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Abstract The computational identification of conserved motifs in RNA molecules
is a major—yet largely unsolved—problem. Structural conservation serves as strong
evidence for important RNA functionality. Thus, comparative structure analysis is
the gold standard for the discovery and interpretation of functional RNAs.

In this paper we focus on one of the functional RNA motif types, sequence-
structure motifs in RNA molecules, which marks the molecule as targets to be
recognized by other molecules.

We present a new approach for the detection of RNA structure (including pseudo-
knots), which is conserved among a set of unaligned RNA sequences. Our method
extends previous approaches for this problem, which were based on first identifying
conserved stems and then assembling them into complex structural motifs. The
novelty of our approach is in simultaneously preforming both the identification and
the assembly of these stems. We believe this novel unified approach offers a more
informative model for deciphering the evolution of functional RNAs, where the sets
of stems comprising a conserved motif co-evolve as a correlated functional unit.

Since the task of mining RNA sequence-structure motifs can be addressed by
solving the maximum weighted clique problem in an n-partite graph, we translate
the maximum weighted clique problem into a state graph. Then, we gather and
define domain knowledge and low-level heuristics for this domain. Finally, we learn
hyper-heuristics for this domain, which can be used with heuristic search algorithms
(e.g., A*, IDA*) for the mining task.

The hyper-heuristics are evolved using HH-Evolver, a tool for domain-specific,
hyper-heuristic evolution. Our approach is designed to overcome the computational
limitations of current algorithms, and to remove the necessity of previous assump-
tions that were used for sparsifying the graph.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon.
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1 Introduction

1.1 RNA Structural Motif Discovery

RNA is a biological macromolecule which, like DNA, is constructed of four letter
alphabet (A, C, G and U). RNA has many roles in biological mechanisms, some of
which we describe below.

Over the last few years non-coding RNAs (ncRNAs) have been recognized as a
highly abundant class of RNAs that do not code for proteins but nevertheless are
functional in many biological processes, including localization, replication, transla-
tion, degradation, regulation, and stabilization of biological macromolecules (Man-
dal and Breaker 2004).

1.2 Biological Preliminaries and Definitions

An RNA molecule is defined by a sequence of letters (called bases) and a set of
pairings between its bases. The base C typically pairs with G, A typically pairs
with U, and another weaker pairing can occur between G and U. This base-paired
structure is called the secondary structure of the RNA. Paired bases almost always
occur in a nested fashion. Informally, this means that if we draw arcs over an RNA
sequence connecting base pairs, none of the arcs cross each other. When non-nested
base pairs occur, they are called pseudoknots (see Fig. 1). Most of current RNA
sequence-structure analysis algorithms ignore pseudoknots. This is done mostly in
order to simplify the problem, due to the fact that prediction of structure while
allowing pseudoknots is NP hard (Akutsu 2000). In nature, there are important
examples of RNA sequence-structure motifs that include pseudoknots (Staple and
Butcher 2005; Brierley et al. 2008).

Fig. 1 An RNA sequence and its structure (defined by the arcs). In the figure there are three
stems (marked red, green, and blue). The green and red stems cross each other, indicating that the
structure of the exemplified RNA contains a pseudoknot (Color figure online)
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In RNA studies, structural conservation serves as a strong evidence for essential
RNA functionality. Thus, comparative structure analysis is the gold standard for
the discovery and interpretation of functional RNAs. In particular, an important
and well-studied problem is that of RNA motif discovery. In molecular biology,
a motif is a sequence pattern that is widespread and has, or is conjectured to have,
a biological significance. In the case of functional RNAs, the sought motifs are
patterns combining sequence and structural features, thus denoted RNA sequence-
structure motifs.

In RNA motif discovery, a natural building block is a stem (a local non-crossing
set of base pairs). Therefore, some approaches for the mining of RNA motifs are
based on first identifying sets of stems that are widespread, and then combining
the stems to form more complex structural motif patterns. In this paper we present
a novel approach that addresses both problems simultaneously using learning of
heuristic functions and search techniques. Given a set of n RNA molecules we seek
a set of similar stems, each shared by a minimum of k � n molecules. Using A�
algorithm along with a learned heuristic function, we mine the n molecules both in
sequence and complex structural characteristics. The measure we use for scoring
the similarity between two stems models the typical changes caused by evolution.

