
Chapter 1

An Introduction To Cellular

Automata

Moshe Sipper and Marco Tomassini

1.1 What are cellular automata?

Cellular automata (CA) were originally conceived by Ulam and von Neu-
mann in the 1940s to provide a formal framework for investigating the be-
havior of complex, extended systems [32]. CAs are dynamical systems in
which space and time are discrete. A cellular automaton consists of an ar-
ray of cells, each of which can be in one of a finite number of possible states,
updated synchronously in discrete time steps, according to a local, identical
interaction rule. The state of a cell at the next time step is determined by
the current states of a surrounding neighborhood of cells [20, 29, 33].

The cellular array (grid) is n-dimensional, where n = 1, 2, 3 is used in
practice; in this volume we shall concentrate on n = 1, 2, i.e., one- and two-
dimensional grids. The identical rule contained in each cell is essentially a
finite state machine, usually specified in the form of a rule table (also known
as the transition function), with an entry for every possible neighborhood
configuration of states. The cellular neighborhood of a cell consists of the
surrounding (adjacent) cells. For one-dimensional CAs, a cell is connected

1The authors are with the Logic Systems Laboratory, Swiss Federal In-
stitute of Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland. E-mail:
{name.surname}@di.epfl.ch. M. Tomassini is also with the Computer Science Institute,
University of Lausanne.

1



to r local neighbors (cells) on either side, as well as to itself, where r is a
parameter referred to as the radius (thus, each cell has 2r + 1 neighbors).
For two-dimensional CAs, two types of cellular neighborhoods are usually
considered: 5 cells, consisting of the cell along with its four immediate non-
diagonal neighbors, and 9 cells, consisting of the cell along with its eight
surrounding neighbors. When considering a finite-sized grid, spatially peri-
odic boundary conditions are frequently applied, resulting in a circular grid
for the one-dimensional case, and a toroidal one for the two-dimensional
case.

As an example, let us consider the parity rule (also known as the XOR
rule) for a 2-state, 5-neighbor, two-dimensional CA [20]. Each cell is assigned
a state of 1 at the next time step if the parity of its current state and the
states of its four neighbors is odd, and is assigned a state of 0 if the parity is
even (alternatively, this may be considered a modulo-2 addition). The rule
table consists of entries of the form:

0
1 1 0 7→ 1

1

This means that if the current state of the cell is 1 and the states of the north,
east, south, and west cells are 0, 0, 1, 1, respectively, then the state of the cell
at the next time step will be 1 (odd parity). The rule is completely specified
by the rule table given in Table 1.1. Figure 1.1 demonstrates patterns that
are produced by the parity CA.

1.2 Formal definitions

A d-dimensional CA consists of a finite or infinite d-dimensional grid of
cells, each of which can take on a value from a finite, typically small, set of
integers. The value of each cell at time step t is a function of the values of a
small local neighborhood of cells at time t− 1. The cells update their states
simultaneously according to a given local rule.

Formally, a cellular automaton A is a quadruple

A = (S,G, d, f),

where S is a finite set of states, G is the cellular neighborhood, d ∈ Z+ is
the dimension of A, and f is the local cellular interaction rule, also referred
to as the transition function.

2



(a) (b)

(c) (d)

Figure 1.1: Patterns produced by the parity rule, starting from a 20 × 20
rectangular pattern. White squares represent cells in state 0, black squares
represent cells in state 1. (a) after 30 time steps (t = 30), (b) t = 60, (c)
t = 90, (d) t = 120.

3



CNESW Snext CNESW Snext CNESW Snext CNESW Snext

00000 0 01000 1 10000 1 11000 0

00001 1 01001 0 10001 0 11001 1

00010 1 01010 0 10010 0 11010 1

00011 0 01011 1 10011 1 11011 0

00100 1 01100 0 10100 0 11100 1

00101 0 01101 1 10101 1 11101 0

00110 0 01110 1 10110 1 11110 0

00111 1 01111 0 10111 0 11111 1

Table 1.1: Parity rule table. CNESW denotes the current states of the
center, north, east, south, and west cells, respectively. Snext is the cell’s
state at the next time step.

