
Designing Breast Cancer Diagnostic Systems via a HybridFuzzy-Genetic MethodologyCarlos Andr�es Pe~na-Reyes and Moshe Sipper�January 7, 1999AbstractThe automatic diagnosis of breast cancer is an important, real-world medical problem. In thispaper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodo-logies|fuzzy systems and evolutionary algorithms|so as to automatically produce diagnostic sys-tems. We �nd that our fuzzy-genetic approach produces systems exhibiting the highest classi�cationperformance shown to date, and which are also (human-)interpretable.Keywords: Fuzzy systems; Genetic algorithms; Breast cancer diagnosis1 IntroductionA major class of problems in medical science involves the diagnosis of disease, based upon various testsperformed upon the patient. When several tests are involved, the ultimate diagnosis may be di�cultto obtain, even for a medical expert. This has given rise, over the past few decades, to computerizeddiagnostic tools, intended to aid the physician in making sense out of the welter of data. A prime targetfor such computerized tools is in the domain of cancer diagnosis. Speci�cally, where breast cancer isconcerned, the treating physician is interested in ascertaining whether the patient under examinationexhibits the symptoms of a benign case, or whether her case is a malignant one.A good computerized diagnostic tool should possess two characteristics, which are often in conict.First, the tool must attain the highest possible performance, i.e., diagnose the presented cases correctly asbeing either benign or malignant. Moreover, it would be highly desirable to be in possession of a so-calleddegree of con�dence: the system not only provides a binary diagnosis (benign or malignant), but alsooutputs a numeric value which represents the degree to which the system is con�dent about its response.Second, it would be highly bene�cial for such a diagnostic system to be human-friendly, exhibiting so-called interpretability. This means that the physician is not faced with a black box that simply spoutsanswers (albeit correct) with no explanation; rather, we would like for the system to provide some insightas to how it derives its outputs.In this paper we combine two methodologies|fuzzy systems and evolutionary algorithms|so as toautomatically produce systems for breast cancer diagnosis. The major advantage of fuzzy systems is thatthey favor interpretability, however, �nding good fuzzy systems can be quite an arduous task. This iswhere evolutionary algorithms step in, enabling the automatic production of fuzzy systems, based on adatabase of training cases.Fuzzy modeling is the task of identifying the parameters of a fuzzy inference system so that a desiredbehavior is attained. The parameters of fuzzy inference systems can be classi�ed into four categories(Table 1): logical, structural, connective, and operational. Generally speaking, this order also representstheir relative inuence on performance, from most inuential (logical) to least inuential (operational).Evolutionary algorithms are used to search large, and often complex, search spaces. They haveproven worthwhile on numerous diverse problems, able to �nd near-optimal solutions given an adequateperformance (�tness) measure. Fuzzy modeling can be considered as an optimization process wherepart or all of the parameters of a fuzzy system constitute the search space. Works investigating theapplication of evolutionary techniques in the domain of fuzzy modeling had �rst appeared about a decadeago, focusing mainly on control problems. Evolutionary fuzzy modeling has since been applied in an ever-growing number of domains, branching into areas as diverse as chemistry, medicine, telecommunications,biology, and geophysics.�The authors are with the Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens, CH-1015Lausanne, Switzerland (e-mail: Carlos.Pena@di.ep.ch, Moshe.Sipper@ep.ch).1



Table 1: Parameter classi�cation of fuzzy inference systems.Class ParametersReasoning mechanismLogical Fuzzy operatorsMembership function typesDefuzzification methodRelevant variablesStructural Number of membership functionsNumber of rulesAntecedents of rulesConnective Consequents of rulesRule weightsOperational Membership function valuesBoth connective and structural parameters modeling can be viewed as rule base learning processes withdi�erent levels of complexity. In the evolutionary algorithm community there are two major approachesfor evolving such rule systems: the Michigan approach and the Pittsburgh approach [1]. A more recentmethod has been proposed speci�cally for fuzzy modeling: the iterative rule learning approach [2].In Section 2 we describe the Wisconsin breast cancer diagnosis (WBCD) problem, which is the focusof our interest in this paper. Section 3 then describes our particular evolutionary approach to the WBCDproblem. In Section 4 we delineate our results, followed by concluding remarks in Section 5.2 The Wisconsin breast cancer diagnosis problemIn this section we present the medical diagnosis problem which is the object of our study. Breast canceris the most common cancer among women, excluding skin cancer. The presence of a breast mass1 is analert sign, but it does not always indicate a malignant cancer. Fine needle aspiration (FNA)2 of breastmasses is a cost-e�ective, non-traumatic, and mostly non-invasive diagnostic test that obtains informationneeded to evaluate malignancy.The Wisconsin breast cancer diagnosis (WBCD) database [3] is the result of the e�orts made at theUniversity of Wisconsin Hospital for accurately diagnosing breast masses based solely on an FNA test [4].Nine visually assessed characteristics of an FNA sample considered relevant for diagnosis were identi�ed,and assigned an integer value between 1 and 10. The measured variables are as follows:1. Clump Thickness (v1);2. Uniformity of Cell Size (v2);3. Uniformity of Cell Shape (v3);4. Marginal Adhesion (v4);5. Single Epithelial Cell Size (v5);6. Bare Nuclei (v6);7. Bland Chromatin (v7);8. Normal Nucleoli (v8);9. Mitosis (v9).The diagnostics in the WBCD database were furnished by specialists in the �eld. The database itselfcontains 683 cases, with each entry representing the classi�cation for a certain ensemble of measuredvalues: case v1 v2 v3 � � � v9 diagnostic1 5 1 1 � � � 1 benign2 5 4 4 � � � 1 benign... ... ... ... . . . ... ...683 4 8 8 � � � 1 malignant1Most breast cancers are detected as a lump or mass on the breast, by self-examination, by mammography, or by both.2Fine needle aspiration is an outpatient procedure that involves using a small-gauge needle to extract uid directly froma breast mass. 2



