
A HeuristicLab Evolutionary Algorithm for FINCH

Achiya Elyasaf
Ben-Gurion University of the
Negev, Be’er Sheva, Israel

achiya.e@gmail.com

Michael Orlov
Ben-Gurion University of the
Negev, Be’er Sheva, Israel

orlovm@cs.bgu.ac.il

Moshe Sipper
Ben-Gurion University of the
Negev, Be’er Sheva, Israel

sipper@cs.bgu.ac.il

ABSTRACT

We present a HeuristicLab plugin for FINCH.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.3 [Programming Languages]: Language Con-
structs and Features; I.2.2 [Artificial Intelligence]: Auto-
matic Programming-program transformation, programmod-
ification

General Terms

Algorithms, Languages

Keywords

Java bytecode, Software Evolution, HeuristicLab

1. FINCH
FINCH (Fertile Darwinian Bytecode Harvester) is a sys-

tem designed to evolutionarily improve actual extant soft-
ware, which was not intentionally written for the purpose of
serving as a GP representation in particular, nor for evolu-
tion in general. The only requirement is that the software
source code be either written in Java or can be compiled to
Java bytecode. The following chapter provides an overview
of FINCH, ending with a précis of results. Additional infor-
mation can be found in [6, 7].

Java compilers typically do not produce machine code
directly, but instead compile source-code files to platform-
independent bytecode, to be interpreted in software or, rarely,
to be executed in hardware by a Java Virtual Machine (JVM)
[4]. The JVM is free to apply its own optimization tech-
niques, such as Just-in-Time (JIT) on-demand compilation
Java compilation to native machine code—a process that
is transparent to the user. The JVM implements a stack-
based architecture with high-level language features such as
object management and garbage collection, virtual function
calls, and strong typing. The bytecode language itself is a
well-designed assembly-like language with a limited yet pow-
erful instruction set [3, 4]. Figure 1 shows a recursive Java
program for computing the factorial of a number, and its
corresponding bytecode.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

class F {

int fact(int n) {

// offsets 0-1

int ans = 1;

// offsets 2-3

if (n > 0)

// offsets 6-15

ans = n *

fact(n-1);

// offsets 16-17

return ans;

}}

0 iconst_1

1 istore_2

2 iload_1

3 ifle 16

6 iload_1

7 aload_0

8 iload_1

9 iconst_1

10 isub

11 invokevirtual #2

14 imul

15 istore_2

16 iload_2

17 ireturn

(a) (b)

Figure 1: A recursive factorial function in Java (a)
and its corresponding bytecode (b). The argument
to the virtual method invocation (invokevirtual) ref-
erences the int F.fact(int) method via the constant
pool.

The JVM architecture is successful enough that several
programming languages compile directly to Java bytecode
(e.g., Scala, Groovy, Jython, Kawa, JavaFX Script, and Clo-
jure). Moreover, Java decompilers are available, which fa-
cilitate restoration of the Java source code from compiled
bytecode. Since the design of the JVM is closely tied to the
design of the Java programming language, such decompila-
tion often produces code that is very similar to the original
source code [5].

We chose to automatically improve extant Java programs
by evolving the respective compiled bytecode versions. This
allows us to leverage the power of a well-defined, cross-
platform, intermediate machine language at just the right
level of abstraction: We do not need to define a special evo-
lutionary language, thus necessitating an elaborate two-way
transformation between Java and our language; nor do we
evolve at the Java level, with its encumbering syntactic con-
straints, which render the genetic operators of crossover and
mutation arduous to implement.

Note that we do not wish to invent a language to im-
prove upon some aspect or other of GP (efficiency, terseness,
readability, etc.), as has been amply done. Nor do we wish
to extend standard GP to become Turing complete, an is-
sue which has also been addressed [9]. Rather, conversely,
our point of departure is an extant, highly popular, general-
purpose language, with our aim being to render it evolvable.

1727

Draf
t



The ability to evolve Java programs will hopefully lead to a
valuable new tool in the software engineer’s toolkit.

Currently, FINCH uses ASM [1] and ECJ evolutionary
framework [2], with ECJ providing the evolutionary engine.
The configuration of ECJ as well as FINCH is done by mul-
tiple hierarchical parameter files that are used to define the
evolutionary algorithm parameters (e.g., number of gener-
ations, mutation and crossover probabilities) and the byte-
code parameters (e.g., the bytecode seed and the fitness eval-
uator). To the non-expert user, executing a simple exper-
iment in FINCH or even in ECJ is a non-trivial task. We
wish to simplify the usage of FINCH by adding a GUI for
FINCH.