Given the position of a cell, i, i ∈ Zd, in a regular d-dimensional uniform
lattice, or grid (i.e., i is an integer vector in a d-dimensional space), its
neighborhood G is defined by:

Gi = {i, i+ r1, i+ r2, . . . , i+ rn},

where n is a fixed parameter that determines the neighborhood size, and rj

is a fixed vector in the d-dimensional space.
The local transition rule f

f : Sn → S

maps the state si ∈ S of a given cell i into another state from the set S, as
a function of the states of the cells in the neighborhood Gi. In uniform CAs
f is identical for all cells, whereas in non-uniform ones f may differ between
different cells, i.e., f depends on i, fi.

For a finite-size CA of size N (such as those treated in this book) a
configuration of the grid at time t is defined as

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ S is the state of cell i at time t. The progression of the CA in
time is then given by the iteration of the global mapping F

F : C(t) → C(t+ 1), t = 0, 1, . . .

4



through the simultaneous application in each cell of the local transition rule
f . The global dynamics of the CA can be described as a directed graph,
referred to as the CA’s phase space [33].

An oft-explored system is that of one-dimensional CAs with two possible
states per cell, i.e., S = {0, 1}. In this case f is a function f : {0, 1}n →
{0, 1} and the neighborhood size n is usually taken to be n = 2r + 1 such
that:

si(t+ 1) = f(si−r(t), ..., si(t), ..., si+r(t)),

where r ∈ Z+ is a parameter, known as the radius, representing the standard
one-dimensional cellular neighborhood. Considering the r = 1 case one
obtains so-called elementary CAs, for which the neighborhood size is n = 3:

f : {0, 1}3 → {0, 1}, si(t+ 1) = f(si−1(t), si(t), si+1(t)).

The domain of f is the set of all 23 3-tuples, which gives rise to 28 = 256
distinct elementary rules. It is common to use Wolfram’s decimal numbering
convention for describing these rules [33].2 For two-state CAs a configuration
of a sizeN grid at time t is a binary sequence C(t), C(t) ∈ {0, 1}N . For finite-
size grids, spatially periodic boundary conditions are frequently assumed,
resulting in a circular grid; formally, this implies that cellular indices are
computed modulus N .

1.3 Cellular automata as complex and computa-

tional systems

As noted above, the CA model was originally introduced in the late 1940s
by Ulam and von Neumann and used extensively by the latter to study
issues related with the logic of life [32]. In particular, von Neumann asked
whether we can use purely mathematical-logical considerations to discover
the specific features of biological automata that make them self-replicating
[19, 21].

Von Neumann used two-dimensional CAs with 29 states per cell and a
5-cell neighborhood. He showed that a universal computer can be embed-
ded in such cellular space, namely, a device whose computational power is
equivalent to that of a universal Turing machine [13]. He also described how

2For example, f(111) = 1, f(110) = 0, f(101) = 1, f(100) = 1, f(011) = 1, f(010) = 0,
f(001) = 0, f(000) = 0, is denoted rule 184 (the decimal equivalent of 10111000).

5



a universal constructor may be built, namely, a machine capable of con-
structing, through the use of a “constructing arm,” any configuration whose
description can be stored on its input tape. This universal constructor is
therefore capable, given its own description, of constructing a copy of itself,
i.e., of self replicating (Figure 1.2). The terms ‘machine’ and ‘tape’ refer
here to configurations, i.e., patterns of states (as defined in Section 1.2). The
mechanisms von Neumann proposed for achieving self-replicating structures
within a cellular automaton bear strong resemblance to those employed by
biological life, discovered during the following decade [21]. Von Neumann’s
universal computer-constructor was simplified by [6] who used an 8-state,
5-neighbor cellular space (for more on these issues see Chapter ??).

PARENT

OFFSPRING

UC

UCCONSTRUCTING

ARM

TAPE

TAPE

Figure 1.2: A schematic diagram of von Neumann’s self-replicating cellular
automaton. The system is a universal constructor (UC), namely, a machine
capable of constructing, through the use of a “constructing arm,” any con-
figuration whose description can be stored on its input tape. This universal
constructor is therefore capable, given its own description, of constructing a
copy of itself, i.e., of self-replicating. (The machine is not drawn to scale.)