Note that the diagnostics do not provide any information about the degree of benignity or malignancy.There are several studies based on this database. Bennet and Mangasarian [5] used linear programmingtechniques, obtaining a 99.6% classi�cation rate on 487 cases (the reduced database available at thetime). However, their solution exhibits little understandability, i.e., diagnostic decisions are essentiallyblack boxes, with no explanation as to how they were attained. With increased interpretability in mindas a prime objective, a number of researchers have applied the method of extracting Boolean rules fromneural networks [6{8]. Their results are encouraging, exhibiting both good performance and a reducednumber of rules and relevant input variables. Nevertheless, these systems use Boolean rules and arenot capable of furnishing the user with a measure of con�dence for the decision made. Our preliminarywork on the evolution of fuzzy rules showed that it is possible to obtain high performance, coupled withinterpretability and a con�dence measure [9].3 Evolving fuzzy systems for the WBCD problemThe solution scheme we propose for the WBCD problem is depicted in Figure 1. It consists of a fuzzysystem and a threshold unit. The fuzzy system computes a continuous appraisal value of the malignancyof a case, based on the input values. The threshold unit then outputs a benign or malignant diagnosticaccording to the fuzzy system's output.
Fuzzy

Subsystem

Diagnostic
Threshold

Subsystem

Input Appraisal

Figure 1: Proposed diagnosis system.In order to evolve the fuzzy model we must make some preliminary decisions about the fuzzy systemitself and about the genetic algorithm encoding. In this section we describe our choices, followed in thenext section by a presentation of our results.3.1 Fuzzy system parametersPrevious knowledge about the WBCD problem and about some of the extant rule-based models representsvaluable information to be used for our choice of fuzzy parameters. When de�ning our setup we took intoconsideration the following three results, described in previous works: (1) small number of rules [6,9]; (2)small number of variables [7{9]; and (3) monotonicity of the input variables [9].Some fuzzy models forgo interpretability in the interest of improved performance. Where medicaldiagnosis is concerned, interpretability|also called linguistic integrity|is the major advantage of fuzzysystems. This motivated us to take into account the following �ve semantic criteria, de�ning constraintson the fuzzy parameters [10, 11]: (1) distinguishability; (2) justi�able number of elements; (3) coverage;(4) normalization; and (5) orthogonality.Referring to Table 1, and taking into account the above criteria, we delineate below the fuzzy systemsetup:� Logical parameters: singleton-type fuzzy systems; min-max fuzzy operators; orthogonal, trapezoidalinput membership functions; weighted-average defuzzi�cation.� Structural parameters: two input membership functions (Low and High); two output singletons(benign and malignant); a user-con�gurable number of rules (based on our previous results [9], welimited the number of rules to be between 1{5). The relevant variables are one of the geneticalgorithm's objectives.� Connective parameters: the antecedents of the rules are searched by the genetic algorithm. Thealgorithm �nds rules for the benign diagnostic; the malignant diagnostic is an else condition. Activerules have a weight of value 1, and the else condition has a weight of 0.25.� Operational parameters: the input membership function values are to be found by the genetic algo-rithm. For the output singletons we used the values 2 and 4, for benign and malignant, respectively.
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VariableFigure 2: Example of a fuzzy variable with two possible fuzzy values labeled Low and High, andorthogonal membership functions, plotted above as degree of membership versus input values. P andd de�ne the start point and the length of membership function edges, respectively. The orthogonalitycondition means that the sum of all membership functions at any point is one. In the �gure, an examplevalue u is assigned the membership values �Low(u) = 0:8 and �High(u) = 0:2 (as can be seen �Low(u) +�High(u) = 1).3.2 The genetic algorithmWe apply Pittsburgh-style structure learning [1,12], using a genetic algorithm to search for three param-eters. The genome, encoding relevant variables, input membership function values, and antecedents ofrules, is constructed as follows:� Membership function parameters. There are nine variables (v1 { v9), each with two parametersP and d, de�ning the start point and the length of the membership function edges, respectively(Figure 2).� Antecedents. The i-th rule has the form:if (v1 is Ai1) and . . . and (v9 is Ai9) then (output is benign),where Aij represents the membership function applicable to variable vj. Aij can take on the values:1 (Low), 2 (High), or 0 or 3 (Other).