Chapter 1

An Introduction To
Bio-Inspired Machines

Moshe Sipper, Eduardo Sanchez, Daniel
Mange, Marco Tomassini, Andrés

Pérez-Uribe, and André Stauffer

1.1 Introduction: The POE model of bio-inspired
systems

Living organisms are complex systems exhibiting a range of desirable char-
acteristics, such as evolution, adaptation, and fault tolerance, that have
proved difficult to realize using traditional engineering methodologies. Re-
cently, engineers have been allured by certain natural processes, giving birth
to such domains as artificial neural networks and evolutionary computation.
If one considers life on Earth since its very beginning, then the following
three levels of organization can be distinguished [25, 28]:
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Phylogeny: The first level concerns the temporal evolution of the genetic
program, the hallmark of which is the evolution of species, or phy-
logeny. The multiplication of living organisms is based upon the re-
production of the program, subject to an extremely low error rate at
the individual level, so as to ensure that the identity of the offspring re-
mains practically unchanged. Mutation (asexual reproduction) or mu-
tation along with recombination (sexual reproduction) give rise to the
emergence of new organisms. The phylogenetic mechanisms are funda-
mentally non-deterministic, with the mutation and recombination rate
providing a major source of diversity. This diversity is indispensable
for the survival of living species, for their continuous adaptation to a
changing environment, and for the appearance of new species.

Ontogeny: Upon the appearance of multicellular organisms, a second level
of biological organization manifests itself. The successive divisions
of the mother cell, the zygote, with each newly formed cell possess-
ing a copy of the original genome, is followed by a specialization of
the daughter cells in accordance with their surroundings, i.e., their
position within the ensemble. This latter phase is known as cellular
differentiation. Ontogeny is thus the developmental process of a multi-
cellular organism. This process is essentially deterministic: an error in
a single base within the genome can provoke an ontogenetic sequence
which results in notable, possibly lethal, malformations.

Epigenesis: The ontogenetic program is limited in the amount of informa-
tion that can be stored, thereby rendering the complete specification
of the organism impossible. A well-known example is that of the hu-
man brain with some 10'° neurons and 104 connections, far too large
a number to be completely specified in the four-character genome of
length approximately 3 x 10°. Therefore, upon reaching a certain
level of complexity, there must emerge a different process that per-
mits the individual to integrate the vast quantity of interactions with
the outside world. This process is known as epigenesis, and primarily
includes the nervous system, the immune system, and the endocrine
system. These systems are characterized by the possession of a ba-
sic structure that is entirely defined by the genome (the innate part),
which is then subjected to modification through lifetime interactions
of the individual with the environment (the acquired part). The epi-
genetic processes can be loosely grouped under the heading of learning



systems.

In analogy to nature, the space of bio-inspired hardware systems can
be partitioned along these three axes: phylogeny, ontogeny, and epigenesis;
we refer to this as the POE model (Figure 1.1) [25, 28]. The distinction
between the axes cannot be easily drawn where nature is concerned, indeed
the definitions themselves may be subject to discussion. Sipper et al. [2§]
therefore defined each of the above axes within the framework of the POE
model as follows: the phylogenetic axis involves evolution, the ontogenetic
axis involves the development of a single individual from its own genetic
material, essentially without environmental interactions, and the epigenetic
axis involves learning through environmental interactions that take place af-
ter formation of the individual. As an example, consider the following three
paradigms, whose hardware implementations can be positioned along the
POE axes: (P) evolutionary algorithms are the (simplified) artificial coun-
terpart of phylogeny in nature, (O) multicellular automata are based on the
concept of ontogeny, where a single mother cell gives rise, through multi-
ple divisions, to a multicellular organism, and (E) artificial neural networks
embody the epigenetic process, where the system’s synaptic weights and
perhaps topological structure change through interactions with the environ-
ment. Within the domains collectively referred to as soft computing [33],
often involving the solution of ill-defined problems coupled with the need
for continual adaptation or evolution, the above paradigms yield impressive
results, frequently rivaling those of traditional methods.

This chapter is an exposition and examination of bio-inspired hardware
systems within the POE framework. We begin in the next section with an
examination of the phylogenetic axis. In Section 1.3 we present the onto-
genetic axis, followed by a discussion of the third axis, epigenesis, in Sec-
tion 1.4. We end this chapter in Section 1.5 with conclusions and directions
for future research, based on the POE model.