Over the years CAs have been applied to the study of general phe-
nomenological aspects of the world, including communication, computation,
construction, growth, reproduction, competition, and evolution (see, e.g.,

6



[4, 18, 20, 29]). One of the most well-known CA rules, the “game of life,”
was conceived by Conway in the late 1960s and was shown by him to be
computation-universal [2]. For a review of computation-theoretic CA re-
sults refer to [7].

The question of whether cellular automata can model not only general
phenomenological aspects of our world, but also directly model the laws of
physics themselves was raised by [10, 26]. A primary theme of this research
is the formulation of computational models of physics that are information-

preserving, and thus retain one of the most fundamental features of micro-
scopic physics, namely, reversibility [10, 16, 27]. This approach has been
used to provide extremely simple models of common differential equations
of physics, such as the heat and wave equations [28] and the Navier-Stokes
equation [11]. CAs also provide a useful model for a branch of dynamical
systems theory which studies the emergence of well-characterized collective
phenomena, such as ordering, turbulence, chaos, symmetry-breaking, and
fractality, in discrete systems [5, 30].

The systematic study of CAs in this latter context was pioneered by
Wolfram and studied extensively by him [33]. He investigated CAs and their
relationships to dynamical systems, identifying the following four qualitative
classes of CA behavior, with analogs in the field of dynamical systems (the
latter are shown in parenthesis; see also [15]):

1. Class I relaxes to a homogeneous state (limit points).

2. Class II converges to simple separated periodic structures (limit cy-
cles).

3. Class III yields chaotic aperiodic patterns (chaotic behavior of the kind
associated with strange attractors).

4. Class IV yields complex patterns of localized structures, including
propagating structures (very long transients with no apparent analog
in continuous dynamical systems).

Figure 1.3 demonstrates these four classes using one-dimensional CAs (as
studied by Wolfram). Finally, biological modeling has also been carried out
using CAs [8].

We have seen above that CAs have been used as a formal model for
studying phenomena of interest in several scientific fields, including physics,
biology, and computer science. In recent years there is a growing interest
in the utilization of CAs as actual computing devices. CAs exhibit three

7



time
↓

(a) (b)

(c) (d)

Figure 1.3: Wolfram classes. One dimensional CAs are shown, where the
horizontal axis depicts the configuration at a certain time t and the vertical
axis depicts successive time steps (increasing down the page). CAs are
binary (2 states per cell) with radius r = 2 (two neighbors on both sides of
the cell). (a) Class I. (b) Class II. (c) Class III. (d) Class IV.

8



notable features: massive parallelism, locality of cellular interactions, and
simplicity of basic components (cells). They perform computations in a
distributed fashion on a spatially extended grid. As such they differ from
the standard approach to parallel computation in which a problem is split
into independent sub-problems, each solved by a different processor, later
to be combined in order to yield the final solution. CAs suggest a new
approach in which complex behavior arises in a bottom-up manner from
non-linear, spatially extended, local interactions [20]. This is often referred
to as emergent computation, meaning the appearance of global information
processing capabilities that are not explicitly represented in the system’s
elementary components or in their local interconnections [9]. The CA’s
properties greatly facilitate its implementation as electronic hardware [20,
23] (see Chapter ??). CAs also suggest a possible approach to attaining
novel computational architectures at the nanometer scale [1].

When considering CAs that perform computations two possibilities man-
ifest themselves: (1) Embedding a universal Turing machine within the CA
(see Chapter ??), or (2) using the CA in a direct, parallel manner: the in-
put to the computation is encoded as an initial configuration, the output is
the configuration after a certain number of time steps, and the intermediate
steps that transform the input to the output are considered to be the steps
in the computation (Chapter ??). In this latter case, the “program” emerges
through “execution” of the CA rule in each cell.

1.4 Variations on the original model

In this section we briefly outline a number of variations of the original, classic
CA model, presented above. These variations concern the cellular rules,
the connectivity architectures, temporal considerations, and determinism.
These issues are further discussed in Chapter ??.

