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Chapter 1

MORE OR LESS? TWO APPROACHES

TO EVOLVING GAME-PLAYING

STRATEGIES∗

Amit Benbassat, Achiya Elyasaf, and Moshe Sipper
Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract We present two opposing approaches to the evolution of game strategies,
one wherein a minimal amount of domain expertise is injected into the
process, the other infusing the evolutionary setup with expertise in the
form of domain heuristics. We show that the first approach works well
for several popular board games, while the second produces top-notch
solvers for the hard game of FreeCell.

Keywords: αβ search, Checkers, Dodgem, FreeCell, Genetic Algorithms, Genetic
Programing, Hyper Heuristic, Reversi.

1. Introduction

The application of computational intelligence techniques within the
vast domain of games has been increasing at a breathtaking speed, with
evolutionary computation being one of the major approaches used. Over
the past several years our research group has produced a plethora of
results in numerous games of different natures (recently expounded in
the book by (Sipper, 2011)).

Our goal herein is to present two opposing approaches to the evolution
of game strategies. In the first, minimalist approach we inject the evolu-
tionary setup with as little domain knowledge as possible, while aiming
to prevail in a broad spectrum of games. We show that this approach

∗Genetic Programming Theory and Practice X (GPTP 2012). This research was supported
by the Israel Science Foundation (grant no. 123/11). Achiya Elyasaf is partially supported
by the Lynn and William Frankel Center for Computer Sciences.
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indeed works well for several board games, including Checkers, Reversi,
and Dodgem. The second, “maximalist” approach sets out by injecting
as much human knowledge as possible into the setup. This approach
produces top-notch FreeCell puzzle solvers, able to beat human players
to a pulp.

2. Less

In much of the work on games the focus is on a single game, the
goal being to reach a high level of play. In such research much effort
goes into integrating domain-specific expert knowledge into the system
in order to get the best possible player. For many games, opening books
of game-specific strong opening moves are created offline and used in
order to give the player an edge over a less-prepared rival. In Checkers,
a game with only two piece types, with the number of pieces on the
board tending to drop towards the end, endgame databases are often
used to allow the player to “know” which moves lead to victory from
numerous precomputed positions (Schaeffer et al., 2007). This trend
culminated in the construction of a database of all possible 3.9 × 1013

game states in American Checkers that contain at most 10 pieces on the
board (Schaeffer et al., 2007).

In this section our goal is entirely different (Sipper, 2011; Benbassat
and Sipper, 2012). We do not aim to use a learning technique to master
a single game but rather to present a flexible, generic tool that allows
us to learn to play any member of a group of games possessing certain
characteristics with as much—or as little—domain-specific knowledge
at our disposal. Currently our system can be applied to zero-sum, de-
terministic, full-knowledge board games played on a rectangular board.
Our system can in principle be adjusted to other types of games as well.
We provide evidence for the effectiveness of our approach by using our
system to learn multiple variants of multiple games. Our aim is to show
that we can improve the play level through evolution, from total incom-
petency to competent play, even with little or no prior expert knowledge
of the game domain.

The Games

The games we explore in this work are Lose Checkers, Reversi, and
Dodgem. They are all zero-sum, deterministic, full-knowledge, two-
player board games played on rectangular boards games.

Checkers. Many variants of the game of Checkers exist, several of
them played by a great number of people (including tournament play).
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A somewhat less-popular variant of Checkers is Lose Checkers. The
basic rules are the same as American Checkers (though the existence
of different organizations may cause some difference in the peripheral
rules). The objective, however, is quite different: A losing position for
a player in American Checkers is a winning position for that player in
Lose Checkers and vice versa (i.e., one wins by losing all pieces or re-
maining with no legal move). (Hlynka and Schaeffer, 2006) observed
that, unlike the case of American Checkers, Lose Checkers lacks an intu-
itive state evaluation function. Surprisingly (and regrettably) the inverse
of the standard, piece differential-based evaluation function is woefully
ineffective. In some cases Lose Checkers computer players rely solely
on optimized deep search and an endgame state database, having the
evaluation function return a random value for states not in the database.

