
D
R

A
FT

Chapter 1

LET THE GAMES EVOLVE!∗

Moshe Sipper
Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract I survey my group’s results over the past six years within the game area, demon-
strating continual success in evolving winning strategies for challenging games
and puzzles, including: chess, backgammon, Robocode, lose checkers, simulated
car racing, Rush Hour, and FreeCell.

Keywords: backgammon, chess, FreeCell, lose checkers, policy, RARS, Robocode, Rush
Hour.

It was on a bitterly cold night and frosty morning, towards the end of the winter
of ’97, that I was awakened by a tugging at my shoulder. It was Holmes. The
candle in his hand shone upon his eager, stooping face, and told me at a glance
that something was amiss.

“Come, Watson, come!” he cried. “The game is afoot. Not a word! Into
your clothes and come!”

Arthur Conan Doyle, “The Adventure of the Abbey Grange”

1. GP is for Genetic Programming, GP is for Game
Playing

Ever since the dawn of artificial intelligence (AI) in the 1950s games have
been part and parcel of this lively field. In 1957, a year after the Dartmouth
Conference that marked the official birth of AI, Alex Bernstein designed a
program for the IBM 704 that played two amateur games of chess. In 1958,
Allen Newell, J. C. Shaw, and Herbert Simon introduced a more sophisticated
chess program (beaten in thirty-five moves by a ten-year-old beginner in its last
official game played in 1960). Arthur L. Samuel of IBM spent much of the
fifties working on game-playing AI programs, and by 1961 he had a checkers

∗Draft version. Final version to appear in Genetic Programming Theory and Practice IX (GPTP 2011).



2

program that could play rather decently. In 1961 and 1963 Donald Michie
described a simple trial-and-error learning system for learning how to play Tic-
Tac-Toe (or Noughts and Crosses) called MENACE (for Matchbox Educable
Noughts and Crosses Engine).

Why do games attract such interest? “There are two principal reasons to
continue to do research on games,” wrote (Epstein, 1999). “First, human fasci-
nation with game playing is long-standing and pervasive. Anthropologists have
catalogued popular games in almost every culture... Games intrigue us because
they address important cognitive functions... The second reason to continue
game-playing research is that some difficult games remain to be won, games
that people play very well but computers do not. These games clarify what our
current approach lacks. They set challenges for us to meet, and they promise
ample rewards.”

Studying games may thus advance our knowledge in both cognition and
artificial intelligence, and, last but not least, games possess a competitive angle
which coincides with our human nature, thus motivating both researcher and
student alike.

During the past few years there has been an ever-increasing interest in the
application of computational intelligence techniques in general, and evolution-
ary algorithms in particular, within the vast domain of games. I happened to
stumble across this trend early on and decided to climb aboard the gamesome
boat while it was still not too far from the harbor.

The year 2005 saw the first IEEE Symposium on Computational Intelli-
gence and Games, which went on to become an annually organized event. The
symposia’s success and popularity led to their promotion from symposium to
conference in 2010, and also spawned the journal IEEE Transactions on Com-
putational Intelligence and AI in Games in 2009. In 2008, a journal showcase
of evolutionary computation in games seemed to be the right thing to do—so
we did it (Sipper and Giacobini, 2008).

In this paper I survey my group’s results over the past six years within
the game area, demonstrating continual success in evolutionarily tackling hard
games and puzzles. The next section presents our earliest results in three games:
chess, backgammon, and Robocode. Section 3 delineates the application of GP
to evolving lose checkers strategies. In Section 4 we apply GP to a single-player
game—a puzzle—known as Rush Hour. Sections 5 and 6 summarize results
obtained for FreeCell and RARS (Robot Auto Racing Simulator ), respectively.
Finally, we end with concluding remarks in Section 7.1

1Caveat lector: Given the limited space and my intended coverage some sections are less detailed than others.
Full details can, of course, be found in the references provided.



Let the Games Evolve! 3

Figure 1-1 Robocode: GP
bot (left) fights an enemy
(right) to the death (and lives
to tell the tale).

2. Genesis: A Wholly Trinity

Our ludic pursuit began in 2005 with the study of three games—chess,
backgammon, and Robocode (Sipper et al., 2007):

1 Backgammon. The goal was to evolve a full-fledged player for the non-
doubling-cube version of the game (Azaria and Sipper, 2005a; Azaria
and Sipper, 2005b).

2 Chess (endgames). The goal was to evolve a player able to play endgames
(Hauptman and Sipper, 2005a; Hauptman and Sipper, 2005b). While
endgames typically contain but a few pieces, the problem of evaluation
is still hard, as the pieces are usually free to move all over the board,
resulting in complex game trees—both deep and with high branching
factors. Indeed, in the chess lore much has been said and written about
endgames.

3 Robocode. A simulation-based game in which robotic tanks fight to
destruction in a closed arena (Figure 1-1). The programmers implement
their robots in the Java programming language, and can test their creations
either by using a graphical environment in which battles are held, or by
submitting them to a central web site where online tournaments regularly
take place. Our goal here was to evolve robocode players able to rank
high in the international league (Shichel et al., 2005).

A strategy for a given player in a game is a way of specifying which choice
the player is to make at every point in the game from the set of allowable
choices at that point, given all the information that is available to the player at
that point (Koza, 1992). The problem of discovering a strategy for playing a
game can be viewed as one of seeking a computer program. Depending on the
game, the program might take as input the entire history of past moves or just
the current state of the game. The desired program then produces the next move



4

as output. For some games one might evolve a complete strategy that addresses
every situation tackled. This proved to work well with Robocode, which is a
dynamic game, with relatively few parameters, and little need for past history.

