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Abstract— We present the application of genetic program-
ming (GP) to the zero-sum, deterministic, full-knowledge board
game of Lose Checkers. Our system implements strongly typed
GP trees, explicitly defined introns, local mutations, and multi-
tree individuals. Explicitly defined introns in the genome allow
for information selected out of the population to be kept as
a reservoir for possible future use. Multi-tree individuals are
implemented by a method inspired by structural genes in living
organisms, whereby we take a single tree describing a state
evaluator and split it.

I. INTRODUCTION

Developing players for board games has been part of
AI research for decades. Board games have precise, easily
formalized rules that render them easy to model in a pro-
gramming environment. In this work we will focus on the full
knowledge, deterministic, zero-sum game of Lose Checkers.

We apply tree-based GP to evolving players for Lose
Checkers. Our guide in developing our algorithm parameters,
aside from previous research into games and GP, is nature
itself. Evolution by natural selection is first and foremost
nature’s algorithm, and as such will serve as a source
for ideas. Though it is by no means assured that an idea
that works in the natural world will work in our synthetic
environment, it can be seen as evidence that it might. We
are mindful of evolutionary theory, particularly as pertaining
to the gene-centered view of evolution. This view, presented
by Williams [21] and expanded upon by Dawkins [4], focuses
on the gene as the unit of selection. It is from this point of
view that we consider how to adapt the ideas borrowed from
nature into our synthetic GP environment.

II. LOSE CHECKERS

Many variants of the game of Checkers exist, several
of them played by a great number of people (including
tournament play). Practically all Checkers variants are two-
player games that contain only two types of pieces set on
an n × n board. The most well-known variant of Checkers
is American Checkers. It offers a relatively small search
space (roughly 1020 legal positions compared to the 1043–
1050 estimated for Chess) with a relatively small branching
factor. It is fairly easy to write a competent1 computer player
for American Checkers using minimax search and a trivial
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1In this work we use “competent” to describe players that show a level of
skill in their play comparable to some human players (i.e., are not trivially
bad) and yet do not exhibit the level of play of the strongest players (be
they computer or human) available. As it is often hard to compare levels of
play between different games, we find this fluid definition of “competence”
to be suitable.

evaluation function.2 American Checkers shares its domain
with another, somewhat less-popular variant of Checkers,
known as Lose Checkers. The basic rules of Lose Checkers
are the same as American Checkers (though the existence
of different organizations may cause some difference in the
peripheral rules). The objective, however, is quite different.
A losing position for a player in American Checkers is a
winning position for that player in Lose Checkers and vice
versa (i.e., one wins by losing all pieces or remaining with
no legal move). Hlynka and Schaeffer [7] observed that,
unlike the case of American Checkers, Lose Checkers lacks
an intuitive state evaluation function. In some cases Lose
Checkers computer players rely solely on optimized deep
search and an endgame state database, having the evaluation
function return a random value for states not in the database.

III. PREVIOUS WORK

In the years since Strachey [20] first designed an American
Checkers-playing algorithm, there has been some work on
Checkers-playing computer programs. Notable progress was
made by Samuel [15, 16], who was the first to use machine
learning to create a competent Checkers-playing computer
program. Samuel’s program managed to beat a competent
human player in 1964. In 1989 a team of researchers from
the University of Alberta led by Jonathan Schaeffer began
working on an American Checkers program called Chinook.
By 1990 it was clear that Chinook’s level of play was
comparable to that of the best human players when it won
second place in the U.S. Checkers championship without
losing a single game. Chinook continued to grow in strength,
establishing its dominance [17]. In 2007, Schaeffer et al. [18]
solved Checkers and became the first to completely solve a
major board game.

Games attract considerable interest from AI researchers.
The field of evolutionary algorithms is no exception to this
rule. Over the years many games have been tackled with
the evolutionary approach. A GA with genomes representing
artificial neural networks (ANNs) was used in 1995 by Mo-
riarty and Miikkulainen [12] to attack the game of Othello,
resulting in a competent player that employed sophisticated
mobility play. ANN-based American Checkers players were
evolved by Chellapilla and Fogel [2, 3] using a GA, their long
runs resulting in expert-level play. GP was used by Azaria
and Sipper [1] to evolve a strong Backgammon player. GP
research by Hauptman and Sipper produced both competent
players for Chess endgames [5] and an efficient solver for
the Mate-in-N problem in Chess [6].