1.3 Heuristic Search

Heuristic search algorithms are strongly based on the notion of approximating the
cost of the cheapest path from a given configuration (or state) to the problem’s
solution (or goal). Such approximations are found by means of a computationally
efficient function, known as a heuristic function. By applying such a function to
states reachable from the current one considered, it becomes possible to select
more-promising alternatives earlier in the search process, possibly reducing the
amount of search effort (typically measured in number of states expanded) required
to solve a given problem. The putative reduction is strongly tied to the quality of
the heuristic function used: employing a perfect function means simply “strolling”
onto the solution (i.e., no search de facto), while using a bad function could render
the search less efficient than totally uninformed search, such as breadth-first search
(BFS) or depth-first search (DFS).

A heuristic function is said to be admissible if it never overestimates the cost
to the goal. Thus, the higher the heuristic value, the closer it is to the true cost
of the cheapest path to goal. Using an admissible heuristic with an optimal search
algorithm (e.g. A* or iterative deepening A*, IDA*, Hart et al. 1968; Korf 1985)
guarantees that any solution found will be optimal, i.e., with minimal solution
length.

Combining several heuristics to get a more accurate one is considered one of the
most difficult problems in contemporary heuristics research (Samadi et al. 2008;
Burke et al. 2010). Of course, if all of the heuristic functions are admissible and an
optimal solution is what we are looking for, then we could use the max heuristic
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(which takes the heuristic function with the maximal value). However, when we do
not need to guarantee optimality or when we do not use only admissible heuristics,
a good solution can be found in a more efficient way.

1.4 Hyper Heuristics

Within combinatorial optimization, the term hyper-heuristics was first used in 2000
(Cowling et al. 2000) to describe heuristics to choose heuristics. This definition of
hyper-heuristics was expanded later (Burke et al. 2010) to refer to an automated
methodology for selecting or generating heuristics to solve hard computational
search problems. In the process of hyper-heuristics learning, heuristics and domain
knowledge are used as building blocks. These heuristics can be of high level, usually
complex and memory-consuming (e.g., landmarks and pattern databases), or low-
level domain knowledge and heuristics that are usually intuitive and straightforward
to implement and compute.

Hyper-heuristics have been applied in many research fields, among them:

• Classical planning (Yoon et al. 2008; Fawcett et al. 2011; Hoffmann and Nebel
2001).

• Classical NP-Complete domains, e.g., personnel scheduling (Burke et al. 2003),
traveling salesman (Oltean 2005), and vehicle routing (Garrido and Rojas 2010).

• Classical AI domains and puzzles, e.g., the Rush Hour puzzle (Hauptman et al.
2009), the game of FreeCell (Elyasaf et al. 2012), and the Tile Puzzle (Arfaee
et al. 2010; Samadi et al. 2008).

The growing research interest in techniques for automating the design of heuristic
search methods motivates the search for automatic systems for generating hyper-
heuristics.

1.5 Our Approach: Learning Hyper Heuristics for the Task
of Mining RNA Sequence-Structure Motifs

In this paper, we present a novel way for mining RNA sequence-structure motifs.
We translate the problem into a search graph and devise 97 heuristics for this
domain. Next, we use these heuristics as building blocks for learning hyper
heuristics using HH-Evolver—an evolutionary algorithm system designed for this
type of learning.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon.

The contributions of this work are as follows:
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1. We present a novel approach the task of mining RNA sequence-structure motifs
with possible pseudoknots.

2. While previous approaches artificially divide the mining task into conserved
stem identification followed by the assembly of such stems into complex
structural motifs, we present the first approach for preforming the two tasks
simultaneously. We believe this unified approach offers a more informative
model for deciphering the evolution of functional RNAs, where the sets of stems
comprising a conserved motif co-evolve as a correlated functional unit.

