\;—(1+K3)
R A O e e Ol A o (L )

In =

3
This is the convergent difference between two divergent Gamma function integrals. We
perform integration by parts to obtain a representation as an integral with %2 instead of

t~(1+K2) in the integrand. For 0 < K < 1, the corresponding integral converges. The final

result is then

1—e°€ c 1,
(1= =T = ) )5 (30)
Hence, we have
1— éln lfﬁ 1
P(Y < M)~ (1—7) T'(1-6)(In=)° ~

51n% Y

B
1—edni-g (e6)?

I'(1-4) 5111% (1_|_5)1+66

(31)

as claimed. Expression (25) is presented as K (¢, 4, 8) - €, where K (¢, 8, B) is the factor (< 1)
by which the probability of error € of the THN should be multiplied in order to get the
probability of error of the original HN with the WTA subnet. For small §, K is close to 1.

However, as will be seen in the next subsection, K is typically smaller.

2.4 Numerical results

We examined the performance of the HN and the THN via simulations (of 10000 runs each),
and compared their error rates with those expected in accordance with our calculations.
Due to its probabilistic characterization, the THN may perform reasonably only above
some minimal size of n (depending on o and m). The results for such a ‘minimal’ network,
indicating the percent of errors at various m values, are presented in table 1. As evident,
the experimental results corroborate the accuracy of the THN and HN calculations already
at this relatively small network storing a very small number of memories in relation to its

capacity. The performance of the THN is considerably worse than that of the corresponding



HN. However, as shown in table 2, an increase of 50% in the input layer size n yields a THN

which performs about as well as the previous HN.

m 100 200 400 800 1600 | 3200
(Threshold) (99) | (100) | (100) | (101) | (102) | (102)
HN: predicted 0.031 | 0.056 | 0.1 0.15 | 0.25 | 0.41
experimental | 0.02 | 0.04 | 0.15 | 0.10 | 0.19 | 0.47
THN: predicted 1.1 1.47 | 1.96 | 2.57 | 3.33 | 4.27
experimental | 1.24 | 1.46 |2.27 | 2.31 | 3.08 |4.25

Table 1: Percentage of error. n = 150, a = 0.75

m 100 200 400 800 1600 | 3200
(Threshold) (147) | (147) | (148) | (149) | (149) | (150)
HN: predicted 0.0002 | 0.0003 | 0.0006 | 0.001 | 0.002 | 0.0036
experimental | 0 0 0 0 0 0.01
THN: predicted 0.06 0.09 0.12 0.17 1022 |0.3
experimental | 0.09 0.09 0.14 0.17 | 0.13 | 0.29

Table 2: Percentage of error. n = 225, a = 0.75

Figure 2 presents the results of theoretical calculations of the HN and THN error prob-
abilities, for various values of o and m as a function of n. Note the large difference in the
memory capacity as o varies. For graphical convenience, we have plotted log% versus .
As seen above, a fair ‘rule of thumb’ is that a THN with n' &~ 1.5n neurons in the input
layer performs as well as a HN with n such neurons. To see this, simply pass a horizontal
line through any error rate value ¢, and observe the ratio between n and n’ obtained at its

intersection with the corresponding € vs. n plots.
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Figure 2: Probability of error as a function of network size: three networks are depicted,
displaying the performance at various values of o and m.
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To examine the sensitivity of the THN network to threshold variation, we have fixed
a=0.7,n =210, m = 825, and let the threshold vary between 132 and 138. As we can see
in figure 3, the threshold value 135 is optimal, but the performance with threshold values of
134 and 136 is practically identical. The magnitude of the two error types varies considerably
with the threshold value, but this variation has no effect on the overall performance near

the optimum, and these two error probabilities might as well be taken equal to each other.

THN performance

9~ epsilon $—
8:| 1- gamma —++—
1-eta B 2

% error 5

I I I I I
132 133 134 135 136 137 138
threshold

Figure 3: Threshold sensitivity of the THN (o = 0.7, n = 210, m = 825).

2.5 Final Remarks:

In this section we analyzed in detail the performance of a HN and THN classifying inputs
that are distorted versions of the stored memory patterns (in contrast to randomly selected
patterns). Given an initial input similarity o, a desired storage capacity m and performance
level 1 — ¢, we described how to compute the minimal THN size n required to achieve this
performance. As we have seen, the threshold ,, is determined as a function of the initial
input similarity o.. Obviously, however, the THN it defines will achieve even higher perfor-
mance when presented with input patterns having initial similarity greater than a. It was
shown that although the THN performs worse than its counterpart HN, an approximately
50% increase in the THN input layer size is sufficient to fully compensate for that. As
the WTA network of the HN may be implemented with only O(3m) connections [8], both
the THN and the HN require O(mn) connections. Hence, to perform as well as a given
HN, the corresponding THN requires &~ 50% more connections, but the O(mIn(mn)) time

complexity of the HN is drastically reduced to the O(1) time complexity of the THN.
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3 Two-Iteration Optimal Signaling in Hopfield Networks