2The generic evaluation function for Checkers is a piece differential that
assigns extra value to kings on the board. This sort of player was used by
Chellapilla and Fogel [2] to test their own evolved player.



TABLE I

BASIC TERMINAL NODES. F: FLOATING POINT, B: BOOLEAN.

Node name Return type Return value
ERC() F Preset random number
False() B Boolean false value
One() F 1
True() B Boolean true value
Zero() F 0

To date, there has been limited research interest in Lose
Checkers, all of it quite recent [7, 19]. This work concentrates
either on search [7] or on finding a good evaluation func-
tion [19]. Though both of these give rise to strong players,
they can also be seen as preliminary attempts that offer much
room for improvement. The mere fact that it is difficult to
hand-craft a good evaluation function for Lose Checkers
allows for the claim that any good evaluation function is
in fact human competitive. If capable human programmers
resort to having their evaluation function return random
values, then any improvement on random is worth noting.

IV. EVOLUTIONARY SETUP

The individuals in the population act as board-evaluation
functions, to be combined with a standard game-search
algorithm (e.g., alpha-beta). The value they return for a
given board state is seen as an indication of how good
that board state is for the player whose turn it is to play.
The evolutionary algorithm was written in Java. We chose
to implement a strongly typed GP framework [11]. The
two types implemented in code are the boolean type and
a floating-point type. Support for a multi-tree interface was
also implemented. We implemented the basic crossover and
mutation operators described by Koza [8]. On top of this,
another form of crossover was implemented—which we
designated “one-way crossover”—as well as a local mutation
operator. The setup is detailed below.

A. Basic Terminal Nodes

Several basic domain-independent terminal nodes were
implemented. These nodes are presented in Table I.

The only node in Table I that requires further explanation
is the ERC (Ephemeral Random Constant). The concept of
ERC was first introduced by Koza [8]. An ERC returns a
value that is decided randomly when the node is created. In
our algorithm the return value of an ERC is chosen randomly
from the range [−5, 5), though the infrastructure supports
using other value ranges as well.

B. Domain-Specific Terminal Nodes

The domain-specific terminal nodes are listed in two
tables: Table II shows nodes describing characteristics that
have to do with the board in its entirety, and Table III shows
nodes describing characteristics of a certain square on the
board.

The KingFactor() terminal (Table II) is a constant set
to 1.4. It signifies the ratio between the value of a king
and the value of a man in material evaluation of boards in

TABLE II

DOMAIN-SPECIFIC TERMINAL NODES THAT DEAL WITH BOARD

CHARACTERISTICS.

Node name Type Return value
EnemeyKingCount() F The enemy’s king count
EnemeyManCount() F The enemy’s man count
EnemeyPieceCount() F The enemy’s piece count
FriendlyKingCount() F The player’s king count
FriendlyManCount() F The player’s man count
FriendlyPieceCount() F The player’s piece count
KingCount() F FriendlyKingCount()

– EnemeyKingCount()
KingFactor() F King factor value
ManCount() F FriendlyManCount()

– EnemeyManCount()

Mobility() F
The number of plies available to
the player

PieceCount() F FriendlyPieceCount()
– EnemeyPieceCount()

TABLE III

DOMAIN-SPECIFIC TERMINAL NODES THAT DEAL WITH SQUARE

CHARACTERISTICS. THEY ALL RECEIVE TWO PARAMETERS—X AND

Y—THE ROW AND COLUMN OF THE SQUARE, RESPECTIVELY.

Node name Type Return value
IsEmptySquare(X,Y) B True iff square empty

IsFriendlyPiece(X,Y) B
True iff square occupied by
friendly piece

IsKingPiece(X,Y) B True iff square occupied by king
IsManPiece(X,Y) B True iff square occupied by man

American Checkers. It was included in some of the runs
and plays a role also in calculating the return value of the
piece-count nodes. A king-count terminal returns the number
of kings the respective player has, or a difference between
the two players’ king counts. A man-count terminal returns
the number of men the respective player has, or a difference
between the two players’ man counts. In much the same
way a piece-count node returns the number of the respective
player’s men on the board and adds to it the number of that
player’s kings multiplied by the king factor. Again there is
a node that returns the difference between the two players’
piece counts.