Reversi. Reversi, also known as Othello, is a popular game with a
rich research history (Rosenbloom, 1982; Lee and Mahajan, 1990; Mori-
arty and Miikkulainen, 1995). Though the most popular Reversi variant
is a board game played on an 8x8 board, it differs widely from the Check-
ers variants in that it is a piece-placing game rather than a piece-moving
game. In Reversi the number of pieces on the board increases during
play, rather than decreasing as it does in Checkers. The number of moves
(not counting the rare pass moves) in Reversi is limited by the board’s
size, making it a short game. The 10x10 variant of Reversi is also quite
popular. International tournaments are held for both variants.

Dodgem. Dodgem is an abstract strategy game played on an n×n
board with n− 1 cars for each player. The board is initially set up with
n− 1 blue cars along the left edge and n− 1 red cars along the bottom
edge, the bottom left square remaining empty. Players alternate turns,
each allowed to move his vehicle forward or sideways. Cars may not
move onto occupied spaces. They may leave the board, but only by a
forward move. A car which leaves the board is out of the game. The
winner is the player who first has no legal move on their turn because
all their cars are either off the board or blocked in by their opponent.

Dodgem was first introduced as a 3x3 game by (Berlekamp et al.,
1982). In spite of the small board size Dodgem is not a trivial game for
human players. (des Jardins, 1996) proved using exhaustive search that
though the first player can force a win in the 3x3 variant, the 4x4 and
5x5 variants are draw games assuming perfect play. (des Jardins, 1996)
also postulated that Dodgem is a draw game for any board size n > 3.
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Table 1-1. Basic terminal nodes. F: floating point, B: boolean.
Node name Return type Return value

ERC() F Ephemeral Random Constant in the range [−5, 5)
False() B Boolean false value
One() F 1
True() B Boolean true value
Zero() F 0

Handcrafted Players

In order to be able to test the quality of evolved players we first created
some hand-written players. We made a point of making our players’
strategy contain a random element so as to render the development
of a specialized strategy against them specifically more difficult and to
allow for their use as benchmark opponents. The handcrafted players
essentially use the αβ algorithm up to a certain depth, at which point
an evaluation function is applied whenever the node reached is not a
terminal one (i.e., win, loss, or draw).

Evolutionary Setup

The individuals in the population act as board-evaluation functions,
to be combined with a standard game-search algorithm, in our case αβ.
The value they return for a given board state is seen as an indication
of how good that board state is for the player whose turn it is to play.
The evolutionary algorithm was written in Java. We chose to imple-
ment a strongly typed GP framework supporting a boolean type and a
floating-point type. Support for a multi-tree interface was also imple-
mented. On top of the basic Koza-style crossover and mutation opera-
tors, another form of crossover was implemented—which we designated
“one-way crossover”—as well as a local mutation operator. The original
setup is detailed in (Benbassat and Sipper, 2010). Its main points and
recent updates are detailed below. To achieve good results on multiple
games using deeper search we enhanced our system with the ability to
run in parallel multiple threads.

We implemented several basic domain-independent terminal nodes
were, presented in Table 1-1. The game-oriented terminal nodes are
listed in several tables: Table 1-2 shows nodes describing characteristics
that have to do with the board in its entirety, and Table 1-3 shows nodes
describing characteristics of a certain square on the board. We originally
created this setup for Lose Checkers (see (Benbassat and Sipper, 2010)),
but many of the domain terminals we used for Checkers variants also
proved useful for the other games.
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Table 1-2. Game-oriented terminal nodes that deal with board characteristics.
Node name Type Return value

EnemyManCount() F The enemy’s man count
FriendlyManCount() F The player’s man count

FriendlyPieceCount() F The player’s piece count
ManCount() F FriendlyManCount() – EnemyManCount()

Mobility() F The number of plies available to the player

Table 1-3. Game-oriented terminal nodes that deal with square characteristics. They
all receive two parameters—X and Y—the row and column of the square, respectively.