Another approach (which can probably be traced back to (Samuel, 1959))
is to couple a current-state evaluator (e.g., board evaluator) with a next-move
generator. One can go on to create a minimax tree, which consists of all possible
moves, countermoves, counter-countermoves, and so on; for real-life games,
such a tree’s size quickly becomes prohibitive. Deep Blue, the famous ma-
chine chess player, and its offspring Deeper Blue, relied mainly on brute-force
methods to gain an advantage over the opponent, by traversing as deeply as pos-
sible the game tree (Kendall and Whitwell, 2001). Although these programs
achieved amazing performance levels, Chomsky criticized this aspect of game-
playing research as being “about as interesting as the fact that a bulldozer can
lift more than some weight lifter” (Chomsky, 1993). The approach we used
with backgammon and chess was to derive a very shallow, single-level tree,
and evolve “smart” evaluation functions. Our artificial player was thus had
by combining an evolved board evaluator with a (relatively simple) program
that generated all next-move boards (such programs can easily be written for
backgammon and chess).

Thus, we used GP to evolve either complete game strategies (Robocode) or
board-evaluation functions (chess, backgammon). Our results for these three
games (which also garnered two HUMIE awards, in 2005 and 2007) are sum-
marized below.

Backgammon. We pitted our top evolved backgammon players against
Pubeval, a free, public-domain board evaluation function written by Gerry
Tesauro to serve as a common standardized benchmark. It is a linear function
of the raw board information (number of checkers at each location), which
represents a linear approximation to human play. The program became the de
facto yardstick used by the growing community of backgammon-playing pro-
gram developers. Our top evolved player was able to attain a win percentage
of 62.4% in a tournament against Pubeval, about 10% higher than the previous
top method. Moreover, several different evolved strategies were able to surpass
the 60% mark, and most of them outdid all previous works.

Chess (endgames). We pitted our top evolved chess-endgame players
against two very strong external opponents: 1) A program we wrote (‘Master’)
based upon consultation with several high-ranking chess players; 2) CRAFTY—
a world-class chess program, which finished second in the 2004 World Com-
puter Speed Chess Championship. Speed chess (“blitz”) involves a time-limit
per move, which we imposed both on CRAFTY and on our players. Not only
did we thus seek to evolve good players, but ones that played well and fast.



Let the Games Evolve! 5

Table 1-1. Percent of wins, material advantage without mating (having a higher point count
than the opponent), and draws for best GP-EndChess player in a tournament against two top
competitors.

%Wins %Advs %Draws
Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

Results are shown in Table 1-1. As can be seen, GP-EndChess managed to
hold its own, and even win, against these top players.

Deeper analysis of the strategies developed (Hauptman and Sipper, 2005a)
revealed several important shortcomings, most of which stemmed from the fact
that they used deep knowledge and little search, typically developing only one
level of the search tree. Simply increasing the search depth would not have
solved the problem, since the evolved programs examined each board very
thoroughly, and scanning many boards would have increased time requirements
prohibitively. And so we turned to evolution to find an optimal way to overcome
this problem: How to add more search at the expense of less knowledgeable
(and thus less time-consuming) node evaluators, while attaining better perfor-
mance. In (Hauptman and Sipper, 2007b) we evolved the search algorithm
itself, focusing on the Mate-In-N problem: find a key move such that even
with the best possible counterplays, the opponent cannot avoid being mated
in (or before) move N . Our evolved search algorithms successfully solved
several instances of the Mate-In-N problem, for the hardest ones developing
47% less game-tree nodes than CRAFTY. Improvement was thus not over the
basic alpha-beta algorithm, but over a world-class program using all standard
enhancements.

Finally, in (Hauptman and Sipper, 2007a), we examined a strong evolved
chess-endgame player, focusing on the player’s emergent capabilities and tac-
tics in the context of a chess match. Using a number of methods, we analyzed
the evolved player’s building blocks and their effect on play level (e.g., com-
parison of evolved player’s moves and CRAFTY’s, study of play level of single
terminals, disabling of terminals in evolved player, etc’). We concluded that
evolution found combinations of building blocks that were far from trivial and
could not be explained through simple combination—thereby indicating the
possible emergence of complex strategies.

Robocode. A Robocode player is written as an event-driven Java program.
A main loop controls the tank activities, which can be interrupted on various
occasions, called events. The program was limited to four lines of code, as we
were aiming for the HaikuBot category, one of the divisions of the international
league with a four-line code limit.



6

We submitted our top evolved player to the online league. At its very first
tournament it came in third, later climbing to first place of 28.2 All other 27
programs—defeated by our evolved bot—were written by humans.

3. You Lose, You Win

Many variants of the game of checkers exist, several of them played by a
great number of people (including tournament play). Practically all checkers
variants are two-player games that contain only two types of pieces set on an
n× n board. The most well-known variant of checkers is American checkers.
It offers a relatively small search space (roughly 1020 legal positions compared
to the 1043–1050 estimated for chess) with a relatively small branching factor.
It is fairly easy to write a competent3 computer player for American checkers
using minimax search and a trivial evaluation function. The generic evaluation
function for checkers is a piece differential that assigns extra value to kings on
the board. This sort of player was used by (Chellapilla and Fogel, 2001) in their
work on evolving checkers-playing programs.