3.1 Introduction

It is well known that a given cortical neuron can respond with a different firing pattern
for the same synaptic input, depending on its firing history and on the effects of modu-
latory transmitters (see [10, 11] for a review). Working within the convenient framework
of Hopfield-like attractor neural networks (ANN) [12, 13], but motivated by the history-
dependent nature of neuronal firing, we continue our previous investigation of the two-
iteration performance of feedback neural networks [14] (henceforth, M & R). We now ex-
tend our analysis to the study of continuous input/output signal functions which govern
the firing rate of the neuron (such as the conventional sigmoidal function [15, 16]). The
notion of a synchronous instantaneous ‘iteration’ is now viewed as an abstraction of the
overall dynamics for some short length of time, during which the firing rate does not change
significantly. We analyze the performance of the network after two such iterations, or in-
termediate times spans, a period sufficiently long for some significant neural information to
be fed back within the network, but shorter than those the network may require for falling
into an attractor. However, as demonstrated in subsection 3.6, the performance of history-
dependent ANNs after two iterations is sufficiently high compared with that of memoryless
(history-independent) models, that the analysis of two iterations becomes a viable end in
its own right.

Examining this general family of signal functions, we now search for the computa-
tionally most efficient history-dependent neuronal signal (firing) function, and study its
performance. We derive the optimal analog signal function, having the slanted sigmoidal
form illustrated in figure 4a, and show that it significantly improves performance, both in
relation to memoryless dynamics and versus the performance obtained with the previous
dichotomous signaling. The optimal signal function is obtained by subtracting from the
conventional sigmoid signal function some multiple of the current input field. As shown in
figure 4a (or in figure 4b, plotting the discretized version of the optimal signal function) the
neuron’s signal may have a sign opposite to the one it believes in. [17, 18] and [19] have also
observed that the capacity of ANNs is significantly improved by using nonmonotone analog
signal functions. They studied the limit (after infinitely many iterations) under dynamics
using a nonmonotone function of the current input field, similar in form to the slanted

sigmoid. The Bayesian framework we work in provides, for the first time, a clear intuitive
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account of the non-monotone form and the seemingly bizarre sign reversal behavior. As
we shall see, the slanted sigmoidal form of the optimal signal function is mainly a result of
collective cooperation between neurons, whose ‘common goal’ is to maximize the network’s
performance. It is rather striking that the resulting slanted sigmoid endows the analytical
model with some properties characteristic of cortical neurons’ firing; this ‘collectively opti-
mal’ function may be hard-wired into the cellular biophysical mechanisms determining each

neuron’s firing function.

(a) (b)

4.0

— Silent neurons
---- Active neurons

20
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Figure 4: (a) A typical plot of the slanted sigmoid, Network parameters are N = 5000,
K = 3000, n; =200 and m = 50. (b) A sketch of its discretized version.

3.2 The model

Our framework is an ANN storing m + 1 memory patterns £1,£2,...,6™*! each an N-
dimensional vector. The network is composed of N neurons, each of which is randomly
connected to K other neurons. The (m+ 1) N memory entries are independent with equally
likely +1 values. The initial pattern X, synchronously signaled by L(< N) initially active
neurons, is a vector of +1’s, randomly generated from one of the memory patterns (say
€ = £™*1) such that P(X; = &) = % for each of the L initially active neurons and
P(X; =¢&) = % for each initially quiescent (non-active) neuron. Although €, € [0,1)
are arbitrary, it is useful to think of € as being 0.5 (corresponding to an initial similarity of

75%) and of § as being zero - a quiescent neuron has no prior preference for any given sign.

13



Let a; = m/n; denote the initial memory load, where ny = LK /N is the average number
of signals received by each neuron.

We follow a Bayesian approach under which the neuron’s signaling and activation deci-
sions are based on the a-posteriori probabilities assigned to its two possible true memory
states, £1. We distinguish between input fields that model incoming spikes, and generalized
fields that model history-dependent, adaptive post-synaptic potentials. Clearly, the prior

probability that neuron ¢ has memory state +1 is

e ifX;=1,I;=1
l—e¢ :
(0): o Ty — 5 lei:_]-;I’i:]-
A = P(& = 1X;, L) W i X;=1,L;=0 (%)
% if X;=-1,I;=0