3. By using a more efficient search we are able to use a denser graph with more
nodes (stems) and edges (relations between stems). Thus, we are able to remove
the necessity of previous algorithms to sparsify the graph, at the expense of
sensitivity, by imposing assumptions and rigid limitations.

4. The use of hyper heuristics enables the mining algorithm to find the exact
conditions (i.e., biological indicators) regarding when to apply each heuristic,
or combinations.

5. We push the limit of what has been done with evolution further mining
RNA sequence-structure motifs one of the most difficult domains to which
evolutionary algorithms have been applied to date.

6. Along the way we devise several novel heuristics for this domain. The methodol-
ogy of creating these heuristics could be applied to other biological domains and
other.

7. By devising novel heuristics and evolving them into hyper-heuristics, we con-
tinue our previous presentation of a new framework for solving many (non-
admissible) heuristic problems, which proved to be efficient and successful.

8. We transform a non-search domain into a state graph, and thus strengthen the
bridge between the learning and search community to the biological world.

The rest of the paper is organized as follows: In the next section we examine
previous and related work. In Sect. 3 we describe our method. Finally, we end with
concluding remarks and future work in Sect. 4.

2 Previous Work

2.1 Mining Common Structure Among a Set of Unaligned
RNA Sequences

Several approaches exist for identifying common structure among a given set
of RNA molecules. The first approach (Pederson et al. 2006; Hofacker et al.
2002; Washietl and Hofacker 2004) is to align sequences using standard multiple
sequence alignment tools (e.g., ClustalW, Thompson et al. 1994), then use structure-
conserving mutations for the inference of a consensus structure. However, in order
for this approach to work the multiple sequence-alignment step needs to rely on
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a very well-conserved sequence, which is rarely the case with swiftly evolving
ncRNAs.

The second approach applies Sankoff’s “Simultaneous Alignment with Folding
(SAF)”—an algorithm designed to simultaneously align a set of co-functional RNA
molecules and predict their common secondary structure. However, the algorithm
requires extensive computational resources both in time (O.n6/) and memory
(O.n4/) (Backofen et al. 2011). Thus, current implementations (Mathews and Turner
2002; Havgaard et al. 2005; Will et al. 2007; Siebert and Backofen 2005; Hofacker
et al. 2004; Torarinsson et al. 2007) are either restricted in the input size or apply a
restricted application of the SAF approach.

The third approach, denoted as the “pre-folding” approach, is applied when
no helpful level of sequence conservation is observed. It excludes the sequence
alignment step, predicts secondary structures for each sequence (or a sub-group
of sequences) separately, and directly aligns the structures. Because of the nested
branching nature of RNA structures, these are represented as trees. Tree comparison
and tree alignment models in the context of detecting conserved RNA structure have
been proposed and implemented in Hofacker et al. (1994), Sczyrba et al. (2003),
Hochsmann et al. (2003), Wang and Zhang (2001), and Milo et al. (2013). Predicting
a global secondary structure from a single molecule is still error, where the best
approaches may yield up to 75 % accuracy (Do et al. 2006).

Due to computational limitations the above methods are generally restricted
to finding conserved sequence-structure motifs without considering pseudoknots.
A leading approach that removes this restriction is the one proposed by Ji et al.
(2004). Here, rather then trying to predict a global structure, i.e., one that is common
to the (full-length) input sequences, local common structure is sought, i.e., a set of
substrings that share a similar predicted structure, where each substring belongs to
a different input sequence.

Ji et al. apply a multi-stage approach to identify common structure among a
given set of n sequences. During a preprocessing stage, an n-partite undirected
weighted stem-graph is constructed, by first extracting local stems from each of
the sequences. The extracted stems serve as the nodes of the graph, and are
partitioned by their sequence of origin. Weighted edges are constructed between
pairs of nodes representing the similarity between stems that were extracted from
different sequences. Stem similarity is computed by using a single pre-defined
scoring function. Ji et al. sparsify this stem-graph by using fixed thresholds on the
scoring function and the stability of the stems. In addition, they require the existence
of conserved sequential regions of a fixed size, termed anchors.