The mobility node was a late addition that greatly in-
creased the playing ability of the fitter individuals in the
population. This terminal allowed individuals to more easily
adopt a mobility-based, game-state evaluation function.

The square-specific nodes all return boolean values. They
are very basic, and encapsulate no expert human knowledge
about the game. In general, one could say that all the domain-
specific nodes use little in the way of human knowledge
about the game, with the possible exception of the king factor
and mobility terminals. This goes against what has tradition-
ally been done when GP is applied to board games [1, 5, 6].
This is partly due to the difficulty in finding useful board
attributes for evaluating game states in Lose Checkers—but
there is another, more fundamental, reason. Not introducing
game-specific knowledge into the domain-specific nodes
means the GP algorithm defined is itself not game specific,



TABLE IV

FUNCTION NODES. Fi : FLOATING-POINT PARAMETER, Bi : BOOLEAN

PARAMETER.

Node name Type Return value
AND(B1,B2) B Logical AND of parameters
LowerEqual(F1,F2) B True iff F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters
NOR(B1,B2) B Logical NOR of parameters
NOTG(B1,B2) B Logical NOT of B1

OR(B1,B2) B Logical OR of parameters
IfTrue(B1,F1,F2) F F1 if B1 is true and F2 otherwise
Minus(F1,F2) F F1 − F2

MultERC(F1) F
F1 multiplied by preset random
number

NullFuncJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

and thus more flexible (it is worth noting that mobility is
a universal principle in playing board games, and therefore
the mobility terminal can be seen as not game-specific). As
defined, the algorithm can be used on the two games played
in the American Checkers domain. A very slight change in
the genetic program and the appropriate game program can
render our setup applicable to any variant of Checkers (the
number of conceivable Checkers variants that are at least
computationally interesting is virtually unlimited). Our setup
can also be used with little adaptation for other board games
that have no more than two types of pieces, such as Othello,
or even Go, the holy grail of AI board-game research.

C. Function Nodes

Several basic domain-independent functions have been
defined. These are presented in Table IV. No domain-specific
functions were defined.

The functions implemented include logic functions, basic
arithmetic functions, one relational function, and one condi-
tional statement. The conditional expression renders natural
control flow possible and allows us to compare values and
return a value accordingly. In Figure 1 we see an example
of this. The subtree depicted in the figure returns 0 if the
friendly piece count is less than double the number of enemy
kings on the board, and the number of enemy kings plus 3.4
otherwise.

Fig. 1. Example of a subtree in our setup.

D. One-Way Crossover

One-way crossover, as opposed to the typical two-way
version, does not consist of two individuals swapping parts of
their genomes, but rather of one individual inserting a copy of
part of its genome into another individual, without receiving
any genetic information in return. This can be seen as akin to
an act of “aggression,” where one individual pushes its genes
upon another, as opposed to the generic two-way crossover
operators that are more of a cooperative enterprise. In our
case, the one-way crossover is done by randomly selecting a
subtree in both participating individuals, and then inserting
a copy of the selected subtree from the first individual in
place of the selected subtree from the second individual. An
example is shown in Figure 2.

Fig. 2. One-way crossover: Subtree T2 in left, donor tree replaces subtree
T4 in right, receiver tree. The donor tree remains unchanged.

This type of crossover operator is uni-directional. There is
a donor and a receiver of genetic material. This directionality
can be used to make one-way crossover more than a random
operator. In this work, the individual with higher fitness was
always chosen to act as the donor in one-way crossover. This
sort of nonrandom genetic operator favors the fitter individu-
als as they have a better chance of surviving it. Algorithm 1
shows the pseudocode representing how crossover is handled
in our setup. As can be seen, one-way crossover is expected
to be chosen at least half the time, giving the fitter individuals
a survival advantage, but the fitter individuals can still change
due to the standard “two-way” crossover.