1+ (GIZ' + 5(1 — IZ)))(Z .
2 - 1 _I_ e—Zgi(O)

where I; = 0,1 indicates whether neuron ¢ has been active (i.e., transmitted a signal) in the

first iteration, and the generalized field g;(® is given by

(o) _ g(e)X; if iis active
g = { g(8)X; if ¢ is quiescent . (33)
where
g(t) = arctanh(t) = %log % ; 0<t<l. (34)
We also define the prior belief that neuron ¢ has memory state +1
0;(9 = X, — (1 - A,) = 24,0 — 1 = tanh(g;(?) (35)

whose possible values are +¢ and +8 (The belief is simply a rescaling of the probability
from the [0, 1] interval to [—1,+1]).
The input field observed by neuron ¢ as a result of the initial activity is

N
1
FW = =3 Wy LX; (36)
ny <
i=1
where I;; = 0,1 indicates whether a connection exists from neuron j to neuron ¢ and W;;

denotes its magnitude, given by the Hopfield prescription

m+1
Wi =Y &€ , Wi=0. (37)
u=1

As aresult of observing the input field fi(l), which is approximately normally distributed

(given &;, X; and I;) with mean and variance
E(fiM&, X, I) = €&; (38)

14



Var(£;0l6, Xi, 1) = o (39)
neuron % changes its opinion about {£; = 1} from 2;(® to the posterior probability

1
M = P (& =11X, 1, £V) = 1T e 20 (40)

with a corresponding posterior belief 0;(1) = tanh(gi(l)), where g;(!) is conveniently ex-

pressed as an additive generalized field (see Lemma 1(I7) in M & R)
€
M =g+ — £ (41)
(251

We now get to the second iteration, in which, as in the first iteration, some of the
neurons become active and signal to the network. Unlike the first iteration, in which
initially active neurons had independent beliefs of equal strength and simply signaled their
states in the initial pattern, the preamble to the second iteration finds neuron % in possession
of a personal history (X;, I, fz-(l)), as a function of which the neuron has to determine the
signal to transmit to the network. While the history-independent Hopfield dynamics choose
sign(fz-(l)) as this signal, we model the signal function as h(gi(l),Xi, I;). This seems like
four different functions of g;(!). However, by symmetry, h(gi(l),—l—l,Ii) should be equal
to —h(—gi(l), —1,I;). Hence, we only have two functions of g:() to define, hi(.) for the
signals of the initially active neurons and hg(.) for the quiescent ones. For mathematical
convenience we would like to insert into these functions random variables with unit variance.
By (39) and (41), the conditional variance Var(g;(V|&;, X;, I;) is (¢/a1)?a1 = (¢/y/ar)?. We
thus define w = ¢/, /07 and let

h(g: M, Xi, ) = Xihr, (X:9:V Jw) (42)

The field observed by neuron i following the second iteration (with ny updating neurons

per neuron) is

1 N
£ = — > Wiilih(g;M, X5, 1) (43)

i=1

on the basis of which neuron ¢ computes its posterior probability
M) = P& = 11X, L, £, 1) (44)

and corresponding posterior belief 0;®) = 2),(3) — 1, which will be expressed in subsection

4.3 as tanh(g;(?).
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In this paper we stop at the above two information-exchange iterations and let each

neuron express its final choice of sign as
X;® = sign(0;) . (45)

The performance of the network is measured by the final similarity

14 * Zﬁ'v:l Xj(z)fj
B 2

Sy = P(X;(%) (46)

(where the last equality holds asymptotically).

Our first task is to present (as simple as possible) an expression for the performance
under arbitrary architecture and activity parameters, for general signal functions hy and
hy. Then, using this expression, our main goal is to find the best choice of signal functions
which maximize the performance attained. We find these functions when there are either no
restrictions on their range set or they are restricted to the values {—1,0,1}, and calculate
the performance achieved in Gaussian, random and multi-layer patterns of connectivity.

The optimal choice will be shown to be the slanted sigmoid
h(g:M, Xi, I;) = 0,0 — e ;) (47)
for some c in (0,1). We present explicitly all formulas, providing their derivation in [2].

3.3 Rationale for nonmonotone Bayesian signaling

3.3.1 Non-monotonicity

The common Hopfield convention is to have neuron 7 signal sign( fi(l)). Another possibility,
studied in M & R, is to signal the preferred sign only if this preference is strong enough,
otherwise remain silent. However, an even better performance was seen to be achieved by
counterintuitive signals which are not monotone in g;(!) [17, 19, 14]. In fact, precisely those
neurons that are most convinced of their signs should signal the sign opposite to the one
they so strongly believe in! We would like to offer now an intuitive explanation for this
seeming pathology, and proceed later to the mathematics leading to it.