American checkers shares its domain with another, somewhat less-popular
variant of checkers, known as lose checkers. The basic rules of lose checkers are
the same as American checkers (though the existence of different organizations
may cause some difference in the peripheral rules). The objective, however,
is quite different. A losing position for a player in American checkers is a
winning position for that player in lose checkers and vice versa (i.e., one wins
by losing all pieces or remaining with no legal move). (Hlynka and Schaeffer,
2006) observed that, unlike the case of American checkers, lose checkers lacks
an intuitive state evaluation function. Surprisingly (and regrettably) the inverse
of the standard, piece differential-based checkers evaluation function is woe-
fully ineffective. In some cases lose checkers computer players rely solely on
optimized deep search and an endgame state database, having the evaluation
function return a random value for states not in the database.

To date, there has been limited research interest in lose checkers (Hlynka
and Schaeffer, 2006; Smith and Sailer, 2004), leaving room for improvement.4

The mere fact that it is difficult to hand-craft a good evaluation function for
lose checkers allows for the claim that any good evaluation function is in fact
human competitive. If capable human programmers resort to having their evalu-

2robocode.yajags.com/20050625/haiku-1v1.html
3We use “competent” to describe players that show a level of playing skill comparable to some human players
(i.e., are not trivially bad) and yet do not exhibit the level of play of the strongest players (be they computer
or human) available. As it is often hard to compare levels of play between different games, we find this fluid
definition of “competence” to be suitable.
4American checkers was solved by (Schaeffer et al., 2007).



Let the Games Evolve! 7

Table 1-2. Lose checkers: Basic domain-independent terminal nodes. F: floating point, B:
boolean.

Node name Return type Return value
ERC() F Preset random number
False() B Boolean false value
One() F 1
True() B Boolean true value
Zero() F 0

Table 1-3. Lose checkers: Domain-specific terminal nodes that deal with board characteristics.
Node name Type Return value
EnemeyKingCount() F The enemy’s king count
EnemeyManCount() F The enemy’s man count
EnemeyPieceCount() F The enemy’s piece count
FriendlyKingCount() F The player’s king count
FriendlyManCount() F The player’s man count
FriendlyPieceCount() F The player’s piece count
KingCount() F FriendlyKingCount() – EnemeyKingCount()
KingFactor() F King factor value
ManCount() F FriendlyManCount() – EnemeyManCount()
Mobility() F The number of plies available to the player
PieceCount() F FriendlyPieceCount() – EnemeyPieceCount()

Table 1-4. Lose checkers: Domain-specific terminal nodes that deal with square characteristics.
They all receive two parameters—X and Y—the row and column of the square, respectively.

Node name Type Return value
IsEmptySquare(X,Y) B True iff square empty
IsFriendlyPiece(X,Y) B True iff square occupied by friendly piece
IsKingPiece(X,Y) B True iff square occupied by king
IsManPiece(X,Y) B True iff square occupied by man

ation function return random values, then any improvement on random is worth
noting.

We have recently applied GP to evolving good lose-checkers players (Ben-
bassat and Sipper, 2010). The individuals in the population acted as board-
evaluation functions, to be combined with a standard game-search algorithm
such as alpha-beta. The value they returned for a given board state was seen as
an indication of how good that board state was for the player whose turn it was
to play.

We used strongly typed GP with two node types: Boolean and floating point.
The terminal set comprised basic domain-independent nodes (Table 1-2) and
domain-specific nodes. These latter are listed in two tables: Table 1-3 shows
nodes describing characteristics that have to do with the board in its entirety,
and Table 1-4 shows nodes describing characteristics of a certain square on the
board. The function nodes are listed in Table 1-5.



8

Table 1-5. Lose checkers: Function nodes. Fi: floating-point parameter, Bi: Boolean param-
eter.

Node name Type Return value
AND(B1,B2) B Logical AND of parameters
LowerEqual(F1,F2) B True iff F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters
NOR(B1,B2) B Logical NOR of parameters
NOTG(B1,B2) B Logical NOT of B1

OR(B1,B2) B Logical OR of parameters
IFT(B1,F1,F2) F F1 if B1 is true and F2 otherwise
Minus(F1,F2) F F1 − F2

MultERC(F1) F F1 multiplied by preset random number
NullFuncJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

Figure 1-2 Lose checkers:
Sample tree.

Figure 1-2 shows a sample tree, which returns 0 if the friendly piece count is
less than or equal to double the number of enemy kings on the board, otherwise
returning the number of enemy kings plus 3.4.

Aside from the standard two-point crossover we introduced a one-way
crossover operator: randomly select a subtree in both participating individ-
uals, and then insert a copy of the selected subtree from the first individual
(donor) in place of the selected subtree from the second individual (receiver).
The individual with higher fitness was always chosen to act as the donor. We
also defined a form of local, minimally disruptive mutation, and used explicitly
defined introns (Benbassat and Sipper, 2010).

As for fitness, evolving players faced two types of opponents: external
“guides,” and their own cohorts in the population (the latter known as co-
evolution). Two types of guides were implemented: A random player and an
alpha-beta player. The random player chose a move at random and was used to
test initial runs. The alpha-beta player searched up to a preset depth in the game
tree and used an evaluation function returning a random value for game states
for which there was no clear winner (in states where win or loss was evident
the evaluation function returned an appropriate value). An individual’s fitness



Let the Games Evolve! 9

value was proportional to its performance in a set of games against a mix of
opponent guides and cohorts.

Our setup supported two different kinds of GP players. The first examined all
legal moves and used the GP individual to assign scores to the different moves,
choosing the one that scored highest. This method is essentially a minimax
search of depth 1. The second kind of player mixed GP game-state evaluation
with a minimax search. It used the alpha-beta search algorithm implemented
for the guides, but instead of evaluating non-terminal states randomly it did so
using the GP individual. This method added search power to our players but
required more time.