Even though ECJ version 2.0 includes a simple GUI, it
still requires handling several parameter files. Thus we turn
to HeuristicLab.

2. HEURISTICLAB
HeuristicLab [8] is a GUI framework for heuristic and evo-

lutionary algorithms. HeuristicLab provides a feature-rich
software environment for heuristic optimization researchers
and practitioners. It is based on a generic and flexible model
layer and offers a graphical algorithm designer that enables
the user to create, apply, and analyze heuristic optimiza-
tion methods. A powerful experimenter allows HeuristicLab
users to design and perform parameter tests even in parallel.
The results of these tests can be stored and analyzed eas-
ily in several configurable charts. HeuristicLab is available
under the GPL license.

We present here a preliminary work on a HeuristicLab evo-
lutionary algorithm for FINCH. Using HeuristicLab along
with FINCH will simplify the learning process. The crossover,
mutation and fitness evaluation will be done by FINCH,
while all of the parameters handling as well as executing the
experiments and analyzing the results will be done directly
from HeuristicLab, thus excising the use of ECJ.

3. A SUMMARY OF RESULTS
In this section we present some results of FINCH. Due to

space limitations we only provide a brief description of our
results, with the full account available in [6, 7]. To date, we
have successfully tackled several problems:

• Simple and complex symbolic regression: Evolve pro-
grams to approximate the simple polynomial x4+x

3+
x
2 + x and the more complex polynomial

∑
9

i=1
x
i.

• Artificial ant problem : Evolve programs to find all 89
food pellets on the Santa Fe trail.

• Intertwined spirals problem: Evolve programs to cor-
rectly classify 194 points on two spirals.

• Array sum: Evolve programs to compute the sum of
values of an integer array, along the way demonstrating
FINCH ’s ability to handle loops and recursion.

• Tic-tac-toe: Evolve a winning program for the game,
starting from a flawed implementation of the negamax
algorithm. This example shows that programs can be
improved.

Acknowledgments

Achiya Elyasaf is partially supported by the Lynn andWilliam
Frankel Center for Computer Sciences. This research was
supported by the Israel Science Foundation (grant no. 123/11).

4. REFERENCES
[1] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A

code manipulation tool to implement adaptable
systems (Un outil de manipulation de code pour la
réalisation de systèmes adaptables). In Adaptable and
Extensible Component Systems (Systèmes à
Composants Adaptables et Extensibles), October 17–18,
2002, Grenoble, France, pages 184–195, Oct. 2002.

[2] ECLab Evolutionary Computation Laboratory, George
Mason University. ECJ 2.0.
http://cs.gmu.edu/~eclab/projects/ecj/, 2010.

[3] J. Engel. Programming for the JavaTM Virtual
Machine. Addison-Wesley, Reading, MA, USA, July
1999.

[4] T. Lindholm and F. Yellin. The JavaTM Virtual
Machine Specification. The JavaTM Series.
Addison-Wesley, Boston, MA, USA, second edition,
Apr. 1999.

[5] J. Miecznikowski and L. Hendren. Decompiling Java
bytecode: Problems, traps and pitfalls. In R. N.
Horspool, editor, Compiler Construction: 11th
International Conference, CC 2002, Held as Part of the
Joint European Conferences on Theory and Practice of
Software, ETAPS 2002, Grenoble, France, April 8–12,
2002, volume 2304 of Lecture Notes in Computer
Science, pages 111–127, Berlin / Heidelberg, Apr. 2002.
Springer-Verlag.

[6] M. Orlov and M. Sipper. Genetic programming in the
wild: Evolving unrestricted bytecode. In G. Raidl et al.,
editors, Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, July 8–12,
2009, Montréal Québec, Canada, pages 1043–1050, New
York, NY, USA, July 2009. ACM Press.

[7] M. Orlov and M. Sipper. Flight of the finch through the
java wilderness. IEEE Transactions on Evolutionary
Computation, 15(2):166–182, 2011.

[8] S. Wagner. Heuristic Optimization Software Systems -
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Johannes Kepler University, Linz, Austria, 2009.

[9] J. R. Woodward. Evolving Turing complete
representations. In R. Sarker et al., editors, The 2003
Congress on Evolutionary Computation, CEC 2003,
Canberra, Australia, 8–12 December, 2003, volume 2,
pages 830–837. IEEE Press, Dec. 2003.

1728