In the initial pattern, the different entries X; and X; are conditionally independent
given & and &;. This is not the case for the input fields fi(l) and fj(l), whose correlation
is proportional to the synaptic weight W;; (M & R). For concreteness, let ¢ = 0.5 and
a1 = 0.25 and suppose that neuron 7 has observed an input field fi(l) = 3. Neuron i now

knows that either its true memory state is £, — +1 in which case the ‘noise’ in the input
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field is 3 — € = 2.5 (i.e., five standard deviations above the mean) or its true memory state
is £& = —1 and the noise is 3 + € = 3.5 (or seven standard deviations above the mean). In
a Gaussian distribution, deviations of five or seven standard deviations are very unusual,
but seven is so much more unusual than five, that neuron 7 is practically convinced that its
true state is +1. However, neuron 7 knows that its input field fi(l) is grossly inflicted with
noise and since the input field fj(l) of neuron j is correlated with its own, neuron ¢ would
want to warn neuron j that its input field has unusual noise too and should not be believed
on face value. Neuron iz, a good student of Regression Analysis, wants to tell neuron j,
without knowing the weight W;;, to subtract from its field a multiple of Wijfi(l). This is
accomplished, to the simultaneous benefit of all neurons j, by signaling a multiple of — fi(l).
We see that neuron ¢, out of ‘purely altruistic traits’, has a conflict between the positive act
of signaling its assessed true sign and the negative act of signaling the opposite as a means
of correcting the fields of its peers. It is not surprising that this inhibitory behavior is the

dominant one only when field values are strong enough.

3.3.2 The Potential of Bayesian Updating

Neuron ¢ starts with a prior probability 200 = P(& = +1) and after observing input fields
fi(l), fi(z), ey fi(t) computes the posterior probability

It now signals
hz(t) = h(t) (A'L(O)a fi(1)7 fi(2)7 sy fz(t)) (49)

and computes the new input field

J
This description proceeds inductively.

The stochastic process )\i(o), )\i(l), )\i(z), ...1is of the form
X:=E(ZY, Y2, ..., Y1)

where Z = I, 44} is a (bounded) random variable and the Y-process adds in every stage
some more information to the data available earlier. Such a process is termed a Martingale
in Probability theory. The following facts are well known, the first being actually the usual

definition
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1. For all ¢,
E(Xi1Y1,Ys,...,Y5) = X as.

(where a.s. means ‘almost surely’ or ‘except for an event with probability zero’.)
2. In particular, F(X}) is the same for all ¢.

3. If the finite interval [a, b] is such that P(a < X; < b) =1 for all ¢ and ¥ is a convex

function on [a, b], then for all ¢,

E(\Il(Xt+1)|Y1; YZ: RN th) Z \I’(Xt) a.s.

4. In particular, for all ¢,

E(¥(X:) < E(¥(Xt11))

5. (A special case of Doob’s Martingale Convergence Theorem)

For every bounded Martingale (X;) there is a random variable X such that
Xi— X as t—o00, a.s.

and in fact the Martingale is the sequence of ‘opinions’ about X: For all ¢,

X, = E(X|Y,Ys,...,Y)) a.s.

6. In particular, E(X) = E(X;) and E(¥(X)) > E(¥(X;)) for all ¢, for any convex
function ¥ defined on [a, b].

A neuron with posterior probability A as in (48) decides momentarily that its true
state is +1 if A;() > 1/2 and —1 if A;( < 1/2. The strength of belief, or confidence in the
preferred state, is given by the convez function ¥(z) = Maz(z,1 — z) applied to the [0, 1]-
bounded Martingale ()\i(t)). For large N, the current similarity of the network, or proportion
of neurons whose preferred state is the correct one, is mathematically characterized as
E (\Il()\i(t))). By the above, Bayesian updatings are always such that every neuron has a
well defined final decision about its state (we may call this a ‘fixed point’) and the network’s
similarity increases with every iteration, being at the ‘fixed point’ even higher. This holds
true for arbitrary signal functions h, and not only for those that are in some sense optimal.
By the above, whatever similarity we achieve after two Bayesian iterations is a lower bound
for what can be achieved by more iterations, unlike memoryless Hopfield dynamics which
are known to do reasonably well at the beginning even below capacity, in which case they

converge eventually to random fixed points [20].
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3.4 Performance

3.4.1 Architecture parameters

This subsection introduces and illustrates certain parameters whose relevance will become
apparent in subsection 3.4.3. There are N neurons in the network and K incoming synapses
projecting on every neuron. If there is a synapse from neuron ¢ to neuron j, the probability
is 79 that there is a synapse from neuron j to neuron i. If there are synapses from ¢ to 5 and
from j to k, the probability is r3 that there is a synapse from ¢ to k. If there are synapses
form 7 to each of 7 and k, and from 7 to [, the probability is 74 that there is a synapse from
k to l.

We saw in M & R that Bayesian neurons are adaptive enough to make r, irrelevant for
performance, but that r3 and 74, which we took simply to be K/N assuming fully random
connectivity, are of relevance. It is clear that if each neuron is connected to its K closest
neighbors, then r5 is 1 and r3 and r4 are large. For fully connected networks all three are
equal to 1.