Using the vantage point of the gene-centered view of evo-
lution, it is easier to see the logic of crossover in our setup. In
a gene-centered world, we look at genes as competing with
each other, the more effective ones out-reproducing the rest.
This, of course, should already happen in a setup using the
generic two-way crossover alone. Using one-way crossover,
as we do, just strengthens this trend. In one-way crossover,
the donor individual pushes a copy of one of its genes into the
receiver’s genome at the expense of one of the receiver’s own



Algorithm 1 Crossover.
Randomly choose two different previously unselected in-
dividuals from population for crossover: I1 and I2
if I1.F itness ≥ I2.F itness then

Perform one-way crossover with I1 as donor and I2 as
receiver

else
Perform two-way crossover with I1 and I2

end if

genes. The individuals with high fitness that are more likely
to get chosen as donors in one-way crossover, are also more
likely to contain more good genes than the less-fit individuals
that get chosen as receivers. This genetic operator thus causes
an increase in the frequency of the genes that lead to better
fitness.

Both types of crossover used have their roots in nature.
Two-way crossover is often seen as analogous to sexual
reproduction. One-way crossover also has an analog in nature
in the form of lateral gene transfer that exists in bacteria.

E. Local Mutation

It is difficult to define an effective local mutation operator
for tree-based GP. Any change, especially in a function node
that is not part of an intron, is likely to radically change
the individual’s fitness. In order to afford local mutation
with limited effect, we changed the GP setup. To each node
returning a floating-point value we added a floating-point
variable (initialized to 1) that served as a factor. The return
value of the node was the normal return value multiplied by
this factor. A local mutation would then be a small change
in the node’s factor value.

Whenever a node returning a floating-point value was
chosen for mutation, a decision had to be made on whether to
activate the traditional tree-building mutation operator, or the
local factor mutation operator. Toward this end we designated
a run parameter that determined the probability of opting for
the local mutation operator.

F. Explicitly Defined Introns

In natural living systems, not all DNA has phenotypic
effect. This non-coding DNA, sometimes referred to as Junk
DNA, is prevalent in virtually all eukaryotic genomes. In GP,
so-called introns are areas of code that do not affect survival
and reproduction (usually this can be replaced with “do not
affect fitness”). In the context of tree-based GP, the term
“areas of code” applies to subtrees.

Introns occur naturally in GP, provided that the function
and terminal sets allow for it. As bloat progresses, the number
of nodes that are part of introns tends to increase. Luke
[10] distinguished between two types of subtrees that are
sometimes referred to as introns in the literature:

• Unoptimized code: Areas of code which can be trivially
simplified without modifying the individual‘s operation,
but not just replaced with anything.

• Inviable code: Subtrees which cannot be replaced by
anything that can possibly change the individual‘s op-
eration.

Luke focused on inviable introns. We will do the same in
this work because unoptimized code seems to cast too wide
a net and wander too far from the original meaning of the
term “intron” in biology. We also make another distinction
between two types of inviable code introns:

1) Live-code introns: Subtrees which cannot be replaced
by anything that can possibly change the individual‘s
operation, but may still generate code that will run at
some point.

2) Dead-code introns: Subtrees whose code is never run.

Figure 3 exemplifies our definitions of introns in GP:
T1 is a live-code intron, while T3 and T5 are dead-code
introns. T1 is calculated when the individual is executed,
but its return value is not relevant because the logical OR
with a true value always returns a true value. T3, on the
other hand, never gets calculated because the IFT function
node above it always turns to T2 instead. T3 is thus dead
code. Similarly, T5 is dead code because the NullJ function
returns a value that is independent of its second parameter.

(a) Live-code
intron

(b) Implicit dead-code in-
tron

(c) Explicitly
defined dead-
code intron

Fig. 3. Examples of different types of introns in GP trees.

Explicitly defined introns (EDIs) in GP are introns that
reside in an area of the genome specifically designed to
hold introns. As the individual runs it will simply ignore
these introns. In our setup, EDIs exist under every NullJ
and NotG node. In both functions the rightmost subtree
does not affect the return value in any way. This means
that every instance of one of these function nodes in an
individual’s tree defines an intron, which is always of the
dead-code type. In Figure 3, T5 differs from T3 in that T5
is known to be an intron the moment NullJ is reached, and
therefore the program can take it into account. In our setup,
when converting individuals into C code, the EDIs are simply
ignored, a feat that can be accomplished with ease as they
are dead-code introns that are easy to find.