1.2 The phylogenetic axis

In this section we explore the phylogenetic axis of bio-inspired systems, also
referred to as evolvable hardware. The main motivation is to attain adaptive
systems that are able to accomplish difficult tasks, possibly involving real-
time behavior in a complex, dynamical environment. We begin by briefly
introducing two underlying themes, artificial evolution and large scale pro-
grammable circuits.
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Figure 1.1: The POE model. Partitioning the space of bio-inspired hardware
systems along three axes: phylogeny, ontogeny, and epigenesis. See text for
definition of these terms.

1.2.1 Artificial evolution

The idea of applying the biological principle of natural evolution to artifi-
cial systems, introduced more than three decades ago, has seen impressive
growth in the past few years. Usually grouped under the term evolutionary
algorithms or evolutionary computation, we find the domains of genetic al-
gorithms, evolution strategies, evolutionary programming, and genetic pro-
gramming [9, 21]. As a generic example of artificial evolution, we briefly
consider genetic algorithms [9]. An extensive introduction of evolutionary
computation is given in Chapter 77?.

A genetic algorithm is an iterative procedure that consists of a constant-
size population of individuals, each one represented by a finite string of sym-
bols, known as the genome, encoding a possible solution in a given problem
space. This space, referred to as the search space, comprises all possible
solutions to the problem at hand. The algorithm sets out with an initial
population of individuals that is generated at random or heuristically. Ev-
ery evolutionary step, known as a generation, the individuals in the current
population are decoded and evaluated according to some predefined qual-
ity criterion, referred to as the fitness, or fitness function. To form a new
population (the next generation), individuals are selected according to their
fitness, and then transformed via genetically inspired operators, of which
the most well known are crossover and mutation. Iterating this procedure,
the genetic algorithm may eventually find an acceptable solution, i.e., one



with high fitness.

1.2.2 Large-scale programmable circuits

An integrated circuit is called programmable when the user can configure its
function by programming. The circuit is delivered after manufacturing in a
generic state and the user can adapt it by programming a particular func-
tion. In this chapter we consider solely programmable logic circuits, where
the programmable function is a logic one, ranging from simple boolean func-
tions to complex state machines. The programmed function is coded as a
string of bits representing the configuration of the circuit. Note that there is
a difference between programming a standard microprocessor chip and pro-
gramming a programmable circuit — the former involves the specification of a
sequence of actions, or instructions, while the latter involves a configuration
of the machine itself, often at the gate level.

The most commonly used device in the past few years is the field-
programmable gate array (FPGA) (for a full treatment of this subject see
Chapter ??). An FPGA is an array of logic cells placed in an infrastructure
of interconnections, which can be programmed at three distinct levels: (1)
the function of the logic cells, (2) the interconnections between cells, and
(3) the inputs and outputs. All three levels are configured via a string of
bits that is loaded from an external source, either once or several times. In
the latter case the FPGA is considered reconfigurable.

FPGAs are highly versatile devices that offer the designer a wide range
of design choices. However, this potential power necessitates a suite of tools
in order to design a system. Essentially, these generate the configuration
bit string, given such inputs as a logic diagram or a high-level functional
description.

1.2.3 Evolvable hardware: The present

If one carefully examines the work carried out to date under the heading
evolvable hardware, it becomes evident that this mostly involves the ap-
plication of evolutionary algorithms to the synthesis of digital systems [26]
(recently, Koza et al. [15] studied analog systems as well). From this per-
spective, evolvable hardware is simply a sub-domain of artificial evolution,
where the final goal is the synthesis of an electronic circuit. The work of
Koza [13], which includes the application of genetic programming to the
evolution of a three-variable multiplexer and a two-bit adder, may be con-



sidered an early precursor along this line. It should be noted that at the
time the main goal was that of demonstrating the capabilities of the genetic
programming methodology, rather than designing actual circuits. Sipper et
al. [28] argued that the term evolutionary circuit design would be more
descriptive of such work than that of evolvable hardware. For now, we shall
remain with the latter (popular) term, however, we shall return to the issue
of clarifying definitions in Section 1.2.5.

Taken as a design methodology, evolvable hardware offers a major advan-
tage over classical methods. The designer’s job is reduced to constructing
the evolutionary setup, which involves specifying the circuit requirements,
the basic elements, and the testing scheme used to assign fitness (this latter
phase is often the most difficult). If these have been well designed, evolu-
tion may then (automatically) generate the desired circuit. Currently, most
evolved digital designs are sub-optimal with respect to traditional method-
ologies, however, improved results are regularly demonstrated [28].

One important distinction that has been made is that between offline
and online evolvable hardware. In the former, evolution is carried out by
simulation, with only the final solution actually implemented in hardware.
In online evolution one uses real hardware during the evolutionary process.