� Relevant variables are searched for implicitly by letting the algorithm choose non-existent member-ship functions as valid antecedents; in such a case the respective variable is considered irrelevant.Table 2 delineates the parameters encoding, which together form a single individual's genome. Figure 3shows a sample genome.Table 2: Parameters encoding of an individual's genome. Total genome length is 54 + 18Nr, where Nrdenotes the number of rules.Parameter Values Bits Quantity Total bitsP [1-8] 3 9 27d [1-8] 3 9 27A [0-3] 2 9Nr 18NrTo evolve the fuzzy inference system, we applied a standard genetic algorithm [1] with a �xed pop-ulation size of 200 individuals, and �tness-proportionate selection. The algorithm terminates when themaximum number of generations, Gmax, is reached (we set Gmax = 2000 + 500 �Nr, i.e., dependent onthe number of rules used in the run), or when the increase in �tness of the best individual over �ve suc-cessive generations falls below a certain threshold (in our experiments we used threshold values between2� 10�7 and 4� 10�6).Our �tness function combines three criteria: (1) Fc: classi�cation performance, computed as thepercentage of cases correctly classi�ed; (2) Fe: the quadratic di�erence between the continuous appraisalvalue (in the range [2; 4]) and the correct discrete diagnosis given by the WBCD database (either 2or 4); and (3) Fv: the average number of variables per active rule. The �tness function is given byF = Fc � �Fv � �Fe, where � = 0:05 and � = 0:01 (these latter values were derived empirically). Fc,the percentage of correctly diagnosed cases, is the most important measure of performance. Fv measures4



P1 d1 P2 d2 P3 d3 P4 d4 P5 d5 P6 d6 P7 d7 P8 d8 P9 d94 3 1 5 2 7 1 1 1 6 3 7 4 6 7 1 1 5 . . .. . . A11 A12 A13 A14 A15 A16 A17 A18 A190 1 3 3 2 3 1 3 1(a)Databasev1 v2 v3 v4 v5 v6 v7 v8 v9P 4 1 2 1 1 3 4 7 1d 3 5 7 1 6 7 6 1 5Rule baseRule 1 if (v2 is Low) and (v5 is High) and (v7 is Low) and (v9 is Low) then (outputis benign)Default else (output is malignant) (b)Figure 3: Example of a genome for a single-rule system. (a) Genome encoding. The �rst 18 positionsencode the parameters P and d for the nine variables v1{v9. The rest encode the membership functionsapplicable to the nine antecedents of each rule. (b) Interpretation. Database and rule base of the single-rule system encoded by (a). The parameters P and d are interpreted as illustrated in Figure 2.the linguistic integrity (interpretability), penalizing systems with a large number of variables per rule (onaverage). Fe adds selection pressure towards systems with low quadratic error.4 ResultsThis section describes selected results obtained when applying the methodology described in Section 3(the full description is given in [12]). We �rst delineate in Subsection 4.1 the success statistics relatingto the evolutionary algorithm. Then, in Subsection 4.2, we describe in full two evolved fuzzy systemsthat exemplify our approach. Finally, in Subsection 4.3, we discuss the issue of obtaining a con�dencemeasure of the system's output, going beyond a mere binary, benign-malignant classi�cation.4.1 The genetic algorithm...A total of 120 evolutionary runs were performed, all of which found systems whose classi�cation per-formance exceeds 94.5%. In particular, considering the best individual per run (i.e., the evolved systemwith the highest classi�cation success rate), 78 runs led to a fuzzy system whose performance exceeds96.5%, and of these, 8 runs found systems whose performance exceeds 97.5%.Table 3 compares our best systems with the top systems obtained by four other rule-based diagnos-tic approaches. The �rst three approaches|those of Setiono [6], Setiono and Liu [7], and Taha andGhosh [8]|involve Boolean rule bases extracted from trained neural networks; the last approach is ourown previous work [9]. The evolved fuzzy systems described in this paper can be seen to surpass thoseobtained by these four previous approaches in terms of both performance and simplicity of rules. Asshown in Table 3, we obtained the highest-performance systems for all �ve rule-base sizes, i.e., fromone-rule systems all the way up to �ve-rule systems. Not only is high performance exhibited, but, more-over, our fuzzy approach enables the introduction of a con�dence measure of the diagnostic decision (seeSubsection 4.3). In contrast, the Boolean rule-based systems [6{8] provide but a single binary value,indicating whether the case in question is benign or malignant. Compared with our previous work [9],the current approach not only improves performance, but also obtains systems with less antecedents perrule (which are thus more easily comprehensible).4.2 ...and the fuzzy systems it discoveredWe next describe two of our top-performance systems, which serve to exemplify the solutions found byour evolutionary approach. The �rst system, delineated in Figure 4, consists of three rules (note that theelse condition is not counted as an active rule). Taking into account all three criteria of performance|classi�cation rate, number of rules per system, and average number of variables per rule|this system5