(Benbassat and Sipper, 2010) presents a plethora of experiments we per-
formed, the bottom line being the emergence of highly competent players. Our
evolved alpha-beta players were able to beat opponent alpha-beta players that
searched considerably deeper. To wit, our players were able not only to win—
but to do so while expending far fewer computational resources (i.e., expansion
of tree nodes).

4. Help! I’m Stuck in the Parking Lot

Single-player games, or puzzles, have received much attention from the AI
community for quite some time (e.g., (Hearn, 2006; Robertson and Munro,
1978)). Quite a few NP-Complete puzzles, though, have remained relatively
neglected by researchers (see (Kendall et al., 2008) for a review).

Among these difficult games we find the Rush Hour puzzle.5 The commercial
version of this popular single-player game is played on a 6x6 grid, simulating
a parking lot replete with several vehicles. The goal is to find a sequence
of legal vehicular moves that ultimately clears the way for the red target car,
allowing it to exit the lot through a tile that marks the exit (see Figure 1-3).
Vehicles—of length two or three tiles—are restricted to moving either vertically
or horizontally (but not both), they cannot vault over other vehicles, and no two
vehicles may occupy the same tile at once. The generalized version of the
game is defined on an arbitrary grid size, though the 6x6 board is sufficiently
challenging for humans (we are not aware of humans playing, let alone solving,
complex boards larger than 6x6).

How does one go about solving such a puzzle through computational means?
A primary problem-solving approach within the field of AI is that of heuristic
search. One of the most important heuristic search algorithms is iterative-
deepening A* (IDA*) (Hart et al., 1968; Korf, 1985), which is widely used to
solve single-player games. IDA* and similar algorithms are strongly based on

5The name “Rush Hour” is a trademark of Binary Arts, Inc. The game was originally invented by Nobuyuki
Yoshigahara in the late 1970s.



10

(a) (b)

Figure 1-3. (a) A sample Rush Hour configuration. This is problem no. 9 of the problem set
shipped with the standard version of the game by Binary Arts, Inc. (b) A possible goal state: the
red car has reached the exit tile on the right-hand side of the grid.

the notion of approximating the distance of a given configuration (or state) to
the problem’s solution (or goal). Such approximations are found by means of
a computationally efficient function, known as the heuristic function.

By applying the heuristic function to states reachable from the current ones
considered it becomes possible to select more-promising alternatives earlier on
in the search process, possibly reducing the amount of search effort (typically
measured in number of nodes expanded) required to solve a given problem.
The putative reduction is strongly tied to the quality of the heuristic function
used: employing a perfect function means simply “strolling” onto the solution
(i.e., no search de facto), while using a bad function could render the search
less efficient than totally uninformed search, such as breadth-first search (BFS)
or depth-first search (DFS).

In (Hauptman et al., 2009) we used GP to evolve heuristic functions for the
Rush Hour puzzle. We first constructed a “brute-force,” iterative-deepening
search algorithm, along with several search enhancements—some culled from
the literature, some of our own devise—but with no heuristic functions. As
expected, this method worked well on relatively simple boards, and even solved
most moderately difficult ones within reasonable bounds of space and time.
However, when dealing with complex problems, this method yielded inadequate
performance.

We moved on to hand-crafting several novel heuristics for this domain, which
we then tested empirically. The effect of these heuristics on search efficiency
was inconsistent, alternating between decreasing the number of nodes traversed
by 70% (for certain initial configurations) and increasing this number by as
much as 170% (for other configurations). It was clear at this point that using
our heuristics correctly was a difficult task.

Enter GP. Our main set of experiments focused on evolving combinations
of the basic heuristics devised—a form of hyper-heuristic search. We used the



Let the Games Evolve! 11

Table 1-6. Rush Hour: Terminal set of an individual program in the population. B:Boolean,
R:Real or Integer. The upper part of the table contains terminals used both in Condition and
V alue trees, while the lower part regards Condition trees only.

Node name Type Return value
BlockersLowerBound R A lower bound on the number of moves required to remove blocking

vehicles out of the red car’s path
GoalDistance R Sum of all vehicles’ distances to their locations in the deduced-goal

board
Hybrid R Same asGoalDistance, but also add number of vehicles between

each car and its designated location
{0.0, 0.1 . . . , 1.0, 1, . . . , 9} R Numeric terminals

IsMoveToSecluded B Did the last move taken position the vehicle at a location that no other
vehicle can occupy?

IsReleasingMove B Did the last move made add new possible moves?
g R Distance from the initial board
PhaseByDistance R g ÷ (g +DistanceToGoal)
PhaseByBlockers R g ÷ (g +BlockersLowerBound)
NumberOfSiblings R The number of nodes expanded from the parent of the current node
DifficultyLevel R The difficulty level of the given problem, relative to other problems

in the current problem set.

basic heuristics as building blocks in a GP setting, wherein individuals were
embodied as ordered sets of search-guiding rules (or policies), the parts of which
were GP trees. The effect on performance was profound: evolution proved
immensely efficacious, managing to combine heuristics of highly variable utility
into composites that were nearly always beneficial, and far better than each
separate component.

Table 1-6 lists the heuristics and auxiliary functions we devised. Using these
elemental blocks effectively is a difficult task, as it involves solving two major
sub-problems:

1 Finding exact conditions regarding when to apply each heuristic (in order
to avoid the strong inconsistent effect on performance mentioned above).

2 Combining several estimates to get a more accurate one. We hypothesized
that different areas of the search space might benefit from the application
of different heuristics.