1.2.4 Common features of current phylogenetic hardware

Examining work carried out to date we find a number of common char-
acteristics that span most current systems, often differing from biological
evolution:

e Evolution pursues a predefined goal: the design of an electronic circuit,
subject to precise specifications. Upon finding the desired circuit, the
evolutionary process terminates.

e The population has no material existence. At best, in what has been
called online evolution, there is one circuit available, onto which indi-
viduals from the (offline) population are loaded one at a time, in order
to evaluate their fitness.

e The absence of a real population in which individuals coexist simul-
taneously entails notable difficulties in the realization of interactions
between “organisms.” This usually results in a completely independent
fitness calculation, contrary to nature which exhibits a coevolutionary
scenario.



e If one attempts to resolve a well-defined problem, involving the search
for a specific combinatorial or sequential logic system, there are no
intermediate approximations. Fitness calculation is carried out by
consulting a lookup table which is a complete description of the circuit
in question, that must be stored somewhere. This casts some doubts
as to the utility of applying an evolutionary process, since one can
directly implement the lookup table in a memory device, a solution
which may often be faster and cheaper.

e The evolutionary mechanisms are executed outside the resulting cir-
cuit. This includes the operators (selection, crossover, mutation) as
well as fitness calculation. As for the latter, while what has been ad-
vanced as online evolution uses a real circuit for fitness evaluation, the
fitness values themselves are stored elsewhere.

e The different phases of evolution are carried out sequentially, con-
trolled by a central software unit.

1.2.5 Categories of phylogenetic hardware

The phylogenetic axis admits four qualitative sub-divisions (Figure 1.2):

e At the bottom of this axis, we find what is in essence evolutionary
circuit design, where all operations are carried out in software, with
the resulting solution possibly loaded onto a real circuit. Though a
potentially useful design methodology, this falls completely within the
realm of traditional evolutionary techniques.

e Moving upward along the axis, one finds research in which a real cir-
cuit is used during the evolutionary process, though most operations
are still carried out offline, in software. It is important to note that
while experiments belonging to this category have been referred by
some as online evolution, there is a prominent offline aspect since the
population is stored in an external computer, which also controls the
evolutionary process. It would probably be more appropriate to re-
serve the term online for the next sub-division.

e Still further along the phylogenetic axis, one finds systems in which
all operations (selection, crossover, mutation), as well as fitness eval-
uation, are carried out online, in hardware. The major aspect missing



concerns the fact that evolution is not open ended, i.e., there is a
predefined goal and no dynamic environment to speak of.

e The last sub-division, situated at the top of the phylogenetic axis,
involves a population of hardware entities evolving in an open-ended
environment. When the fitness criterion is imposed by the user in ac-
cordance with the task to be solved (currently the rule with artificial
evolution techniques), one attains a form of guided, or directed evo-
lution. This is to be contrasted with open-ended evolution occurring
in nature, which admits no externally imposed fitness criterion, but
rather an implicit, emergent, dynamical one (that could arguably be
summed up as survivability). Open-ended, undirected evolution is the
only form of evolution known to produce such devices as eyes, wings,
and nervous systems, and to give rise to the formation of species. Undi-
rectedness may have to be applied to artificial evolution if we want to
observe the emergence of completely novel systems.

We have argued in [28] that only the last category can be truly consid-
ered evolvable hardware, a goal which still eludes us at present. We point
out that a more correct term would probably be evolving hardware. A
natural application area for such systems is within the field of autonomous
robots, which involves machines capable of operating in unknown environ-
ments without human intervention [2]. A related application domain is that
of controllers for noisy, changing environments.

1.3 The ontogenetic axis

The ontogenetic axis involves the development of a single individual from
its own genetic material, essentially without environmental interactions. As
can be seen in Figure 1.3 (based on [4]) ontogeny can be considered orthog-
onal to phylogeny. The main process involved in the ontogenetic axis can be
summed up as growth, or construction. Ontogenetic hardware exhibits such
characteristics as replication and regeneration which find their use in many
applications. For example, replicating systems have the ability to self-repair
upon suffering heavy damage [17] and have been proposed as an econom-
ical means of space exploration [6]. Replication can in fact be considered
a special case of growth — this process involves the creation of an identi-
cal organism by duplicating the genetic material of a mother entity onto a
daughter one, thereby creating an exact clone. It is important to distinguish



between two distinct terms, replication and reproduction, which are often
considered synonymous. Replication is an ontogenetic, developmental pro-
cess, involving no genetic operators, resulting in an exact duplicate of the
parent organism. Reproduction, on the other hand, is a phylogenetic pro-
cess, involving genetic operators such as crossover and mutation, thereby
giving rise to variety and ultimately to evolution (note that reproduction
has been justly placed on the vertical axis of Figure 1.3).