1.4.1 Non-uniform CAs

Non-uniform cellular automata function in the same way as uniform ones,
the only difference being in the cellular rules that need not be identical for
all cells. Note that non-uniform CAs share the basic “attractive” properties
of uniform ones (simplicity, parallelism, locality). From a hardware point
of view we observe that the resources required by non-uniform CAs are
identical to those of uniform ones since a cell in both cases contains a rule.
Although simulations of uniform CAs on serial computers may optimize

9



memory requirements by retaining a single copy of the rule, rather than have
each cell hold one, this in no way detracts from our argument. Indeed, one of
the primary motivations for studying CAs stems from the observation that
they are naturally suited for hardware implementation with the potential of
exhibiting extremely fast and reliable computation that is robust to noisy
input data and component failure [20].

Non-uniform CAs have been investigated by [31] who discuss a one-
dimensional CA in which a cell probabilistically selects one of two rules at
each time step. They showed that complex patterns appear characteristic
of class IV behavior. Garzon [12] presented two generalizations of cellular
automata, namely, discrete neural networks and automata networks. These
were compared to the original model from a computational point of view
which considers the classes of problems such models can solve. Chapter ??
examines the non-uniform CA model from a computational aspect as well
as an evolutionary one [20].

1.4.2 Non-standard architectures

Another possible variation concerns the connectivity pattern of the cells,
the architecture, which is standard and homogeneous in the original CA.
One can consider so-called non-standard connectivity architectures, where
each cell has a small, identical number of connections, yet not necessarily
from its most immediate neighboring cells [20, 22]. It can be shown that
such architectures are computationally more efficient than standard archi-
tectures in solving certain computational tasks. Furthermore, one can suc-
cessfully evolve non-standard architectures using evolutionary computation
techniques. These issues are treated in Chapter ??.

1.4.3 Asynchronous CAs

One of the prominent features of the CA model is its synchronous mode of
operation, meaning that all cells are updated simultaneously. A preliminary
study of asynchronous CAs, where one cell is updated at each time step, was
carried out by [14], where the different dynamical behavior of synchronous
and asynchronous CAs was compared; the authors argued that some of the
apparent self-organization of CAs is an artifact of the synchronization of
the clocks. Wolfram [33] noted that asynchronous updating makes it more
difficult for information to propagate through the CA and that, furthermore,
such CAs may be harder to analyze. Asynchronous CAs have also been

10



discussed in [17, 3, 20]. This issue is treated within an evolutionary context
in Chapter ??, where asynchronous CAs are evolved to solve computational
tasks [25].

1.4.4 Probabilistic CAs

In a deterministic cellular automaton, for any given input, the system always
goes through the same trajectory of states, ending with the same output.
For a nondeterministic, or probabilistic CA the same input may result in
different trajectories, and possibly different outputs. Nondeterminism may
be inherent to the system’s functional definition or it may result due to
faults. As an example, consider a two-state CA, where a cell updates its
state in a non-deterministic manner, setting it at the next time step to that
specified in the rule table, with probability 1 − pf , or the complementary
state, with probability pf . The value pf can be regarded as the probability
that a cell will malfunction (this type of fault was studied, e.g., by [24]).

11



Bibliography

[1] S. C. Benjamin and N. F. Johnson. A possible nanometer-scale com-
puting device based on an adding cellular automaton. Applied Physics
Letters, 70(17):2321–2323, April 1997.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your
Mathematical Plays, volume 2, chapter 25, pages 817–850. Academic
Press, New York, 1982.

[3] H. Bersini and V. Detour. Asynchrony induces stability in cellular
automata based models. In R. A. Brooks and P. Maes, editors, Artificial
Life IV, pages 382–387, Cambridge, Massachusetts, 1994. The MIT
Press.

[4] A. Burks, editor. Essays on Cellular Automata. University of Illinois
Press, Urbana, Illinois, 1970.

[5] B. Chopard and M. Droz. Cellular Automata Modeling of Physical
Systems. Cambridge University Press, Cambridge, UK, 1998.