For Gaussian connectivity, if neurons ¢ and j are at a distance # from each other, then
the probability that there is a synapse from j to i is

22

P(synapse) = pe” 25

(51)

where p € (0,1] and s? > 0 are parameters. Since the sum of n independent and identically
distributed Gaussian random vectors is Gaussian with variance n times as large as that of

the summands, we get that in d-dimensional space

1 d 2
-1 PO
2,2(k_1) Zz:l z

14 g2y e
rE = / (pe 767 Di1 ) r(h - 1)82)d/2 dzidzy .. .dzg (52)

deidzy ... deg= —~ .

p e m Y e
L / 2rs?((k — 1)/k))¥?
Thus, in 3-dimensional space, ry = p/(2v/2), r3 = p/(3v/3), r4 = p/8, depending on the
parameter p but not on s.

For multilayered networks in which there is full connectivity between consecutive layers
but no other connections, 7, and r4 are equal to 1 and 73 is 0 (unless there are three layers

cyclically connected, in which case r3 = 1 as well).
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3.4.2 One-iteration performance

Clearly, if neuron ¢ had to choose for itself a sign on the basis of one iteration, this sign

would have been

X, = sign(0;1) . (53)

Hence, letting w = ¢/ /ay, if P(X; = &) = (1 +t)/2 (where £ is either € or d), then after

one iteration (similar to [21]),

P(x;M =¢)=pPM >05/=1)=P (g(t)Xi + S5 S g = 1) (54)
(251

14+t 1-t
= ttp (g(t) + 5 (et ymz) > 0) T (—g(t) + 5 (et yamz) > 0)
1 1
1 —
2 w 2 w
where Z is a standard normal random variable and @ is its distribution function. Letting
141 t 1-1 t

Q*(z,t) = —2|_ <I>(m+gi))+ 5 <I>(m—g;(v—));0§t<1,m>0, (55)

we see that (54) is expressible as Q*(w,t). Since the proportion of initially active neurons

is n1 /K, the similarity after one iteration is

A A
S1= Qw9+ (1- ) @ @) (56)
As for the relation between the current similarity S; and the initial similarity, observe that
Q*(z,t) is strictly increasing in z and converges to % as z | 0. Hence, S; strictly exceeds

the initial similarity 7 1‘2"6 +(1- %) % Furthermore, S; is a strictly increasing function

of ny (=m/oy).
3.4.3 The second iteration

In order to analyze the effect of a second iteration, it is necessary to identify the (asymptotic)
conditional distribution of the new input field f;(?), defined by (43), given (&, X;, I, fi(l)).
Under a working paradigm that, given &;, X; and I;, the input fields (fi(l), fi(z)) are jointly
normally distributed, the conditional distribution of f;(* given (&;, X;, I, fi(l)) should be
normal with mean depending linearly on fi(l) and variance independent of fi(l). More
explicitly, if (U, V) are jointly normally distributed with correlation coefficient
p=Cov(U,V)/(oyoy), then

E(VI|U)=E(V)+ plov/ov)(U - E(U)) (57)
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and

Var(V|U) = Var(V)(1 - p?) . (58)

Thus, the only parameters needed to define dynamics and evaluate performance are
E(fi(2)|§i,Xi, L), Cov(fi(l), fi(2)|§i,Xi, I;) and Var(fi(2)|§i,Xi, I;). In terms of these, the
conditional distribution of f;(2) given (&, Xi, I, fi(l)) is normal with

E(fi®&, X, I, ;) = (59)

Cov(£;M), £¢&, X;, I)

=F 1,(2) i;Xia-[i +
(7K ) Var(fiV)&, X, L)

(fi(l) ~- E(£:;W)e, X;, Ii))
and

Cov* (£, £,0&, X, I)

Var(£2)&, Xi, I, £1) = Var (P&, X, I) -
ar(f |£ f ) ar(f |£ ) Var(fi(1)|§i,Xi,Ii)

(60)

Assuming a model of joint normality, as in M & R, we rigorously identify limiting expressions
for the three parameters of the model. Although we do not have as yet sufficient formal
evidence pointing to the correctness of the joint normality assumption, the simulation results
presented in subsection 3.6 fully support the adequacy of this common model.
In M & R we proved that E(fi(2)|§i, X, I;) is a linear combination of §; and X;I;, which
we denote by
B(f:®)|&;, Xi, L) = €& + bX,1; . (61)
We also proved that Cov(f;"), ;3¢ X;, I,) and Var(f;®|¢;, X;, I;) are independent of

(&, X, I). These parameters determine the regression coefficient

Cov(f;M, £, X, I)
a=
Var(fi(1)|§i, X;, I;)