Nordin et al. [13] explored EDIs in linear GP, finding
that they tend to improve fitness and shorten runtime, as
EDIs allow the evolutionary algorithm to protect important
functional genes and save runtime used by live-code introns.



Earlier work showed that using introns was also helpful in
GAs [9].

G. Multi-Tree Individuals

Support of multi-tree individuals was also implemented
in our setup. Unlike the common case, the criteria we used
were not based on deep domain knowledge. This is partly
due to the fact that in Lose Checkers such information is
hard to come by, but also because we were seeking a flexible
setup that would be easily transferable to other board-game
domains.

The idea, again based on nature, was to define our own
“regulatory network.” As we wanted to avoid using domain
knowledge we chose instead to consider the top of the GP
tree. Preliminary runs with one tree taught us a fair bit about
the sort of solutions that tended to evolve. An emerging
characteristic seemed to be that the majority of the population
quickly focused on one design choice for the top of the
tree and kept it, unchanged, in effect developing “regulatory”
genes. The IFT function was a popular pick for the top part
of the tree. This makes sense as the conditional expression
is a good way to differentiate between cases. We decided to
reinforce this trend, using multiple trees to simulate the run
of a single tree with preset nodes at its top. We chose to use
ten trees per individual, all returning floating-point values.
The values returned by the ten trees were manipulated to
simulate the behavior of the tree shown in Figure 4.

Fig. 4. A tree in our setup. Note preset (non-evolving) area (above line)
and the evolving 10 subtrees, T1, . . . , T10.

H. Fitness Calculation

After initializing the fitness of all individuals in the popu-
lation to 0, fitness calculation was carried out in the fashion
described in Algorithm 2. Essentially, evolving players face
two types of opponents: external “guides” (described below)
and their own cohorts in the population. The latter method
of evaluation is known as coevolution [14], and is referred
to below as the coevolution round.

The method of evaluation described requires some in-
formation from the user, including the number of guides,
their designations, the number of rounds per guide, and the
number of games per round, for the guides array GuideArr
(players played X rounds of Y games each). The algorithm
also needs to know the number of co-play opponents for
the coevolution round. In addition, a parameter for game
point value for different guides, as well as for the coevolution

Algorithm 2 Fitness evaluation.
// Parameter: GuideArr – array of guide players
for i← 1 to GuideArr.length do

for j ← 1 to GuideArr[i].NumOfRounds do
Every individual in population deemed fit enough
plays GuideArr[i].roundSize games against
guide i.

end for
end for
Every individual in the population plays CoP layNum
games as black against CoP layNum random opponents
in the population.

round, was also used in our setup. This allowed to ascribe
higher significance to certain rounds than to others. All
these are program run parameters that the program accepts
from the user via parameter files. Tweaking these parameters
allows for different setups.

Guide-Play Rounds. Two types of guides were imple-
mented: A random player and an alpha-beta player. The
random player chose a move at random and was used to
test initial runs. The alpha-beta player searched up to a
preset depth in the game tree and used an evaluation function
returning a random value for game states in which there was
no clear winner (in states where win or loss was evident the
evaluation function returned an appropriate value). To save
time, not all individuals were chosen for each game round.
We defined a cutoff for participation in a guide-play round.
Before every guide-play round began, the best individual in
the population was found. Only individuals whose fitness
trailed that of the best individual by no more than the cutoff
value got to play. When playing against a guide each player
in the population received 1 point added to its fitness for
every win, and 0.5 points for every draw.

Coevolution Rounds. In a co-play round each member of
the population in turn played black in a number of games
equal to the parameter CoP layNum against CoP layNum
random opponents from the population playing white. The
opponents were chosen in a way that ensured that each
individual also played exactly CoP layNum games as white.
This was done to make sure that no individuals received
a disproportionately high fitness value by being chosen as
opponents more times than others. When playing a co-play
game, as when playing against a guide, each player in the
population received 1 point added to its fitness for every win,
and 0.5 points for every draw.