As we wanted to embody both application conditions and combinations of es-
timates, we decided to evolve ordered sets of control rules, or policies. Policies
typically have the following structure:

RULE1: IF Condition1 THEN V alue1

.

.
RULEN : IF ConditionN THEN V alueN
DEFAULT : V alueN+1

whereConditioni andV aluei represent conditions and estimates, respectively.
Policies are used by the search algorithm in the following manner: The rules

are ordered such that we apply the first rule that “fires” (meaning its condition



12

is true for a given board), returning its V alue part. If no rule fires, the value is
taken from the last (default) tree: V alueN+1. Thus, individuals, while in the
form of policies, are still board evaluators (or heuristics)—the value returned
by the activated rule is an arithmetic combination of heuristic values, and is
thus a heuristic value itself. This suits our requirements: rule ordering and
conditions control when we apply a heuristic combination, and values provide
the combinations themselves.

Thus, withN being the number of rules used, each individual in the evolving
population contains N Condition GP-trees and N + 1 V alue GP-trees. After
experimenting with several sizes of policies, we settled onN = 5, providing us
with enough rules per individual, while avoiding “heavy” individuals with too
many rules. The depth limit used both for the Condition and V alue trees was
empirically set to 5. The function set included {AND,OR,≤,≥} for condition
trees and {×,+} for value trees.

Fitness scores were obtained by performing full IDA* search with the given
individual used as the heuristic function. For each solved board we assigned
to the individual a score equal to the percentage of nodes reduced, compared
to searching with no heuristics. For unsolved boards this score was 0. Scores
were averaged over 10 randomly selected boards from the training set.

Our results (which garnered another HUMIE in 2009) proved excellent. In-
deed, our success with 6x6 boards led us to evolve more problem instances,
specifically, difficult 8x8 boards. Overall, evolved policies managed to cut the
amount of required search to 40% for 6x6 boards and to 10% for 8x8 boards,
compared to iterative deepening.

(Baum and Durdanovic, 2000) tackled Rush Hour with an artificial economy
of agents, their best reported solver able to solve 15 of the 40 standard problems
(we solved all). Interestingly, they also tried a GP approach, noting, “We have
tried several approaches to getting a Genetic Program to solve these problems,
varying the instance presentation scheme and other parameters... it has never
learned to solve any of the original problem set.” Obviously, with the right GP
approach, Rush Hour can be solved.

5. Lunch Isn’t Free—But Cells Are

A well-known, highly popular example within the domain of discrete puzzles
is the card game of FreeCell. Starting with all cards randomly divided into
k piles (called cascades), the objective of the game is to move all cards onto
four different piles (called foundations)—one per suit—arranged upwards from
the ace until the king. Additionally, there are initially empty cells (called
FreeCells), whose purpose is to aid with moving the cards. Only exposed cards
can be moved, either from FreeCells or foundations. Legal move destinations
include: a home cell, if all previous (i.e., lower) cards are already there; empty



Let the Games Evolve! 13

Figure 1-4. A FreeCell game configuration. Cascades: Bottom 8 piles. Foundations: 4 upper-
right piles. FreeCells: 4 upper-left piles. Note that cascades are not arranged according to suits,
but foundations are. Legal moves for current configuration: 1) moving 7♣ from the leftmost
cascade to either the pile fourth from the left (on top of the 8♦), or to the pile third from the
right (on top of the 8♥); 2) moving the 6♦ from the right cascade to the left one (on top of the
7♣); and 3) moving any single card on top of a cascade onto the empty FreeCell.

FreeCells; and, on top of a next-highest card of opposite color in a cascade
(Figure 1-4). FreeCell was proven by Helmert to be NP-Complete (Helmert,
2003). Computational complexity aside, many (oft-frustrated) human players
(including the authors) will readily attest to the game’s hardness. The attainment
of a competent machine player would undoubtedly be considered a human-
competitive result.

FreeCell remained relatively obscure until it was included in the Windows 95
operating system (and in all subsequent versions), along with 32,000 problems—
known as Microsoft 32K—all solvable but one (this latter, game #11982, was
proven to be unsolvable). Despite there being numerous FreeCell solvers avail-
able via the Web, few have been written up in the scientific literature. The
best published solver to date was that of Heineman (Heineman, 2009), able to
solve 96% of Microsoft 32K using a hybrid A* / hill-climbing search algorithm
called staged deepening (henceforth referred to as the HSD algorithm). The
HSD algorithm, along with a heuristic function, forms Heineman’s FreeCell
solver (we made a distinction between the HSD algorithm, the HSD heuristic,
and the HSD solver—which includes both).

In (Elyasaf et al., 2011) we used a genetic algorithm to develop the strongest
known heuristic-based solver for the game of FreeCell, substantively surpassing
that of Heineman’s. Along the way we devised several novel heuristics for
FreeCell (Table 1-7), many of which could be applied to other domains and
games.



14

Table 1-7. FreeCell: List of heuristics used by the genetic algorithm. R: Real or Integer.
Node name Type Return value
HSDH R Heineman’s staged deepening heuristic
NumberWellPlaced R Number of well-placed cards in cascade piles
NumCardsNotAtFoundations R Number of cards not at foundation piles
FreeCells R Number of free FreeCells and cascades
DifferenceFromTop R Average value of top cards in cascades minus average value of top cards

in foundation piles
LowestHomeCard R Highest possible card value minus lowest card value in foundation piles
HighestHomeCard R Highest card value in foundation piles
DifferenceHome R Highest card value in foundation piles minus lowest one
SumOfBottomCards R Highest possible card value multiplied by number of suites, minus sum of

cascades’ bottom card

Combining several heuristics to get a more accurate one is considered one of
the most difficult problems in contemporary heuristics research (Burke et al.,
2010; Samadi et al., 2008). In (Elyasaf et al., 2011) we tackled a sub-problem,
that of combining heuristics by arithmetic means, by summing their values or
taking the maximal value. The problem of combining heuristics is difficult
primarily because it entails traversing an extremely large search space of pos-
sible numeric combinations and game configurations. To tackle this problem
we used a genetic algorithm.