In the next stage, conserved stems are identified. This is done by mining all
cliques in the stem-graph spanning a minimum of k � n sequences.

This is followed by a final stage, where stem-cliques are combined to form
complex motifs. This is achieved by assembling as many compatible cliques as
possible according to topological order and evaluating the plausibility of a proposed
structure by the significance of its members.

In this paper we extend the work of Ji et al. By applying evolution-based
learning, we remove the necessity of the aforementioned single scoring function and
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the stringent cutoff thresholds. Our search is more informed, and computes intra-
clique optimizations within the wide context of topological inter-clique assembly
considerations. This allows us to speed up the search without the loss of sensitivity.
In fact, sensitivity can now be increased, as the more efficient search allows us to get
rid of the preprocessing sparsification used by Ji et al. We use evolution to combine
multiple scoring functions and dynamic thresholds.

2.2 Learning Hyper Heuristics

2.2.1 Learning Hyper Heuristics for Planning Systems

Planning systems are strongly based on the notion of heuristics (e.g., Bonet and
Geffner 2005; Hoffmann and Nebel 2001). However, relatively little work has been
done on evolving heuristics for planning.

Aler et al. (2002) (see also Aler et al. 1998, 2001) proposed a multi-strategy
approach for learning heuristics, embodied as ordered sets of control rules (called
policies), for search problems in AI planning. Policies were evolved using a GP
(Genetic Programming) based system called EvoCK (Aler et al. 2001), whose
initial population was generated by a specialized learning algorithm, called Hamlet
(Borrajo and Veloso 1997). Their hybrid system, Hamlet-EvoCK, outperformed
each of its sub-systems on two benchmark problems often used in planning: Blocks
World and Logistics (solving 85 and 87 % of the problems in these domains
respectively). Note that both these domains are considered relatively easy (e.g.,
compared to Rush Hour and FreeCell, mentioned above), as evidenced by the fact
that the last time they were included in an IPC (International Planning Competition)
was in 2002.

Levine and Humphreys (2003), and later Levine et al. (2009), also evolved
policies and used them as heuristic measures to guide search for the Blocks
World and Logistic domains. Their system, L2Plan, included rule-level genetic
programming (for dealing with entire rules), as well as simple local search to
augment GP crossover and mutation. They demonstrated some measure of success
in these two domains, although hand-coded policies sometimes outperformed the
evolved ones.

2.2.2 Learning Hyper Heuristics for Specific Domains

Samadi et al. (2008) used artificial neural networks (ANNs) (Mitchell 1999) for
learning combinations of heuristics for the sliding-tile puzzle and the 4-peg Towers
of Hanoi. They used pattern databases (PDBs) (Korf 1997) and weighted PDBs as
input signals for the ANN.

Arfaee et al. (2010) also used ANNs for learning hyper heuristics for several
domains, however, in addition to the use of small PDBs as input signals, Arfaee
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et al. used low-level heuristics and domain knowledge as well. For the sliding-tile
puzzle, for example, they used the following additional signals: the number of out-
of-place tiles, the position of the blank, the number of tiles not in the correct row,
and the number of tiles not in the correct column.

Hauptman et al. (2009) and later Elyasaf et al. (2012) evolved heuristics for
the Rush Hour puzzle and the game of FreeCell (respectively). They compared the
performance of different types of hyper heuristics on these domains. In both cases,
evolved hyper heuristics (along with heuristic search) greatly reduced the number
of nodes required to solve instances of the domains, compared to standard methods
and previous solvers. In this paper we use their method for learning hyper heuristics
for the problem of mining RNA sequence-structure motifs.

3 Method

As explained in Sect. 2.1, we extend the work of Ji et al. (2004). The overall scheme
of our method is summarized by the following major steps:

• Cast the problem of mining RNA sequence-structure motifs as one of maximum
weighted clique in an n-partite graph.

• Translate the maximum weighted clique problem into a search graph, where each
state consists of the set of cliques identified so far.

• Gather and define domain knowledge and low-level heuristics for this domain.
• Learn hyper-heuristics for this domain, which can be used with heuristic search

algorithms (e.g., A*, IDA*) for the mining task.