Node name Type Return value

IsEmptySquare(X,Y) B True iff square empty
IsFriendlyPiece(X,Y) B True iff square occupied by friendly piece

IsManPiece(X,Y) B True iff square occupied by man

Aman-count terminal returns the number of men the respective player
has, or a difference between the two players’ man counts. The mobility
node was a late addition that greatly increased the playing ability of the
fitter individuals in the population. This terminal allowed individuals
to more easily adopt a mobility-based, game-state evaluation function.

The square-specific nodes all return boolean values. They are very
basic, and encapsulate no expert human knowledge about the games. In
general, one could say that all the domain-specific nodes use little in the
way of human knowledge about the games. This goes against what has
traditionally been done when GP is applied to board games (Azaria and
Sipper, 2005; Hauptman and Sipper, 2005; Hauptman and Sipper, 2007).
This is partly due to the difficulty in finding useful board attributes for
evaluating game states in Lose Checkers—but there is another, more
fundamental, reason. Not introducing game-specific knowledge into the
domain-specific nodes means the GP algorithm defined is itself not game
specific, and thus more flexible (it is worth noting that mobility is a
universal principle in playing board games, and therefore the mobility
terminal can be seen as not game-specific).

Game-specific terminal nodes are shown in Tables 1-4 through 1-6.
We tried to keep these to a minimum, in line with our minimalistic
approach.

We defined several basic domain-independent functions, presented in
Table 1-7, and no domain-specific functions.

The functions implemented include logic functions, basic arithmetic
functions, one relational function, and one conditional statement. The
conditional expression rendered natural control flow possible and allowed
us to compare values and return a value accordingly.
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Table 1-4. Checkers-specific terminal nodes that deal with board characteristics.
Node name Type Return value

EnemyKingCount() F The enemy’s king count
EnemyPieceCount() F The enemy’s piece count

FriendlyKingCount() F The player’s king count
FriendlyPieceCount() F The player’s piece count

KingCount() F FriendlyKingCount() – EnemyKingCount()
PieceCount() F FriendlyPieceCount() – EnemyPieceCount()

IsKingPiece(X,Y) B True iff square occupied by king

Table 1-5. Reversi-specific terminal nodes that deal with board characteristics.
Node name Type Return value

FriendlyCornerCount() F Number of corners in friendly control
EnemyCornerCount() F Number of corners in enemy control

CornerCount() F FriendlyCornerCount() – EnemyCornerCount()

Table 1-6. Dodgem-specific terminal nodes that deal with board characteristics.
Node name Type Return value

FriendlyPosCount() F Distance measure from victory for friendly player
EnemyPosCount() F Distance measure from victory for enemy player

PosCount() F FriendlyPosCount() – EnemyPosCount()

Table 1-7. Function nodes. Fi: floating-point parameter, Bi: Boolean parameter.
Node name Type Return value

AND(B1,B2) B Logical AND of parameters
LowerEqual(F1,F2) B True iff F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters
NOR(B1,B2) B Logical NOR of parameters
NOTG(B1,B2) B Logical NOT of B1

OR(B1,B2) B Logical OR of parameters
IfT(B1,F1,F2) F F1 if B1 is true and F2 otherwise
Minus(F1,F2) F F1 − F2

MultERC(F1) F F1 multiplied by preset random number
NullJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2
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We implemented both one-way and two-way crossover as well as mu-
tation. In addition we used explicitly defined introns (Sipper, 2011; Ben-
bassat and Sipper, 2010). After initializing the fitness of all individuals in
the population to 0, fitness calculation was carried out by having evolv-
ing players face two types of opponents: external “guides” and their own
cohorts in the population (coevolution). Several games were then held,
with the final fitness value depending on the player’s performance (for
the precise fitness definition see (Sipper, 2011; Benbassat and Sipper,
2010)).

The change in population from one generation to the next was di-
vided into two stages: A selection stage and a procreation stage. In
the selection stage we used tournament selection to select the parents of
the next generation from the population according to their fitness. In
the procreation stage, genetic operators were applied to the parents in
order to create the next generation (Sipper, 2011; Benbassat and Sipper,
2010).