Each individual comprised 9 real values in the range [0, 1), representing
a linear combination of all 9 heuristics listed in Table 1-7. Specifically, the
heuristic value, H , designated by an evolving individual was defined as H =∑9

i=1wihi, where wi is the ith weight specified by the genome, and hi is
the ith heuristic shown in Table 1-7. To obtain a more uniform calculation
we normalized all heuristic values to within the range [0, 1] by maintaining a
maximal possible value for each heuristic, and dividing by it. For example,
DifferenceHome returns values in the range [0, 13] (13 being the difference
between the king’s value and the ace’s value), and the normalized values are
attained by dividing by 13.

An individual’s fitness score was obtained by performing full HSD search on
deals (initial configurations) taken from the training set, with the individual used
as the heuristic function. Fitness equaled the average search-node reduction
ratio. This ratio was obtained by comparing the reduction in number of search
nodes—averaged over solved deals—with the average number of nodes when
searching with the original HSD heuristic (HSDH). For example, if the average
reduction in search was by 70% compared with HSDH (i.e., 70% less nodes
expanded on average), the fitness score was set to 0.7. If a given deal was not
solved within 2 minutes (a time limit we set empirically), we assigned a fitness
score of 0 to that deal.

To distinguish between individuals that did not solve a given deal and indi-
viduals that solved it but without reducing the amount of search (the latter case
reflecting better performance than the former), we assigned to the latter a partial



Let the Games Evolve! 15

score of (1−FractionExcessNodes)/C, where FractionExcessNodes is the
fraction of excessive nodes (values greater than 1 were truncated to 1), and C
is a constant used to decrease the score relative to search reduction (set empir-
ically to 1000). For example, an excess of 30% would yield a partial score of
(1− 0.3)/C; an excess of over 200% would yield 0.

We used Hillis-style coevolution wherein a population of solutions coevolves
alongside a population of problems (Hillis, 1990). The basic idea is that neither
population should stagnate: As solvers become more adept at solving certain
problems these latter do not remain in the problem set (as with a simple GA) but
are rather removed from the population of problems—which itself evolves. In
this form of competitive coevolution the fitness of one population is inversely
related to the fitness of the other population. Specifically, in our coevolutionary
scenario the first population comprised the solvers and in the second population
an individual represented a set of FreeCell deals.

And the winner was... GA-FreeCell. Our evolutionarily produced FreeCell
solver significantly surpasses the best published solver to date by three distinct
measures: 1) Number of search nodes is reduced by 87%; 2) time to solution
is reduced by 93%; and 3) average solution length is reduced by 41%. Our top
solver is the best published FreeCell player to date, solving 98% of the standard
Microsoft 32K problem set, and also able to beat high-ranking human players.

One of our best solvers is the following: (+ (* DifferenceToGoal 0.09) (* Dif-
ferenceToNextStepHome 0.01) (* FreeCells 0.0) (* DifferenceFromTop 0.77)
(* LowestHomeCard 0.01) (* UppestHomeCard 0.08) (* NumOfArranged 0.01)
(* DifferenceHome 0.01) (* BottomCardsSum 0.02)). (In other good solvers
DifferenceFromTop was less weighty.)

How does our evolution-produced player fare against humans? The website
www.freecell.net provides a ranking of human FreeCell players, listing
solution time and win rate (alas, no data on number of boards examined by
humans, nor on solution lengths). The site statistics, which we downloaded
on April 12, 2011, included results for 76 humans who met our minimal-game
requirement of 30K games—all but two of whom exhibited a win rate greater
than 91%. Sorted according to number of games played, the no. 1 player played
147,219 games, achieving a win rate of 97.61%. This human is therefore pushed
to the second position, with our top player (98.36% win rate) taking the first
place. If the statistics are sorted according to win rate then our player assumes
the no. 9 position. Either way, it is clear that when compared with strong,
persistent, and consisted humans GA-FreeCell emerges as a highly competitive
player.

This work may well have pushed the limit of what has been done with evolu-
tion, FreeCell being one of the most difficult single-player domains (if not the
most difficult) to which evolutionary algorithms have been applied to date.



16

6. A Racy Affair

Controlling a moving vehicle is considered a complex problem, both in simu-
lated and real-world environments. Dealing with physical forces, varying road
conditions, unexpected opponent behavior, damage control, and many other
factors, render the car-racing problem a fertile ground for artificial intelligence
research.

In (Shichel and Sipper, 2011) we applied GP to creating car controller pro-
grams for the game of RARS—Robot Auto Racing Simulator, which is an
open-source, car-race simulator. We chose RARS mainly because of its ex-
tensive human-written driver library, and the substantive amount of published
works that describe machine-learning approaches applied to RARS—enabling
us to perform significant comparisons between our results and both human- and
machine-designed solutions.

A RARS controller is a C++ class with a single method, which receives the
current race situation and determines the desired speed and wheel angle of the
car. The simulation engine queries the controller approximately 20 times per
“game second,” and advances the car according to the returned decisions and
physical constraints. The situation argument provides the agent (car controller)
with detailed information about the current race conditions, such as current
speed and direction, road curvature, fuel status, and nearby car positions.