I. Selection and Procreation

The change in population from one generation to the
next was divided into two stages: A selection stage and
a procreation stage. In the selection stage the parents of
the next generation were selected (some more than once)
according to their fitness. In the procreation stage, genetic
operators were applied to the parents in order to create the
next generation.



Selection was done by the following simple method: Of
two individuals chosen at random, a copy of the fitter
individual was selected as a parent for the procreation stage
(this is known as tournament selection). The pseudocode for
the selection process is given in Algorithm 3.

Algorithm 3 Selection.
repeat

Randomly choose two different individuals from popu-
lation : I1 and I2
if I1.F itness > I2.F itness then

Select a copy of I1 for parent population.
else

Select a copy of I2 for parent population.
end if

until number of parents selected is equal to original
population size

Two more parameters are crossover and mutation probabil-
ities, respectively denoted pxo and pm. Every individual was
chosen for crossover (with a previously unchosen individual)
with probability pxo and self-replicated with probability
1−pxo. The implementation and choice of specific crossover
operator is as in Algorithm 1. After crossover every individ-
ual underwent mutation with probability pm. There is a slight
break with traditional GP structure, where an individual goes
through either mutation or crossover but not both. However
our setup is in line with the GA tradition where crossover
and mutation act independently of each other.

J. Players

Our setup supported two different kinds of GP players. The
first kind of player examines all legal moves and uses the GP
individual to assign scores to the different moves, choosing
the one that scores highest. This method is essentially a
minimax search of depth 1. The second kind of player mixes
GP game-state evaluation with a minimax search. It uses the
alpha-beta search algorithm implemented for the guides, but
instead of evaluating non-terminal states randomly it does
so using the GP individual. This method adds search power
to our players, but creates a program wherein deeper search
creates more game states to be evaluated, taking more time.

K. Summary of Run Parameters

• Number of generations (between 100–200).
• Population size (between 100–200).
• Crossover probability (typically 0.8).
• Mutation probability (0.1, or 0.2 if local mutation used).
• Local mutation ratio (0 or 0.5).
• Maximum depth of GP tree (15 without search, 12–14

with search of depth 3, 10 with search of depth 4).
• Player to serve as benchmark for the best player of each

generation.
• Search depth used by GP players during run.

TABLE V

RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK (GUIDE)

PLAYERS. HERE AND IN THE SUBSEQUENT TABLES, αβi REFERS TO AN

ALPHA-BETA PLAYER USING A SEARCH DEPTH OF i AND A RANDOM

EVALUATION FUNCTION.

1st Player 2nd Player 1st Player win ratio
αβ2 random 0.9665
αβ3 αβ2 0.8502
αβ5 αβ3 0.82535
αβ7 αβ5 0.8478
αβ3 αβ4 0.76925
αβ3 αβ6 0.6171
αβ3 αβ8 0.41270
αβ5 αβ6 0.7652
αβ5 αβ8 0.55620

V. RESULTS

The experiments were divided into two sets, the first
using no search, the second with search and mobility in-
corporated into the evolutionary algorithm. The same hand-
crafted machine players that were used as guides in fitness
evaluation also served as the benchmark players. Before
beginning the evolutionary experiments, we first evaluated
our guide players by testing them against each other in
matches of 10,000 games (with players alternating between
playing black and white). For search depths greater than 2
we focused on guide players using odd search depths, as
those using even search depths above 2 proved weaker than
the players using lower odd search depths. Every one of
the alpha-beta players participated in a match with a weaker
player and a stronger player (except for the strongest searcher
tested). Table V presents the results of these matches. Note
the advantage of odd search depth over (higher) even search
depth.

In all evolutionary runs that follow evolution ran on a
single core of a dual-core Xeon 5140 2.33GHz processor.
All runs took from a few days to a week (we limited run-
times to 160 hours).

A. No Search

The first set of experiments involved no search (meaning a
lookahead of 1). When tested against the random player the
evolved move evaluators showed a significant improvement
in level of play, as can be seen in Table VI.

B. Shallow Search

Using shallow search produced better results. Experiments
showed that a search depth of 3 was the best choice. This
allowed for improved results, while deeper search caused
runs to become too slow. In order to save time, the maxi-
mum GP-tree depth was more strongly restricted, and code
optimizations were added to improve runtime. Attempts to
use the multi-tree design with search did not yield good
results, and this design was abandoned in favor of the
standard single-tree setup. It is quite possible that another,
less wasteful, multi-tree design, would have succeeded more.
The results are shown in Table VII.