In their paper, Ji et al. (2004) list several heuristics and techniques that already
exist for the task of mining RNA sequence-structure motifs and for the task of
finding maximum weighted cliques, however they note that they are “not aware
of any effective optimization or heuristic algorithm feasible for our problem”. For
this reason they used a fixed scoring function and harsh pruning thresholds (see
Sect. 2.1).

Since there are many heuristics, both for the task of mining RNA sequence-
structure motifs and for the task of finding maximum weighted cliques, we believe
that learning algorithms can find a combination of these heuristics that outperforms
the handcrafted scoring formula used by Ji et al.

The key differences between our approach and Ji et al. are: (1) We use learning
algorithms with many heuristics along with domain knowledge to avoid the use of
a single formula; (2) we let evolution guide the search and remove the need to rely
on fixed thresholds and anchoring; (3) we extend the stem extraction module by
using the approach of Milo et al. (2014), which allows us find a wider range of stem
types; (4) we perform both mining tasks (identification of conserved stems and the
assembly of conserved stems into complex motif structures) simultaneously.
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3.1 Casting the Problem of Mining RNA Sequence-Structure
Motifs as One of Maximum Weighted Clique
in an n-Partite Graph

Given a set of n molecules, we extend the stem extraction module of Ji et al. by
using the extraction method described in Milo et al. (2014), allowing us to extract
more stems from the molecules. Next, we construct an n-partite undirected weighted
graph to represent the stems and their relations. Each vertex represents a stem,
and the graph is partitioned into n parts. Each part comprises the stems from one
molecule. Only stems (or vertices) from different parts can be connected. We call
the edges between the stems stem edges, to differentiate between these edges and
the edges described in Sect. 3.2. While Ji et al. sparsify this graph using rigid
thresholds, we do not sparsify the graph at this stage and connect all stems of
different partitions.

For each stem edge we define several features (dubbed stem edge features,
or SEF), described in Sect. 3.3.1. For each feature it is possible to define a hard
threshold set by the user, or let the learning algorithm set the threshold value.

3.2 Converting the Maximum Weighted Clique Problem
into a State Graph

Once the n-partite graph is built, Ji et al. (2004) extract all possible stem-cliques, a
task for which the worst-case time complexity is O.mn/, where m is the maximum
number of stems examined in one sequence and n is the number of total RNA
sequences. The average run-time is much less than the worst case, due to the
thresholds and pruning. However, the time could still be impractical in many cases,
and furthermore the sparsification comes at the expense of data-mining sensitivity.
Moreover, if the goal is to mine the input and find significantly similar structures
among the molecules, one does not need to exhaustively consider all possible
cliques. If we are able to find the most important cliques first, we can stop the search
at an earlier phase. This is the reason that we now turn to heuristic search algorithms
such as A*.

In order to search for cliques in an A* manner, we first define a new search
graph, where each state contains the set of cliques (and partial cliques) found so far.
The edges represent either the start of a new clique or adding a stem to an existing
clique. As opposed to standard search domains, here we do not know which state is
the goal state (i.e., the state with the most important cliques). We will discuss this
point further in Sect. 3.4.3.

We now turn to describe the domain knowledge and low-level heuristics gathered
for the search algorithm.
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3.3 Gather and Define Domain Knowledge and Low-Level
Heuristics for this Domain

There are three different types of heuristics we use:

1. SEF heuristics. heuristics that are derived from the stem edge features. Recall
that each search state represents the cliques founds so far and that each clique
contains several stem edges. With this notion, we define seven heuristics for each
stem edge feature, f :

(a) Return the minimal/maximal/average/median f value of all stem edges of the
state.

(b) Compute average f value per clique; return average of all average values.
(c) Compute median f value per clique; return average of all median values.
(d) Compute average f value per clique; return median of all average values.

The full SEF list is described below.
2. Topological relation heuristics. heuristics that measure the topology preservation

between stems from different cliques using the topological relations. We have
two heuristics of this type: The first is described in Milo et al. (2014), and the
second is a heuristic version of the structure assembly algorithm described in Ji
et al. (2004).