Controlling the car is done by two actuators: speed and steering. The speed
actuator specifies the desired speed of the car, while the steering actuator speci-
fies the desired wheel angle. The simulation engine uses both values to calculate
the involved physical forces and compute the car’s movement. Extreme values,
such as high speed or a steep steering angle, may result in slippage or skidding,
and must be taken into consideration when crafting a controller.

Using GP to evolve driver controllers we created highly generalized game-
playing agents, able to outperform most human-crafted controllers and all
machine-designed ones on a variety of game tracks (Shichel and Sipper, 2011).

The evolved drivers demonstrated a high degree of generalization, enabling
them to perform well on most tracks—including ones that were not used dur-
ing the evolutionary process. We noted that using a complex track for fitness
evaluation, coupled with a comprehensive yet simple set of genetic building
blocks, contributed greatly to our controllers’ generalization capabilities. We
also analyzed the evolved code, observing the emergence of useful patterns,
such as a time-to-crash indicator. Such patterns, not pre-coded into the system,
were repeatedly used in the evolved individuals’ code, acting as evolution-made
genetic building blocks.



Let the Games Evolve! 17

7. In Conclusion... Evolution Rocks!

Our extensive experience shows that evolutionary algorithms, and in partic-
ular genetic programming, are able to parlay fragmentary human intuition into
full-fledged winning strategies. Such algorithms are therefore a good candi-
date when confronted with the problem of finding a complex, successful game
strategy or puzzle solver.

We believe that a major reason for our success in evolving winning game
strategies is genetic programming’s ability to readily accommodate human ex-
pertise. When tackling a new game we begin our experimentation with small
sets of functions and terminals, which are then revised and added upon through
our examination of evolved players and their performance. For example, (Sipper
et al., 2007) described three major steps in the development of the evolutionary
chess setup.

Genetic programming represents a viable means to automatic programming,
and perhaps more generally to machine intelligence, in no small part due to
its ability to “cooperate” with humans: more than many other adaptive-search
techniques genetic programming’s representational affluence and openness lend
it to the ready imbuing of the designer’s own intelligence within the geno-
typic language. While AI purists may wrinkle their noses at this, taking the
AI-should-emerge-from-scratch stance, we argue that a more practical path to
AI involves man-machine cooperation. Genetic programming, as evidenced
herein, is a forerunning candidate for the ‘machine’ part.

AI practitioners sometimes overlook the important distinction between two
phases of intelligence (or knowledge) development: 1) from scratch to a mediocre
level, and 2) from mediocre to expert level. Traditional AI is often better at
handling the first phase. Genetic programming allows the AIer to focus his
attention on the second phase, namely, the attainment of true expertise. When
aiming to develop a winning strategy, be it in games or any other domain, the
genetic-programming practitioner will set his sights at the mediocre-to-expert
phase of development, with the scratch-to-mediocre handled automatically dur-
ing the initial generations of the evolutionary process. Although the designer
is “imposing” his own views on the machine, this affords the “pushing” of the
artificial intelligence frontier further out.

To summarize:

Genetic programming has proven to be an excellent tool for automatically
generating complex game strategies.

A crucial advantage of genetic programming lies in its ability to incor-
porate human intelligence readily.

As such, genetic programming is an excellent choice when complex
strategies are needed, and human intelligence is there for the imbuing.



18

I evolve therefore I win.

“Why do you not solve it yourself, Mycroft? You can see as far as I.”

“Possibly, Sherlock... No, you are the one man who can clear the matter up.
If you have a fancy to see your name in the next honours list –”

My friend smiled and shook his head.

“I play the game for the game’s own sake,” said he.

Arthur Conan Doyle, “The Adventure of the Bruce-Partington Plans”

References

Azaria, Yaniv and Sipper, Moshe (2005a). GP-gammon: Genetically program-
ming backgammon players. Genetic Programming and Evolvable Machines,
6(3):283–300. Published online: 12 August 2005.

Azaria, Yaniv and Sipper, Moshe (2005b). Using GP-gammon: Using genetic
programming to evolve backgammon players. In Keijzer, Maarten, Tetta-
manzi, Andrea, Collet, Pierre, van Hemert, Jano I., and Tomassini, Marco,
editors, Proceedings of the 8th European Conference on Genetic Program-
ming, volume 3447 of Lecture Notes in Computer Science, pages 132–142,
Lausanne, Switzerland. Springer.

Baum, E. B. and Durdanovic, I. B. (2000). Evolution of cooperative problem
solving in an artificial economy. Neural Computation, 12:2743–2775.

Benbassat, Amit and Sipper, Moshe (2010). Evolving lose-checkers players
using genetic programming. In IEEE Conference on Computational Intelli-
gence and Game, pages 30–37, IT University of Copenhagen, Denmark.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Woodward,
J. R. (2010). A classification of hyper-heuristic approaches. In Gendreau, M.
and Potvin, J-Y., editors, Handbook of Meta-Heuristics 2nd Edition, pages
449–468. Springer.

Chellapilla, K. and Fogel, D. B. (2001). Evolving an expert checkers playing
program without using human expertise. IEEE Transactions on Evolutionary
Computation, 5(4):422–428.

Chomsky, N. (1993). Language and Thought. Moyer Bell, Wakefield, RI.
Elyasaf, A., Hauptman, A., and Sipper, M. (2011). GA-FreeCell: Evolving

solvers for the game of FreeCell. In GECCO 2011: Proceedings of the
Genetic and Evolutionary Computation Conference, New York, NY, USA.
ACM. (accepted).