Research on ontogenetic systems began with von Neumann’s work in
the late 1940s on self-replicating machines. This work was later extended
by others, and more recently we have seen the emergence of systems that
exhibit other ontogenetic mechanisms, such as cellular division and cellular
differentiation. This line of research can be divided into four stages, placed
along the ontogenetic axis (Figure 1.4):

e Von Neumann [31] and others developed self-replicating automata ca-
pable of universal computation (i.e., able to simulate a universal Tur-
ing machine) and of universal construction (i.e., able to construct any
automaton described by an artificial genome). While the complexity
of these automata is such that no full physical implementation has yet
been possible, the von Neumann cell has recently been implemented
in hardware [27].

e Langton [16] and others developed self-replicating automata which are
much simpler and which have been simulated in their entirety. These
machines, however, lack any computing and constructing capabilities,
their sole functionality being that of self-replication.

e Tempesti [29], and Perrier et al. [22] developed self-replicating au-
tomata inspired by Langton’s work, yet endowed with finite [29] or
universal [22] computational capabilities.

e One of the defining characteristics of a biological cell concerns its
role as the smallest part of a living being which carries the complete
plan of the being, that is its genome [19]. In this respect, the above
self-replicating automata are unicellular organisms: there is a single
genome describing (and contained within) the entire machine. Mange
et al. [17, 18, 19] and Marchal et al. [20] proposed a new architecture
called embryonics, or embryonic electronics. Based on three features
usually associated with the ontogenetic process in living organisms,
namely, multicellular organization, cellular differentiation, and cellular



division, they introduced a new cellular automaton, complex enough
for universal computation, yet simple enough for a physical implemen-
tation through the use of commercially available digital circuits. The
embryonics self-replicating machines are multicellular artificial organ-
isms, in the sense that each of the several cells comprising the organism
contains one copy of the complete genome. The embryonics framework
is detailed in the second part of this book.

Several other works can be placed along the ontogenetic axis, including,
e.g., L-systems [23] (see Chapter ?7), cellular encoding [7], graph generation
systems [12], and self-replicating programs [14, 24]. Most of these are not
considered at length in this book as they are currently implemented solely
in software, while our emphasis is on hardware systems.

1.4 The epigenetic axis

The epigenetic axis involves learning through environmental interactions
that take place after formation of the individual. To the best of our knowl-
edge, there exist three major epigenetic systems in living multicellular or-
ganisms: the nervous system, the immune system, and the endocrine system,
the first two having already served as inspiration for engineers. The nervous
system has received the most attention, giving rise to the field of artificial
neural networks. This will be the focus of our discussion below. The immune
system has inspired systems for detecting software errors [32], controllers for
mobile robots [10], and immune systems for computers [11]. Immunity of
living organisms is a major domain of biology. It has been demonstrated
that the immune system is capable of learning, recognizing, and, above all,
eliminating foreign bodies which continuously invade the organism. More-
over, when viewed from the engineering standpoint, it is most interesting
that immunity is maintained when faced with a dynamically changing en-
vironment. This feature leads us to surmise that the immune system, if
implemented as an engineering model, can provide a new tool suitable for
confronting dynamic problems, involving unknown, possibly hostile, envi-
ronments. The human endocrine system is made up of a large number of
glandular tissues that have in common the fact that they secrete directly
into the blood stream chemical messengers, known as hormones, that reg-
ulate and integrate bodily functions (such as reproduction). This system
resembles in some of its functionalities the nervous system in that both help
the individual cope with changes in its environment.
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The nervous system remains the most popular epigenetic source of inspi-
ration for engineers (see Chapter ?7). A predominant approach in the field
of artificial neural networks consists of applying a learning algorithm to the
modification of synaptic weights, using a predesigned network topology. A
prime difference between simple rote learning and intelligent learning is the
generalization process taking place in the latter. One can view a predesigned
network as an implementation of a learned system that exhibits instinctive
behavior [30]. Indeed, there is growing evidence that the human brain has
many more such instinctive networks than is usually acknowledged, possi-
bly due to their being faster and less resource-demanding with respect to
learning systems, which adapt continuously within a dynamic environment.
Learning networks exhibit the plasticity necessary to confront complex, dy-
namical tasks, and must be able to adapt at two distinct levels, changing the
dynamics of inter-neuron interactions (usually through changes in synaptic
weights) as well as modifying the network topology itself. Topology mod-
ification has proven to be a successful solution to a problem known as the
stability-plasticity dilemma, i.e, how can a learning system preserve what
it has previously learned, while continuing to incorporate new knowledge
[3]. Evolution may ultimately replace such learning networks by instinctive
ones, e.g., via the Baldwin effect, whereby a learned (acquired) behavior
becomes embedded within the organism’s genome (i.e., its innate behavioral
repertoire) through evolution [1, 8] (this may be considered a melange of
phylogeny and epigenesis, an issue which shall be expanded upon in Sec-
tion 1.5).