3. Clique-specific heuristics. standard clique heuristics such as maximal, minimal,
average, median node degree.

All of our heuristics preserve the basic rule of heuristic functions: the lower the
value, the closer we are to the goal. Towards this end we change the heuristic value
h to 1=h, where applicable.

There is a fourth type of heuristics—classic search heuristics (e.g., pattern
database)—however, previous work has shown that using domain knowledge-based
heuristics provides good solutions.

The distribution of the heuristic types is described in Table 1.

Table 1 Distribution of heuristic types

Heuristic type Number of heuristics

SEF 91 (7 heuristics � 13 features D 91)

Topological relation heuristics 2

1 Clique-specific heuristics 4

Total 97
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3.3.1 Stem Edge Features

As described in Sect. 2.1, Ji et al. (2004) defined a fixed equation for describing
similarity between two stems, which was a combination of five features. We use
these features, as well as the equation, as part of our stem edge features (SEF),
along with additional features described below.

Some of our features are added twice: once as is (i.e., fl.ix; jy/), and once divided

by the energy, using the formula Nfl.ix; jy/ D 2�fl.ix;jy/

2Crx.i/Cry.j/ (as described by Ji et al.).
The complete list of our features is described in Table 2.

Table 2 The list of features

Feature Origin Description

f1 : Helix length [1] Number of base-pairs in the
stem

f2: f2 D Nf1 [1] [*]

f3 : Helix sequence [1] The sequence of bases in the
stem

f4: f4 D Nf3 [1] [*]

f5 : Loop sequence [1] The sequence of letters
between the innermost
base-pair in the stem

f6: f6 D Nf5 [1] [*]

f7 : Stem stability [1] The free energy value of the
stem

f8: f8 D Nf7 [1] [*]

f9 : Relative positions [1] The position of the left base
in the outermost base-pair in
the stem (relative to the
sequence)

f10: f10 D Nf9 [1] [*]

f11 : Ji. et al. Similarity [1]
2�

P
lD1;3;5;7 fwl�fl.ix ;jy/g

2Crx.i/Cry.j/

f12 : Context [3] The shift between both helix
counterparts of a stem in the
anchor or non-anchor region

f13 : StemSearch similarity [2] Similarity score used by
StemSearch, determined by
structural and sequential
similarity

Œ1�—Features taken from Ji et al. (2004)
Œ2�—Features taken from Milo et al. (2014)
Œ3�—Features designed by us

Œ*�—Nfl.ix; jy/ D 2�fl.ix ;jy/

2Crx.i/Cry.j/
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3.4 Learning Hyper Heuristics Using HH-Evolver

Combining several heuristics to get a more accurate one is considered one of the
most difficult problems in contemporary heuristics research (Samadi et al. 2008;
Burke et al. 2010).

This task typically involves solving three major sub-problems:

1. How to combine heuristics by arithmetic means, e.g., by summing their values
or taking the maximal value.

2. Finding exact conditions (i.e., logic functions) regarding when to apply each
heuristic, or combinations thereof—some heuristics may be more suitable than
others when dealing with specific state configurations.

3. Finding the proper set of domain configurations in order to facilitate the learning
process while avoiding pitfalls such as overfitting.

The problem of combining heuristics is difficult mainly because it entails traversing
an extremely large search space of possible numeric combinations, logic conditions,
and state configurations. To tackle this problem we turn to evolution.

As previously mentioned, we use the learning method of Hauptman et al. (2009)
and Elyasaf et al. (2012) for the mining problem. For this task we use their tool, HH-
Evolver (Elyasaf and Sipper 2013), a hyper-heuristic generator for search domains.
The HH-Evolver system receives as input: a domain, several heuristics for the
domain, and a dataset of domain instances to be used partly as training set and
partly as test set. HH-Evolver generates a population of random hyper-heuristics
and trains them over generations against the training set. When used with a heuristic
search algorithm, the individuals are required to produce near-optimal solutions to
the instances encountered. The search-size (i.e., the number of states encountered
during the search) should be small as well.