(62)

and the residual variance

2 = Var(£;®)&, X, I;, i) (63)

These facts remain true in the current more general framework. We present in [2]
formulas for a, b, € and 72, whose derivation is cumbersome. The posterior probability that

neuron ¢ has memory state +1 is (see (40) and Lemma 1(/) in M & R)

M) = P& = 11X, L, £, 1) = (64)
_ 1
1 +exp{-2 [gi(l) + 58 (fi(z) —af,() ~ inL')}}

T
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from which we obtain the final belief Oi(z) = 2)\1-(2) —-1= tanh(gi(z)), where gi(z) should be
defined as

. . 5)X; if I; = 0
@ _ (€ (e ae)a) ) (e ae) @) g( i . i
g = (a1 T2 i+ T2 fi+ (g(e) - b—(%l) X; otherwise
(65)

to yield the final decision X;(?) = sign(g;(?)). Since (fi(l), fi(z)) are jointly normally dis-
tributed given (§;, X;, I;), any linear combination of the two, such as the one in expres-
sion (65), is normally distributed. After identifying its mean and variance, a standard
computation reveals that the final similarity S, = P(XZ-(Z) = §;) - our global measure of
performance - is given by a formula similar to expression (56) for S;, with heavier activity
n* than nq:

s N P B
where

a* =

m m
— = . (67)
* €*/e—a 2
ny+m (—7- )
In agreement with the ever-improving nature of Bayesian updatings, Sy exceeds S; just as
€* e—a|

S1 exceeds the initial similarity. Furthermore, Sy is an increasing function of |~——

3.5 Optimal signaling and performance

By optimizing over the factor |6*/#| determining performance, we show in [2] that the

optimal signal functions are

hi(y) = R*(y,¢) — 1, ho(y) = R*(y,9) (68)

where R* is

R*(y,t) = ~(1+ row?) [tanh(wy) — c(wy - 9(1))] (69)

€
and c is a constant in (0, 1).

The nonmonotone form of these functions, illustrated in figure 4, is clear. Neurons
that have already signaled +1 in the first iteration have a lesser tendency to send positive
signals than quiescent neurons. The signaling of quiescent neurons which receive no prior
information (6 = 0) has a symmetric form.

The signal function of the initially active neurons may be shifted without affecting

performance: if instead of taking hq(y) to be R*(y,€) — 1 we take it to be R*(y,¢) — 1+ A
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for some arbitrary A, we will get the same performance because the effect of such A on the
second iteration input field f;(2) would be (see (43)) the addition of
i n
— N Wi I AX;L = A f; () (70)
255 72
which history-based Bayesian updating rules can fully adapt to. As shown in [2], A appears

nowhere in (¢*/€ — a) nor in 7 but it affects a. Hence, A may be given several roles:

e Setting the ratio of the coefficients of fi(l) and fi(z) in (65) to a desired value, mim-

icking the passive decay of the membrane potential.

e Making the final decision X;(?) (see (65)) free of f;(!), by letting the coefficient of the
latter vanish. A judicious choice of the value of the reflexivity parameter v, (which,
just as A, doesn’t affect performance) can make the final decision X;?) free of whether
the neuron was initially quiescent or active. For the natural choice 4 = 0 this will
make the final decision free of the initial state as well and become simply the usual
history-independent Hopfield rule X;(2) = sign(fi(z)), except that fi(z) is the result of

carefully tuned slanted sigmoidal signaling.

e We may take A = 1 in which case both functions hg and h; are given simply by
R*(y,t), where t = € or § depending on whether the neuron is initially active or
quiescent. Let us express this signal explicitly in terms of history. By Table 1 and

expression (42), the signal emitted by neuron i (whether it is active or quiescent) is

h (gi(l), X, Ii) = Xthi (Xigi(l)/w) = (71)

1+ r3w2

{tanh(gi(l)) —c (gi(l) — Xz-g(t))} {tanh(gi(l)) — cfi(l)} .

We see that the signal is essentially equal to the sigmoid (see expression (41))

X; {tanh(Xigi(l)) — e(Xigi™) - g(t))} =

1+ r3w2

€

_ 1 —|—r3(.u2

€

tanh(gi(l)) =2),(1) 1, modified by a correction term depending only on the current
input field, in full agreement with the intuitive explanations of subsection 2. This
correction is never too strong; note that c is always less than 1. In a fully-connected

network c is simply
1

czl—l—wz ’

i.e., in the limit of low memory load (w — c0), the best signal is simply a sigmoidal

function of the generalized input field.
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To obtain a discretized version of the slanted sigmoid, we let the signal be sign(h(y))
as long as |h(y)| is big enough - where h is the slanted sigmoid. The resulting signal, as a
function of the generalized field, is (see figure 4a and 4b)
+1 y < fil? or B9 <y < g0
hi(y) = -1 y> Be!) or BV <y < B0 (72)
0  otherwise
where —00 < £1(%) < 8,(%) < 8500 < 8,00 < B5(”) < Bg(”) < 00 and —00 < (V) < B <
BsM) < 8,1 < B:(1) « B5() <« oo define, respectively, the firing pattern of the neurons that
were silent or active in the first iteration. To find the best such discretized version of the
optimal signal, we search numerically for the activity level v which maximizes performance.
Every activity level v, used as a threshold on |h(y)|, defines the (at most) twelve parameters
ﬂi(j) (which are identified numerically via the Newton-Raphson method) as illustrated in

figure 4b.