Artificial neural networks have been implemented many times, mostly in
software rather than in hardware. Online learning is essential if one wishes
to obtain learning systems as opposed to merely learned ones (Figure 1.5).
While neural network hardware had already appeared in the 1980s, only
today are we seeing the birth of the technology that enables true online
learning. For example, Perez and Sanchez have developed a network archi-
tecture with an online dynamic topology (see Chapter 77).

1.5 Toward novel bio-inspired hardware systems

We presented the POE model for classifying bio-inspired hardware systems,
based on three axes: phylogeny, ontogeny, and epigenesis (Figure 1.1). We
described each axis and provided examples of systems situated along them.
A natural extension which suggests itself is the combination of two, and
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ultimately all three axes, in order to attain novel bio-inspired hardware (see
Figure 1.6 and [28]).

Note that the framework presented in this chapter involves bio-inspired
systems. This means that, while motivated by observations of nature, strict
adherence to her solutions is not a sine qua non. As an example, consider
the issue of Lamarckian evolution, which involves the direct inheritance of
acquired characteristics. While the biological theory of evolution has shifted
from Lamarckism to Darwinism, this does not preclude the use of artificial
Lamarckian evolution [5]. Another example concerns the time scales of
natural processes, where phylogenetic changes occur at much slower rates
than either ontogenetic or epigenetic ones, a characteristic which need not
necessarily hold in our case. Thus, deviations from what is strictly natural
may definitely be of use in bio-inspired systems.

Looking (and dreaming) toward the future, one can imagine nano-scale
(bioware) systems becoming a reality, which will be endowed with evolu-
tionary, reproductive, regenerative, and learning capabilities. Such systems
could give rise to novel species which will coexist alongside carbon-based
organisms.

This constitutes, perhaps, our ultimate challenge.

12



Phylogeny
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All genetic operations carried out in hardware
Open-ended evolution

All genetic operations carried out in hardware
Not open-ended evolution

All operations carried out in software
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Evolutionary circuit design )

Online
Offline

Figure 1.2: The phylogenetic axis admits four sub-divisions, based on two
distinguishing characteristics. The first involves the distinction between
offline operations carried out in software, and online ones which take place
on an actual circuit. The second characteristic concerns open-endedness.
When the fitness criterion is imposed by the user in accordance with the
task to be solved, one attains a form of guided evolution. This is to be
contrasted with open-ended evolution occurring in nature, which admits
no externally imposed fitness criterion, but rather an implicit, emergent,
dynamical one (that could arguably be summed up as survivability).
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Figure 1.3: The phylogenetic and ontogenetic axes can be considered or-
thogonal. The figure shows two generations preceded and followed by an
indefinite number of generations. Ontogeny involves the development of the
phenotype in a given generation (horizontal arrows), while phylogeny in-
volves the succession of generations through reproduction of the genotype
(vertical arrows). Note that genes, the basic constituents of the genome, act
on two quite different levels: they participate in the developmental process,
influencing the development of the phenotype in a given generation, and
they participate in genetics, having themselves copied down the generations
(reproduction) [4].
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Figure 1.4: The ontogenetic axis admits four stages, based on a number of
distinguishing characteristics: universal computation (the ability to simulate
a universal Turing machine), universal construction (the ability to construct
any automaton described by an artificial genome), self-repair capabilities,
and unicellular or multicellular organization.

Learned systems)

Learning systems)
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Figure 1.5: The epigenetic axis: moving from learned (instinctive) systems
to online learning networks.
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Figure 1.6: Combining POE axes in order to create novel bio-inspired sys-
tems: The PO plane involves evolving hardware that exhibits ontogenetic
characteristics, such as growth, replication, and regeneration, the PE plane
includes, e.g., evolutionary artificial neural networks, the OE plane combines
ontogenetic mechanisms (self-replication, self-repair) with epigenetic (e.g.,
neural network) learning, and finally, the POE space comprises systems that
exhibit characteristics pertaining to all three axes. An example of the latter
would be an artificial neural network (epigenetic axis), implemented on a
self-replicating multicellular automaton (ontogenetic axis), whose genome is
subject to evolution (phylogenetic axis).
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