In order to properly solve the aforementioned sub-problems, we use three
different HH-Evolver genomic representations—Standard GA, GP, and policies—
all of which are thoroughly described below. These representations use the heuristics
given as input to HH-Evolver.

3.4.1 The Hyper Heuristic-Based Genome

We use three different genomic representations. All of these representation were
used by Hauptman et al. (2009) and Elyasaf et al. (2012).

All of our representations comprise real-value thresholds for all minimum
heuristics (e.g., minimal node degree heuristic). During the search we prune nodes
when one of the heuristic values exceeds its threshold.
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Standard GA (Genetic Algorithm)

This type of hyper-heuristic only addresses the first problem of how to combine
heuristics by arithmetic means. Each individual comprises 97 real values in
the range Œ0; 1�, representing a linear combination of all 97 heuristics described
above (Table 1). Specifically, the heuristic value, H, designated by an evolving
individual is defined as H D P97

iD1 wihi, where wi is the ith weight specified by
the genome, and hi is the ith heuristic shown in Table 1. As results in other domains
showed (Hauptman et al. 2009; Elyasaf et al. 2012), the GA proved quite successful
and was therefore retained as a yardstick to measure against when we embarked
upon our GP path.

GP (Genetic Programming)

As we want to embody both combinations of estimates and conditions for applying
each combination, we evolve GP-trees as described in Koza (1994). The function
set included the functions {IF,AND,OR,�,�,�,C}, and the terminal set included all
heuristics in Table 1, as well as random numbers within the range Œ0; 1�.

Policies

The last genome used also combines estimates and application conditions, using
ordered sets of control rules, or policies. As stated above, policies have been evolved
successfully with GP to solve search problems—albeit simpler ones (e.g., Hauptman
et al. 2009; Elyasaf et al. 2012).

The policies have the following structure:

RULE1: IF Condition1 THEN Value1

.

.

.
RULEN : IF ConditionN THEN ValueN

DEFAULT: ValueNC1

where Conditioni and Valuei represent conditions and estimates, respectively.
Policies are used by the search algorithm in the following manner: The rules are

ordered such that we apply the first rule that “fires” (meaning its condition is true for
the current state being evaluated), returning its Value part. If no rule fires, the value
is taken from the last (default) rule: ValueNC1. Thus individuals, while in the form of
policies, are still heuristics—the value returned by the activated rule is an arithmetic
combination of heuristic values, and is thus a heuristic value itself. This accords with
our requirements: rule ordering and conditions control when we apply a heuristic
combination, and values provide the combinations themselves.
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Thus, with N being the number of rules used, each individual in the evolving
population contains N Condition GP trees and N C 1 Value sets of weights used
for computing linear combinations of heuristic values. Experimenting with several
sizes of policies in different domains showed that N D 5 provides enough rules per
individual, while avoiding cumbersome individuals with too many rules. The depth
limit used for the Condition trees is set to 5 for the same reason.

For Condition GP trees, the function set included the functions {AND,OR,�,�},
and the terminal set included all heuristics in Table 1. The sets of weights appearing
in Values all lie within the range Œ0; 1�, and correspond to the heuristics listed
in Table 1.

The genetic operators for the individuals are described thoroughly in Elyasaf
et al. (2012).

3.4.2 Training and Test Sets

We use the data from the RFAM (Griffiths-Jones et al. 2005) database to create
training and testing data sets. RFAM is a curated database of RNA molecules
grouped together by common functionality (termed RNA families). This allows
us to generate a large and diverse set of syntactic inputs for our hyper-heuristic
population. This set is divided to training set and test sets, using a standard cross-
validation method.

The set is generated as follow: For each family we randomly divide the members
into different (overlapping) groups of different sizes. We then add to each group a
random amount of noise in the range of Œ0; n

5
�, where the noise is defined as members

of a different functional family. Each generated group is used as an instance in
the set.

The above technique allows us to collect different statistical metrics needed for
computing the correctness of solutions (described below).