3.6 Results

Using the formulation presented in the previous subsection, we investigate numerically the
two-iteration performance achieved in several network architectures with optimal analog
and discretized signaling.

Figure 5 displays the performance achieved in the network, when the input signal is
applied only to the small fraction (4%) of neurons which are active in the first iteration
(expressing possible limited resources of input information). While low activity is enforced
in the first iteration, the number of neurons allowed to become active in the second iteration
is not restricted, and best performance is typically achieved when about 70% of the neurons
in the network are active (both with optimal signaling and with the previous, heuristic
signaling). We see that (for K > 1000) near perfect final similarity is achieved even when
the 96% initially quiescent neurons get no initial clue as to their true memory state, if no
restrictions are placed on the second iteration activity level. The performance loss due to

discretization is not considerable.
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Figure 5: Two-iteration performance in a low-activity network as a function of connectivity
K. Network parameters are N = 5000, m = 50, n; = 200, e = 0.5 and é = 0.

Figure 6 illustrates the performance when connectivity and the number of signals re-
ceived by each neuron are held fixed, but the network size is increased. A region of decreased
performance is evident at mid-connectivity (K &~ N/2) values, due to the increased residual
variance. Hence, for neurons capable of forming K connections on the average, the network
should either be fully connected or have a size N much larger than K. Since (unavoid-
able eventually) synaptic deletion would sharply worsen the performance of fully connected
networks, cortical ANNs should indeed be sparsely connected. As evident, performance ap-
proaches an upper limit (the performance achieved with r3 = 0 and r4 = 0) as the network
size is increased, and any further increase in the network size is unrewarding. The final
similarity achieved in the fully connected network (with N = K = 200) should be noted. In
this case, the memory load (0.2) is significantly above the critical capacity of the Hopfield
network [22], but optimal history-dependent dynamics still manage to achieve a rather high
two-iterations similarity (0.975) from initial similarity 0.75. This is in agreement with the

findings of [18, 17], who show that nonmonotone dynamics increase capacity.
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Figure 6: Two-iteration performance in a full-activity network as a function of network size
N. Network parameters are n; = K = 200, m = 40 and ¢ = 0.5.

Our theoretical predictions have been extensively examined by network simulations, and
already in relatively small-scale networks close correspondence is achieved. For example,
simulating a fully-connected network storing 100 memories with 500 neurons, the perfor-
mance achieved with discretized dynamics under initial full activity (averaged over 100
trials, with € = 0.5 and § = 0) was 0.969 versus the 0.964 predicted theoretically. When
m, n; and K were reduced by half (i.e., N = 500, K = 250,m = 50 and n; = 250) the
predicted performance was 0.947 and that achieved in simulation was 0.946. When m, n;
and K were further reduced by half (into K = 125, m = 25 and n; = 125) the predicted
performance was 0.949 and that actually achieved was 0.953. In a larger network, with
N = 1500, K = 500, m = 50, n; = 250, ¢ = 0.5 and § = 0, the predicted performance is
0.977 and that obtained numerically was 0.973.
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Figure 7: Two-iteration performance achieved with various network architectures, as a
function of the network connectivity K. Network parameters are N = 5000, n; = 200,
m=>50,e=0.5and § =0.

Figure 7 illustrates the performance achieved with various network architectures, all
sharing the same network parameters N, K, m and input similarity parameters nq, €, 8, but
differing in the spatial organization of the neurons’ synapses. Five different configurations
are examined, characterized by different values of the architecture parameters r3 and r4, as
described in subsection 3.4.1. The upper bound on the final similarity that can be achieved
in ANNs in two iterations is demonstrated by letting r3 = 0 and r4, = 0. A lower bound
(i-e., the worst possible architecture) on the performance gained with optimal signaling
has been calculated by letting r4 = 1 and searching for r3 values that yielded the worst
performance (such values began around 0.6 and increased to ~ 0.8 as K was increased).
The performance of the Multi-layered architecture was calculated by letting r, = 1 and
r3 = 0. Finally, the worst performance achievable with 2-D and 3-D Gaussian connectivity
(corresponding to p = 1 in (51)) has been demonstrated by letting r3 = 1/3,74 = 1/4 and
r3 = 1/(3+/3),r4 = 1/8 respectively. As evident, even in low-activity sparse-connectivity
conditions, the decrease in performance with Gaussian connectivity (in relation, say, to the

upper bound) does not seem considerable. Hence, history-dependent ANNs can work well
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in a cortical-like architecture. It is interesting but not surprising to see that 3-D Gaussian-
connectivity architecture is superior to the 2-D one along the whole connectivity range.
Random connectivity, with r3 = r4, = K/N, is not displayed but is slightly above the

performance achieved with 3-D Gaussian connectivity.