Epstein, S. L. (1999). Game playing: The next moves. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence, pages 987–993.
AAAI Press, Menlo Park, California USA.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for heuristic
determination of minimum path cost. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.



Let the Games Evolve! 19

Hauptman, A. and Sipper, M. (2007a). Emergence of complex strategies in the
evolution of chess endgame players. Advances in Complex Systems, 10(suppl.
no. 1):35–59.

Hauptman, Ami, Elyasaf, Achiya, Sipper, Moshe, and Karmon, Assaf (2009).
GP-rush: using genetic programming to evolve solvers for the rush hour puz-
zle. In Raidl, Guenther, Rothlauf, Franz, Squillero, Giovanni, Drechsler, Rolf,
Stuetzle, Thomas, Birattari, Mauro, Congdon, Clare Bates, Middendorf, Mar-
tin, Blum, Christian, Cotta, Carlos, Bosman, Peter, Grahl, Joern, Knowles,
Joshua, Corne, David, Beyer, Hans-Georg, Stanley, Ken, Miller, Julian F.,
van Hemert, Jano, Lenaerts, Tom, Ebner, Marc, Bacardit, Jaume, O’Neill,
Michael, Di Penta, Massimiliano, Doerr, Benjamin, Jansen, Thomas, Poli,
Riccardo, and Alba, Enrique, editors, GECCO ’09: Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, pages 955–
962, Montreal. ACM.

Hauptman, Ami and Sipper, Moshe (2005a). Analyzing the intelligence of a ge-
netically programmed chess player. In Rothlauf, Franz, editor, Late breaking
paper at Genetic and Evolutionary Computation Conference (GECCO’2005),
Washington, D.C., USA.

Hauptman, Ami and Sipper, Moshe (2005b). GP-endchess: Using genetic pro-
gramming to evolve chess endgame players. In Keijzer, Maarten, Tettamanzi,
Andrea, Collet, Pierre, van Hemert, Jano I., and Tomassini, Marco, editors,
Proceedings of the 8th European Conference on Genetic Programming, vol-
ume 3447 of Lecture Notes in Computer Science, pages 120–131, Lausanne,
Switzerland. Springer.

Hauptman, Ami and Sipper, Moshe (2007b). Evolution of an efficient search
algorithm for the mate-in-N problem in chess. In Ebner, Marc, O’Neill,
Michael, Ekárt, Anikó, Vanneschi, Leonardo, and Esparcia-Alcázar, Anna Is-
abel, editors, Proceedings of the 10th European Conference on Genetic Pro-
gramming, volume 4445 of Lecture Notes in Computer Science, pages 78–89,
Valencia, Spain. Springer.

Hearn, R. A. (2006). Games, puzzles, and computation. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Com-
puter Science.

Heineman, G. T. (2009). Algorithm to solve FreeCell solitaire games. Blog
column associated with the book “Algorithms in a Nutshell book,” by G. T.
Heineman, G. Pollice, and S. Selkow, O’Reilly Media, 2008.
http://broadcast.oreilly.com/2009/01/january-column-graph-algorithm.html.

Helmert, M. (2003). Complexity results for standard benchmark domains in
planning. Artificial Intelligence, 143(2):219–262.

Hillis, D. W. (1990). Co-evolving parasites improve simulated evolution in an
optimization procedure. Physica D, 42:228–234.



20

Hlynka, M. and Schaeffer, J. (2006). Automatic generation of search engines.
In Advances in Computer Games, pages 23–38.

Kendall, G., Parkes, A., and Spoerer, K. (2008). A survey of NP-complete
puzzles. International Computer Games Association Journal (ICGA), 31:13–
34.

Kendall, G. and Whitwell, G. (2001). An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. In Proceedings of the
2001 Congress on Evolutionary Computation (CEC2001), pages 995–1002.
IEEE Press.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97–109.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Robertson, E. and Munro, I. (1978). NP-completeness, puzzles and games.
Utilas Mathematica, 13:99–116.

Samadi, M., Felner, A., and Schaeffer, J. (2008). Learning from multiple heuris-
tics. In Fox, Dieter and Gomes, Carla P., editors, Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI 2008), pages 357–
362. AAAI Press.

Samuel, A. L. (1959). Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210–229.

Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R.,
Lu, P., and Sutphen, S. (2007). Checkers is solved. Science, 317(5844):1518–
1522.

Shichel, Y. and Sipper, M. (2011). GP-RARS: Evolving controllers for the
Robot Auto Racing Simulator. Memetic Computing. (accepted).

Shichel, Yehonatan, Ziserman, Eran, and Sipper, Moshe (2005). GP-robocode:
Using genetic programming to evolve robocode players. In Keijzer, Maarten,
Tettamanzi, Andrea, Collet, Pierre, van Hemert, Jano I., and Tomassini,
Marco, editors, Proceedings of the 8th European Conference on Genetic
Programming, volume 3447 of Lecture Notes in Computer Science, pages
143–154, Lausanne, Switzerland. Springer.

Sipper, Moshe, Azaria, Yaniv, Hauptman, Ami, and Shichel, Yehonatan (2007).
Designing an evolutionary strategizing machine for game playing and be-
yond. IEEE Transactions on Systems, Man and Cybernetics, Part C: Appli-
cations and Reviews, 37(4):583–593.

Sipper, Moshe and Giacobini, Mario (2008). Introduction to special section on
evolutionary computation in games. Genetic Programming and Evolvable
Machines, 9(4):279–280.

Smith, M. and Sailer, F. (2004). Learning to beat the world Lose Checkers
champion using TDLeaf(λ).