3.4.3 Fitness

The individual’s fitness score preserves the rule that the higher the value, the better
the individual (as opposed to heuristic functions). The score is obtained by running
A* on m instances taken from the training set, with the individual used as the
heuristic function. The g value is defined as the length of the path from the initial
state to the current one. During the search, each individual keeps the best state
found so far (i.e., the one with the lowest heuristic value). Once the search space
is exhausted or the time limit (described below) is reached, the individual returns
that state, designating it as the goal state.
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The fitness score is then calculated, incorporating three elements:

1. Answer’s correctness (80%): The most important element is the
correctness, hence its weight is 80 % of the score. The correctness calculation
is described below.

2. Time to solution (10%): The time to solution is defined as the average
time it took the individual to find the solution for all instances. We wish to reduce
this time, and thus the element’s weight is 10 %. The score of the element is
1=time_to_solution.

3. Number of cliques (10%): Since the cliques represent the similarities
between the molecules, the more correct cliques the individual finds, the better
the solution is. The element’s weight is 10 %.

Each element is normalized to a value in the range Œ0; 1�. Towards this end we
divide the element value by its maximal value, where applicable.

Correctness is calculated by the Positive Predictive Values (PPV) formula:
correctness D TP

TPCFP , where TP is the number of times the individual marked a
stem correctly in a clique (for all training instances), and FP is the number of times
the individual marked a stem incorrectly in a clique (also for all training instances).
In case TP D FP D 0, the correctness value is 0. For example, if we have three
molecules from the same family and one “noisy” molecule from a different family,
we increase TP by one for each stem in a clique that belongs to a molecule of the
family. Consequently, we increase FP by one for each stem in a clique that belongs
to the noisy molecule.

The number of instances the individuals are trained on, m, is limited by the
computational resources. Yet, the user should set it to be as high as possible in
order to reach convergence. Avoiding over-fitting is achieved by using a standard
cross-validation method.

The minimum clique size, k, is set by the user according to the molecular families
and should be in the range Œ n

2
; n�.

3.4.4 Search Time

The time limit for a hyper-heuristic to return an answer is set initially by the user.
However, during evolution, we collect the median time for finding the best state. In
such a way we can reduce the time limit to be the average time + 1 min.

4 Concluding Remarks

We presented a new approach for the detection of RNA structure (including
pseudoknots), which is conserved among a set of unaligned RNA sequences. Our
method extends previous approaches that were based on first identifying conserved
stems and then assembling them into complex structural motifs. The novelty of our
approach is in simultaneously preforming both the identification and the assembly
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of these stems. We believe this novel unified approach offers a more informative
model for deciphering the evolution of functional RNAs, where the sets of stems
comprising a conserved motif co-evolve as a correlated functional unit.

We began by casting the problem of mining RNA sequence-structure motifs as
one of maximum weighted clique in an n-partite graph of stems. Next we addressed
the maximum weighted clique problem as a heuristic search problem, by translating
it into a search graph, where each state consists of the set of cliques identified so
far. We then defined domain knowledge and low-level heuristics for this domain.
Finally, we learned hyper-heuristics for this domain, which could be used with
heuristic search algorithms (e.g., A*, IDA*) for the mining task.

This paper extends a leading approach by Ji et al. (2004) with several important
modifications. By applying evolution-based learning we remove the necessity of
their single scoring function and the stringent cutoff thresholds. Our search is
more informed and computes intra-clique optimizations within the wide context
of topological inter-clique assembly considerations. This allows us to speed up the
search without the loss of sensitivity. In fact, sensitivity can now be increased, as
the more efficient search obviates the preprocessing sparsification used by Ji et al.
We used evolution to combine multiple scoring functions and dynamic thresholds.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon (servers are churning as you read
these lines).

Our work may lead to several possible research directions:

• We believe our unified approach offers a more informative model for deciphering
the evolution of functional RNAs, where the sets of stems comprising a conserved
motif co-evolve as a correlated functional unit. We hope that our results will shed
light on functional RNAs and that new biological discoveries will follow.

• The methodology presented here could be applied to other biological and non-
biological domains.

• There are many heuristics and similarity measurements that are not described in
this can be incorporated into our system.
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