Our system supports two kinds of GP players. The first kind of player
examines all legal moves and uses the GP individual to assign scores to
the different moves, choosing the one that scores highest. This method
is essentially a minimax search of depth 1. The second kind of player
mixes GP game-state evaluation with a minimax search. It uses the
αβ search algorithm implemented for the guides, but instead of evalu-
ating non-terminal states randomly it does so using the GP individual.
This method adds search power to our players, but results in a program
wherein deeper search creates more game states to be evaluated, taking
more time.

Results

We divided the experiments into two sets, the first using no search,
the second with search and mobility incorporated into the evolutionary
algorithm. Below provide a summary of our results, with a full account
given in (Benbassat and Sipper, 2012) (see also (Sipper, 2011)).

Checkers. As there is no known simple board-evaluation function
for Lose Checkers we used a random evaluation for non-final board states
(i.e., states that were not win, loss, or draw). Our players, using a search
depth of 4, were able to outperform the strong αβ5 player. Note that
the player does not specialize in playing the benchmark opponent but
rather faces an ever-changing array of opponents among its cohorts in
the population.
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Reversi. For Reversi we used the material evaluation (piece count-
ing) to evaluate board states. We had handcrafted players randomly
alternate between material evaluation functions. Our best runs to date
for 8x8 Reversi are presented in full in (Benbassat and Sipper, 2012) (see
also (Sipper, 2011)). Our evolved players were able to outperform the
αβ5 and αβ7 players using a search depth of 4. Our best runs to date
for 10x10 Reversi are presented in (Benbassat and Sipper, 2012).

Dodgem. For Dodgem we used the appropriate version of material
evaluation to evaluate board states. Our evaluation function took into
account not only the number of pieces on the board but also their dis-
tance from the edge of the board (since the goal in Dodgem is to move
one’s pieces off the board). As with the previous games, we had hand-
crafted players randomly alternate between material evaluation func-
tions. 5x5 Dodgem afforded us the chance for deeper search than previ-
ous games. Our evolved 5x5 Dodgem players using a search depth of 5
held their own against a handcrafted opponent using a search depth of
7, with evolved 6x6 Dodgem also displaying an excellent level of play.

3. More

A well-known, highly popular example within the domain of discrete
puzzles is the card game of FreeCell. Starting with all cards randomly
divided into k piles (called cascades), the objective of the game is to
move all cards onto four different piles (called foundations)—one per
suit—arranged upwards from the ace to the king. Additionally, there
are initially empty cells (called FreeCells), whose purpose is to aid with
moving the cards. Only exposed cards can be moved, either from Free-
Cells or cascades. Legal move destinations include: a home (foundation)
cell, if all previous (i.e., lower) cards are already there; empty FreeCells;
and, on top of a next-highest card of opposite color in a cascade. FreeCell
was proven by Helmert (Helmert, 2003) to be NP-complete. Computa-
tional complexity aside, many (oft-frustrated) human players (including
the authors) will readily attest to the game’s hardness. The attain-
ment of a competent machine player would undoubtedly be considered
a human-competitive result.

FreeCell remained relatively obscure until it was included in the Win-
dows 95 operating system (and in all subsequent versions), along with
32,000 problems—known as Microsoft 32K—all solvable but one (this
latter, game #11982, was proven to be unsolvable). Numerous solvers
developed specifically for FreeCell are available via the web, the best
of which was that of Heineman (Heineman, 2009). Although it fails to

D R A F T Page 8 September 2, 2012, 2:03pm D R A F T



More or Less? Two Approaches to Evolving Game-Playing Strategies 9

solve 4% of Microsoft 32K, Heineman’s solver significantly outperforms
all other solvers in terms of both space and time.

Heineman’s Staged Deepening (HSD) algorithm may be viewed as
two-layered IDA* with periodic memory cleanup. The two layers op-
erate in an interleaved fashion: 1) At each iteration, a local DFS is
performed from the head of the open list up to depth k, with no heuris-
tic evaluations, using a transposition table—storing visited nodes—to
avoid loops; 2) Only nodes at precisely depth k are stored in the open
list,1 which is sorted according to the nodes’ heuristic values. In ad-
dition to these two interleaved layers, whenever the transposition table
reaches a predetermined size, it is emptied entirely, and only the open
list remains in memory (Sipper, 2011).