TABLE VI

RESULTS OF TOP RUNS USING A LOOKAHEAD OF 1 (I.E., NO SEARCH).

HERE AND IN SUBSEQUENT TABLES: THE BENCHMARK

(POST-EVOLUTIONARY) SCORE OF THE EVOLVED Player IS CALCULATED

OVER 1000 GAMES AGAINST THE RESPECTIVE Benchmark Opponent;

THE BENCHMARK SCORE IS THE NUMBER OF GAMES WON PLUS HALF

THE NUMBER OF GAMES DRAWN; xRAND STANDS FOR x GAMES

AGAINST THE RANDOM PLAYER; yCO STANDS FOR y GAMES OF

CO-PLAY. Benchmark Opponent HEREIN IS THE RANDOM PLAYER.

Run identifier Fitness Evaluation Benchmark Score
r00032A 20Rand+30Co 554.0
r00033B 30Rand+5Co 634.0
r00034A 30Rand+5Co 660.0
r00035B 30Rand+5Co 721.0
r00036A 30Rand+10Co 705.5
r00037B 30Rand+10Co 666.5

TABLE VII

RESULTS OF TOP RUNS USING SHALLOW SEARCH. Player USES αβ

SEARCH OF DEPTH 3 COUPLED WITH EVOLVED EVALUATION FUNCTION,

WHILE Benchmark Opponent USES αβ SEARCH OF DEPTH 3 COUPLED

WITH A RANDOM EVALUATION FUNCTION.

Run identifier Fitness Evaluation Benchmark Score
r00044A 50Co 744.0
r00046A 50Co 698.5
r00047A 50Co 765.5
r00048A 50Co 696.5
r00049A 50Co 781.5
r00056A 50Co 721.0
r00057A 50Co 786.5
r00058A 50Co 697.0
r00060A 50Co 737.0
r00061A 50Co 737.0

Analysis of Evolved Players. As we saw above, random
evaluation coupled with odd search depth is a powerful
heuristic. We tested some of our best evolved players against
players using random evaluation with even search depth
values greater than 3. The results of these tests are given
in Table VIII. As evident, the evolved players, some more
than others, have acquired a playing proficiency that allows
them to outmaneuver players employing far deeper search
and taking far greater time resources. It is worth noting that
the player αβ8, which uses a search depth of 8, is decisively
outperformed by three distinct evolved players (which only
search to a depth of 3). This player (as Table V clearly
indicates) is stronger than the αβ3 player that served as the
evolved players’ original benchmark.

C. Expanding Search Depth

In order to produce good results against stronger players,
without incurring high runtime costs, we took some of the
existing players evolved using shallow search of depth 3 and
modified them to use deeper search with the same (evolved)
evaluation function. We then tested the modified players
against a benchmark player using deeper search, hoping that
expanding search depth would preserve the quality of the
evaluation function (Chellapilla and Fogel [3] succeeded in
doing this with American Checkers). In these select runs,

TABLE VIII

RESULTS OF TOP RUNS PLAYING AGAINST PLAYERS USING RANDOM

EVALUATION AND VARIOUS SEARCH DEPTHS, FOCUSING ON EVEN

DEPTHS GREATER THAN 3. Player USES αβ SEARCH OF DEPTH 3

COUPLED WITH EVOLVED EVALUATION FUNCTION.

Run identifier vs αβ3 vs αβ4 vs αβ6 vs αβ8
r00044A 744.0 944.5 816.0 758.0
r00047A 765.5 899.0 722.5 476.0
r00049A 781.5 915.0 809.0 735.5
r00057A 786.5 909.0 745.5 399.5
r00060A 737.0 897.0 627.0 408.5
r00061A 737.0 947.0 781.5 715.5

TABLE IX

RESULTS OF TOP RUNS BEFORE AND AFTER DEPTH EXPANSION. NOTE

THAT Player WAS EVOLVED USING A SEARCH DEPTH OF 3, BUT IS HERE

TESTED WITH ITS DEPTH EXTENDED TO 5, VS. THE

RANDOM-EVALUATION αβ5, αβ6, AND αβ8 Benchmark Opponents.