3.7 Discussion

We have shown that Bayesian history-dependent dynamics make performance increase with
every iteration, and that two iterations already achieve high similarity. The Bayesian frame-
work gives rise to the slanted-sigmoid as the optimal signal function, displaying the non-
monotone shape proposed by [18]. The two-iteration performance has been analyzed in
terms of general connectivity architectures, initial similarity and activity level.

The optimal signal function has some interesting biological perspectives. The possibly
asymmetric form of the function, where neurons that have been silent in the previous
iteration have an increased tendency to fire in the next iteration versus previously active
neurons, is reminiscent of the bi-threshold phenomenon observed in biological neurons (see
[23] for a review), where the threshold of neurons held at a hyperpolarized potential for a
prolonged period of time is significantly lowered. As we have shown in subsection 3.5, the
precise value of the parameter A leads to different biological interpretations of the slanted
sigmoid signal function. The most obvious one is letting A set the ratio of the coefficients of
fi(l) and fi(z) so as to mimic the decay of the membrane voltage. Perhaps more important,
the finding that history-dependent neurons can maintain optimal performance in face of a
broad range of A values points out that neuromodulators may change the form of the signal
function without changing the performance of the network. Obviously, the history-free
variant of the optimal final decision is not resilient to such modulatory changes.

The performance of ANN models can be heavily affected by dynamics, as exhibited
by the sharp improvements obtained by fine tuning the neuron’s signal function. When
there is a sizable evolutionary advantage to fine tuning, theoretical optimization becomes
an important research tool: the solutions it provides and the qualitative features it deems
critical may have their parallels in reality. In addition to the computational efficiency of
nonmonotone signaling, the numerical investigations presented in the previous subsection

point out to a few more features with possible biological relevance:

e In an efficient associative network, input patterns should be applied with high fidelity
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on a small subset of neurons, rather than spreading a given level of initial similarity

as a low fidelity stimulus applied to a large subset of neurons.

e If neurons have some restriction on the number of connections they may form, such
that each neuron forms some K connections on the average, then efficient ANNs,

converging to high final similarity within few iterations, should be sparsely connected.

e With a properly tuned signal function, cortical-like Gaussian-connectivity ANNs per-

form nearly as well as randomly-connected ones.

4 Concluding Remarks

This chapter has presented efficient dynamics for fast memory retrieval in both Hamming
and Hopfield networks. However, as shown in this chapter, the linear (in network size)
capacity of the Hopfield network is no match to the exponential capacity of the Ham-
ming network, even with efficient dynamics. Yet, it is tempting to believe that the more
biologically-plausible distributed encoding manifested in the Hopfield network may have
its own computational advantages. In our minds, a promising future challenge might be
the development of Hamming-Hopfield ‘hybrid’ networks which may allow one to enjoy the
merits of both paradigms. A possible step towards this goal may involve the incorporation
of the activation dynamics presented in this chapter, in a unified manner.

The feasibility of designing a hybrid Hamming-Hopfield network stems from the straight-
forward observation that the single-layer Hopfield network dynamics can be mapped in a
one-to-one manner onto a bi-layered Hamming network architecture. This is easy to see
by noting that each Hopfield iteration calculating the input field f; of neuron ¢ may be
represented as

fi= Y WaXs = Y X = Y 66X = Y ¢ 0n, (13)

j i o A j A
where, in the terminology of the HN, Ov, = (Z, — n)/2. Hence, each iteration in the
original 1-layered Hopfield network may be carried out by performing two sub-iterations in
the bi-layered Hamming architecture: In the first, the input pattern is applied to the input
layer, and the resulting overlaps Ov, are calculated on the memory layer. Thereafter, in the
second sub-iteration, these overlaps are used following equation (73) to calculate the new

input fields of the next Hopfield iteration for the neurons of the input layer. This hybrid
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network architecture hence raises the possibility of finding efficient signaling functions which

may enhance its performance, and lead to highly efficient memory systems.

As evident, there is much to gain in terms of space and time complexity by using

efficient dynamics in both feedforward and feedback networks. One may wonder if such

efficient signaling functions would have biological counterparts in the brain.
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