When we ran the HSD algorithm it solved 96% of Microsoft 32K, as
reported by Heineman.

At this point we were at the limit of the current state-of-the-art for
FreeCell, and we turned to evolution to attain better results. This time
we took a “maximalist” approach, the idea being to inject much hu-
man expertise into the evolutionary setup. We first needed to develop
additional heuristics for this domain.

Freecell Heuristics and Advisors

In this section we describe the heuristics we used, all of which estimate
the distance to the goal from a given game configuration:

Heineman’s Staged Deepening Heuristic (HSDH): This is the
heuristic used by the HSD solver. For each foundation pile (recall that
foundation piles are constructed in ascending order), locate within the
cascade piles the next card that should be placed there, and count the
cards found on top of it. The returned value is the sum of this count
for all foundations. This number is multiplied by 2 if there are no free
FreeCells or empty cascade piles (reflecting the fact that freeing the next
card is harder in this case).

NumWellPlaced: Count the number of well-placed cards in cascade
piles. A pile of cards is well placed if all its cards are in descending
order and alternating colors.

NumCardsNotAtFoundations: Count the number of cards that are not
at the foundation piles.

FreeCells: Count the number of free FreeCells and cascades.
DifferenceFromTop: The average value of the top cards in cascades,

minus the average value of the top cards in foundation piles.

1Note that since we are using DFS and not BFS we do not find all such states.

D R A F T Page 9 September 2, 2012, 2:03pm D R A F T



10

LowestFoundationCard: The highest possible card value (typically
the king) minus the lowest card value in foundation piles.

HighestFoundationCard: The highest card value in foundation piles.
DifferenceFoundation: The highest card value in the foundation

piles minus the lowest one.
SumOfBottomCards: Take the highest possible sum of cards in the

bottom of cascades (e.g., for 8 cascades, this is 4 ∗ 13 + 4 ∗ 12 = 100),
and subtract the sum of values of cards actually located there.

Apart from heuristics, which estimate the distance to the goal, we also
defined advisors (or auxiliary functions), incorporating domain features,
i.e., functions that do not provide an estimate of the distance to the goal
but which are nonetheless beneficial in a GP setting.

PhaseByX: This is a set of functions that includes a “mirror”
function for each of the heuristics define above. Each function’s
name (and purpose) is derived by replacing X in PhaseByX with
the original heuristic’s name, e.g., LowestFoundationCard produces
PhaseByLowestFoundationCard. PhaseByX incorporates the notion of
applying different strategies (embodied as heuristics) at different phases
of the game, with a phase defined by g/(g + h), where g is the number
of moves made so far, and h is the value of the original heuristic.

For example, suppose 10 moves have been made (g = 10),
and the value returned by LowestFoundationCard is 5. The
PhaseByLowestFoundationCard heuristic will return 10/(10+5) or 2/3
in this case, a value that represents the belief that by using this heuris-
tic the configuration being examined is at approximately 2/3 of the way
from the initial state to the goal.

DifficultyLevel: This function returns the location of the current
problem being solved in an ordered problem set (sorted by difficulty),
and thus yields an estimate of how difficult it is. The difficulty of a
problem is defined by the amount of nodes HSD needed to solve that
problem.

IsMoveToCascade is a Boolean function that examines the destination
of the last move and returns true if it was a cascade.

(Elyasaf et al., 2012; Sipper, 2011) provide a full list of the auxiliary
functions, including the above functions and a number of additional ones.

Experiments with these heuristics demonstrated that each one sepa-
rately (except for HSDH) was not good enough to guide search for this
difficult problem. Thus we turned to evolution.
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Evolving Heuristics for FreeCell

Combining several heuristics to get a more accurate one is considered
one of the most difficult problems in contemporary heuristics research
(Samadi et al., 2008; Burke et al., 2010). It is difficult mainly since it
entails traversing an extremely large search space of possible numeric
combinations, logic conditions, and game configurations. To tackle this
problem we turn to evolution.