[6] E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

[7] K. Culik II, L. P. Hurd, and S. Yu. Computation theoretic aspects of
cellular automata. Physica D, 45:357–378, 1990.

[8] G. B. Ermentrout and L. Edelstein-Keshet. Cellular automata ap-
proaches to biological modeling. Journal of Theoretical Biology, 160:97–
133, 1993.

[9] S. Forrest, editor. Emergent Computation: Self-organizing, Collective,
and Cooperative Phenomena in Natural and Artificial Computing Net-
works. The MIT Press, Cambridge, MA, 1991.

12



[10] E. Fredkin and T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21:219–253, 1982.

[11] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
Navier-Stokes equation. Physical Review Letters, 56:1505–1508, 1986.

[12] M. Garzon. Models of Massive Parallelism: Analysis of Cellular Au-
tomata and Neural Networks. Springer-Verlag, Berlin, 1995.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Lan-
guages and Computation. Addison-Wesley, Redwood City, CA, 1979.

[14] T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular
automata. Physica D, 10:59–68, 1984.

[15] C. G. Langton. Life at the edge of chaos. In C. G. Langton, C. Taylor,
J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of
SFI Studies in the Sciences of Complexity, pages 41–91, Redwood City,
CA, 1992. Addison-Wesley.

[16] N. Margolus. Physics-like models of computation. Physica D, 10:81–95,
1984.

[17] M. A. Nowak, S. Bonhoeffer, and R. M. May. Spatial games and the
maintenance of cooperation. Proceedings of the National Academy of
Sciences USA, 91:4877–4881, May 1994.

[18] J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-
reproducing universal computer. Physica D, 97:335–352, 1996.

[19] M. Sipper. An introduction to artificial life. Explorations in Artificial
Life (special issue of AI Expert), pages 4–8, September 1995. Miller
Freeman, San Francisco, CA.

[20] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Pro-
gramming Approach. Springer-Verlag, Heidelberg, 1997.

[21] M. Sipper. If the milieu is reasonable: Lessons from nature on creating
life. Journal of Transfigural Mathematics, 3(1):7–22, 1997.

[22] M. Sipper and E. Ruppin. Co-evolving architectures for cellular ma-
chines. Physica D, 99:428–441, 1997.

13



[23] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and
A. Stauffer. A phylogenetic, ontogenetic, and epigenetic view of bio-
inspired hardware systems. IEEE Transactions on Evolutionary Com-
putation, 1(1):83–97, April 1997.

[24] M. Sipper, M. Tomassini, and O. Beuret. Studying probabilistic faults
in evolved non-uniform cellular automata. International Journal of
Modern Physics C, 7(6):923–939, 1996.

[25] M. Sipper, M. Tomassini, and M. S. Capcarrère. Evolving asynchronous
and scalable non-uniform cellular automata. In G. D. Smith, N. C.
Steele, and R. F. Albrecht, editors, Proceedings of International Con-
ference on Artificial Neural Networks and Genetic Algorithms (ICAN-
NGA97), pages 66–70. Springer-Verlag, Vienna, 1997.

[26] T. Toffoli. Cellular automata mechanics. Technical Report 208, Comp.
Comm. Sci. Dept., The University of Michigan, 1977.

[27] T. Toffoli. Reversible computing. In J. W. De Bakker and J. Van
Leeuwen, editors, Automata, Languages and Programming, pages 632–
644. Springer-Verlag, 1980.

[28] T. Toffoli. Cellular automata as an alternative to (rather than an ap-
proximation of) differential equations in modeling physics. Physica D,
10:117–127, 1984.

[29] T. Toffoli and N. Margolus. Cellular Automata Machines. The MIT
Press, Cambridge, Massachusetts, 1987.

[30] G. Vichniac. Simulating physics with cellular automata. Physica D,
10:96–115, 1984.

[31] G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and quenched
inhomogeneous cellular automata. Journal of Statistical Physics,
45:875–883, 1986.

[32] J. von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, Illinois, 1966. Edited and completed by A. W. Burks.

[33] S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, Read-
ing, MA, 1994.

14