Table 3: Comparison of the best systems evolved by our approach with the top systems obtained by fourother rule-based diagnostic approaches. The �rst three approaches|those of Setiono [6], Setiono andLiu [7], and Taha and Ghosh [8]|involve Boolean rule bases extracted from trained neural networks; thelast approach is our own previous work [9]. Shown below are the classi�cation performance values of thetop systems obtained by these approaches, along with the average number of variables-per-rule given inparentheses. Results are divided into �ve classes, in accordance with the number of rules-per-system,going from one-rule systems to �ve-rule ones.Rules-per-system Setiono [6] Setiono andLiu [7] Taha andGhosh [8] Pe~na andSipper [9] This work1 95.42% (2) { { 96.35% (3) 97.07% (4)2 { { { 96.65% (7) 97.36% (3)3 97.14% (4) 97.21% (4) { { 97.80% (4.7)4 { { { { 97.80% (4.8)5 { { 96.19% (1.8)a { 97.51% (3.4)aNote that Taha and Ghosh [8] obtained slightly better results for the �ve-rules case by directly using theirtrained neural networks, rather than the extracted rule-based systems. Herein, our interest lies with these latter,rule-based systems. Databasev1 v2 v3 v4 v5 v6 v7 v8 v9P 3 5 2 2 8 1 4 5 4d 5 2 1 2 4 7 3 5 2Rule baseRule 1 if (v3 is Low) and (v7 is Low) and (v8 is Low) and (v9 is Low) then (outputis benign)Rule 2 if (v1 is Low) and (v2 is Low) and (v3 is High) and (v4 is Low) and (v5 isHigh) and (v9 is Low) then (output is benign)Rule 3 if (v1 is Low) and (v4 is Low) and (v6 is Low) and (v8 is Low) then (outputis benign)Default else (output is malignant)Figure 4: The best evolved, fuzzy diagnostic system with three rules. It exhibits an overall classi�cationrate of 97.8%, and an average of 4.7 variables per rule.can be considered the top one over all 120 evolutionary runs. It obtains an overall classi�cation rate (i.e.,over the entire database) of 97.8%.A thorough test of this three-rule system revealed that the second rule (Figure 4) never �res, i.e., it istriggered by none of the input cases. Thus, it can be eliminated altogether from the rule base, resultingin a two-rule system (also reducing the average number of variables-per-rule from 4.7 to 4).Finally, Figure 5 delineates the best one-rule system found through our evolutionary approach. Itobtains an overall classi�cation rate of 97.07%.4.3 Diagnostic con�denceUp until now we have been using the evolved fuzzy systems to ultimately produce a binary classi�cationvalue|benign ormalignant|with no �ner gradations. Going back to Figure 1, we note that the diagnosticsystem comprises in fact two subsystems: the �rst subsystem consists of the (evolved) fuzzy system, which,upon presentation of an input (in our case, a WBCD database entry) proceeds to produce a continuousappraisal value; this value is then passed along to the second subsystem|the threshold unit|whichproduces the �nal binary output (benign or malignant). The �rst subsystem (the fuzzy system) is theone evolved in our approach. The threshold subsystem simply outputs malignant if the appraisal valueis below a �xed threshold value, and outputs benign otherwise. The threshold value is assigned by theuser based on knowledge of the problem at hand.The appraisal value can accompany the �nal output of the diagnostic system, serving as a con�dencemeasure. This demonstrates a prime advantage of fuzzy systems, namely, the ability to output not only a(binary) classi�cation, but also a measure representing the system's con�dence in its output. For example,6
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