In order to properly solve these three sub-problems, we designed a
large set of experiments using three different evolutionary methods, all
involving hyper-heuristics: a standard GA, standard (Koza-style) GP,
and policy-based GP. Each type of hyper-heuristic was paired with three
different learning settings: Rosin-style coevolution, Hillis-style coevo-
lution, and a novel method which we termed gradual difficulty. We
describe herein only the winning strategy—policy-based GP with Hillis-
style coevolution—with the other approaches described in (Elyasaf et al.,
2012) (see also (Sipper, 2011)).

Policy-based GP combines estimates and application conditions, using
ordered sets of control rules, or policies. Policies have been evolved
successfully with GP to solve search problems—albeit simpler ones (e.g.,
(Elyasaf et al., 2012; Sipper, 2011; Hauptman et al., 2009; Hauptman
et al., 2010; Aler et al., 2002)).

The structure of a policy is:

RULE1: IF Condition1 THEN V alue1
.
.
.

RULEN : IF ConditionN THEN V alueN
DEFAULT : V alueN+1

where Conditioni and V aluei represent conditions and estimates,
respectively.

Policies are used by the search algorithm in the following manner:
The rules are ordered such that we apply the first rule that “fires”
(meaning its condition is true for the current state being evaluated),
returning its V alue part. If no rule fires, the value is taken from the last
(default) rule: V alueN+1. Thus individuals, while in the form of poli-
cies, are still heuristics—the value returned by the activated rule is an
arithmetic combination of heuristic values, and is thus a heuristic value
itself. This accords with our requirements: rule ordering and conditions
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control when we apply a heuristic combination, and values provide the
combinations themselves.

Thus, with N being the number of rules used, each individual in the
evolving population contains N Condition GP trees and N + 1 V alue
sets of weights used for computing linear combinations of heuristic val-
ues. After experimenting with several sizes of policies, we settled on
N = 5, providing us with enough rules per individual, while avoiding
cumbersome individuals with too many rules. The depth limit used for
the Condition trees was empirically set to 5.

For Condition GP trees, the function set included the functions
{AND,OR,≤,≥}, and the terminal set included all heuristics and auxil-
iary functions define above. The sets of weights appearing in V alues all
lie within the range [0, 1], and correspond to the above heuristics. All
the heuristic values are normalized to within the range [0, 1] as described
above.

The crossover and mutation operators were performed as follows:
First, one or two individuals were selected (depending on the genetic
operator). Second, we randomly selected the rule (or rules) within the
individual(s). This we did with uniform distribution, except that the
most oft-used rule (we measured the number of times each rule fired)
had a 50% chance of being selected. Third, we chose with uniform prob-
ability whether to apply the operator to either of the following: the
entire rule, the condition part, or the value part.

We thus have 6 sub-operators, 3 for crossover—RuleCrossover,
ConditionCrossover, and ValueCrossover—and 3 for mutation—
RuleMutation, ConditionMutation, and ValueMutation. One of the ma-
jor advantages of policies is that they facilitate the use of such diverse
genetic operators.

For both GP-trees and policies, crossover was only performed between
nodes of the same type (using Strongly Typed Genetic Programming).

The Microsoft 32K suite contains a random assortment of deals of
varying difficulty levels. In each of our experiments 1,000 of these deals
were randomly selected for the training set and the remaining 31K were
used as the test set.

An individual’s fitness score was obtained by running the HSD algo-
rithm on deals taken from the training set, with the individual used as
the heuristic function. Fitness equaled the average search-node reduction
ratio. This ratio was obtained by comparing the reduction in number of
search nodes—averaged over solved deals—with the average number of
nodes when searching with the original HSD heuristic (HSDH). For ex-
ample, if the average reduction in search was 70% compared with HSDH
(i.e., 70% fewer nodes expanded on average), the fitness score was set
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to 0.7. If a given deal was not solved within 2 minutes (a time limit we
set empirically), we assigned a fitness score of 0 to that deal (for a fuller
explanation see (Elyasaf et al., 2011; Sipper, 2011)).