Run identifier vs αβ5 vs αβ6 vs αβ8
r00044A 438.5 774.0 507.5
r00047A 437.5 807.0 482.5
r00049A 420.5 856.0 449.0
r00057A 494.5 874.5 463.5
r00060A 459.0 834.0 583.5
r00061A 483.5 967.0 886.0

we chose the evolved individual that had the best benchmark
score against the αβ3, altered its code to extend its search
depth to 5, and ran a 1000-game match between the altered,
deeper-search player and αβ random-evaluation players. The
results of this experiment are presented in Table IX.

D. Using Deeper Search

After optimizing the code to some extent we used a search
depth of 4 in our runs. To try and prevent exceedingly
long runtimes population size, number of generations, and
maximum tree depth, were severely limited (to 50, 70, and
10, respectively). Table X presents the results. We see that
players have evolved to beat the strong αβ5 player but at the
cost of some overspecialization against that player.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented the genetic programming approach as a
tool for discovering effective strategies for playing the game

TABLE X

RESULTS OF TOP RUNS PLAYING AGAINST PLAYERS USING RANDOM

EVALUATION AND VARIOUS SEARCH DEPTHS. Player USES αβ SEARCH

OF DEPTH 4 COUPLED WITH EVOLVED EVALUATION FUNCTION.

Run identifier Fitness vs. αβ5 vs. αβ6 vs. αβ8
Evaluation

r00064A 20αβ5+20Co 582.0 603.5 395.0
r00065A 20αβ5+20Co 537.0 782.5 561.5
r00066A 20αβ5+20Co 567.0 757.5 483.5
r00067A 20αβ5+20Co 598.5 723.0 385.5
r00068A 20αβ5+20Co 548.0 787.0 524.0
r00069A 20αβ5+20Co 573.5 715.5 523.0
r00070A 20αβ5+20Co 577.0 691.5 476.0
r00071A 20αβ5+20Co 551.5 582.5 401.5



of Lose Checkers. Guided by the gene-centered view of
evolution, which describes evolution as a process in which
segments of self-replicating units of information compete
for dominance in their genetic environment, we introduced
several new ideas and adaptations of existing ideas for aug-
menting the GP approach. Having evolved successful players,
we established that tree-based GP is applicable to board-
state evaluation in Lose Checkers—a full, nontrivial board
game. Our use of search with GP is another novelty (though
Hauptman and Sipper [5] also used search, differently, in
their work on Chess endgames).

Our approach opens the door to further GP research in-
volving games and search. Below are some potential avenues
for future exploration:

1) Applying the GP approach to other computationally
interesting Checkers variants. This has the advantage
that the setup hardly needs to be changed and most
effort can be invested in applying new methods to
improve the evolutionary algorithm’s performance.

2) Applying the GP approach to other board games.
This work is, as far as we know, the first time tree-
based GP was used to evolve players for a full board
game, and one of very few attempts at applying the
evolutionary approach to board games in general. Our
attempt demonstrates that a game like Lose Checkers
can be tackled even with little domain knowledge and
expertise. Considering the rate of growth in available
computational power, it is quite possible that the big
names in board games, Chess and Go, will be within
reach in the coming years.

3) GP can be applied to guiding search itself in games
and puzzles, deciding which nodes to develop first [6].

4) GP can also be applied to more complicated games
that are not full-knowledge, or contain a stochastic
element. This applies to many turn-based computer
strategy games, and is also a better approximation of
real-world problems.

5) Other fields where search is used in conjunction with
heuristic functions, such as planning and AI research.

There are many possibilities for further research. As long
as the strategies for solving the problem can be defined
and the quality of solvers can be evaluated in reasonable
time, there is an opening for using GP to evolve a strong
problem-solving program. All that is required is that solvers
be evaluated in such a way that those solvers that are closer
to doing the job right get higher fitness, and that the search
space defined by the GP design be such that good solvers
tend to be clumped together (i.e., be similar to each other),
or that the same code segments tend to appear in many good
solvers, so as to allow the gradual change and improvement
that is a hallmark of the evolutionary process.
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