We applied Hillis-style coevolution (Hillis, 1992), wherein the first
population comprises the solvers, as described above. In the second
population an individual represents a set of FreeCell deals. Thus a
“hard”-to-solve individual in this latter, problem population contains
several deals of varying difficulty levels. This multi-deal individual made
life harder for the evolving solvers: They had to maintain a consistent
level of play over several deals. With single-deal individuals, which we
used in Rosin-style coevolution, either the solvers did not improve if the
deal population evolved every generation (i.e., too fast), or the solvers
became adept at solving certain deals and failed on others if the deal
population evolved more slowly (i.e., every k generations, for a given
k > 1).

The genome and genetic operators of the solver population were iden-
tical to those defined above. The genome of an individual in the deals
population contained 6 FreeCell deals, represented as integer-valued in-
dexes from the training set {v1, v2, . . . , v1000}, where vi is a random in-
dex in the range [1, 32000]. We applied GP-style evolution in the sense
that first an operator (reproduction, crossover, or mutation) was se-
lected with a given probability, and then one or two individuals were
selected in accordance with the operator chosen. We used standard
fitness-proportionate selection and single-point crossover. Mutation was
performed in a manner analogous to bitwise mutation by replacing with
independent probability 0.1 an (integer-valued) index with a randomly
chosen deal (index) from the training set, i.e., {v1, v2, . . . , v1000}. Since
the solvers needed more time to adapt to deals, we evolved the deal
population every 5 solver generations (this slower evolutionary rate was
set empirically).

Fitness was assigned to a solver by picking 2 individuals in the deal
population and attempting to solve all 12 deals they represented. The
fitness value was an average of all 12 deals. Whenever a solver “ran” a
deal individual’s 6 deals its performance was recorded in order to derive
the fitness of the deal population. A deal individual’s fitness was defined
as the average number of nodes needed to solve the 6 deals, averaged
over the solvers that “ran” this individual, and divided by the average
number of nodes when searching with the original HSD heuristic. If a
particular deal was not solved by any of the solvers—a value of 1000M
nodes was assigned to it.

Not only did this method surpass all previous learning-based meth-
ods, but it also outperformed HSD by a wide margin, solving all but 112
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deals of Microsoft 32K when using policy individuals, and doing so using
significantly less time and space requirements. Additionally, the solu-
tions found were shorter and hence better (Elyasaf et al., 2012; Sipper,
2011).

Results

Perhaps the most impressive feat is the following: Policy-FreeCell beat
all human players from a major FreeCell website (www.freecell.net),
ranking number one. Note that GA-FreeCell, our HUMIE-winning, GA-
based player of last year (Elyasaf et al., 2011) came in at number 11. Full
results are provided in (Elyasaf et al., 2012) (see also (Sipper, 2011)).

4. Concluding Remarks

We have seen two approaches to evolutionary game design, the first
using a flexible generic system and attempting to evolve players while
injecting as little domain knowledge as possible (and thus allowing for
multiple games to be tackled by the same system with few adjustments),
the second doing just the opposite. The minimalist approach seems to
work well when a group of games exhibiting similar features can be
identified. Note that even then we needed to make some domain-specific
adaptations in order to attain high performance. We are currently ex-
panding this approach to widen its spectrum of applicability, tackling
the card game Hearts, and the non-deterministic game Backgammon.

We see here the age-old trade-off between flexibility and generality on
the one hand and specialization on the other. The specialized system
has an inherent advantage in that all its parts and parameters are op-
timized for the goal of succeeding in the one domain for which it was
built. Conversely, the generic system allows the quick application and
optimization to a new domain, though its best results may fall short of
a highly specialized system. To try and close this gap we are constantly
adding parts and features to our generic system, while endeavoring to
leave an opening for the application of expert domain knowledge when
it is available (meaning that even with the generic system knowing your
domain well is still a good thing).

The maximalist approach is well suited for single-agent search prob-
lems. The domain-specific heuristics used as building blocks for the
evolutionary process are intuitive and straightforward to implement and
compute. Yet, the evolved solver is the top solver for the game of Free-
Cell. It should be noted that complex heuristics and memory-consuming
heuristics (e.g., landmarks and pattern databases) can be used as build-
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ing blocks as well. Such solvers might outperform the simpler ones at
the expense of increased code complexity.
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