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Necessary conditions for density classification by cellular automata
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Classifying the initial configuration of a binary-state cellular automaton~CA! as to whether it contains a
majority of 0s or 1s—the so-called density-classification problem—has been studied over the past decade by
researchers wishing to glean an understanding of how locally interacting systems compute global properties. In
this paper we prove two necessary conditions that a CA must satisfy in order to classify density:~1! the density
of the initial configuration must be conserved over time, and~2! the rule table must exhibit a density of 0.5.
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I. THE DENSITY-CLASSIFICATION PROBLEM

How does one obtain locally interacting systems that p
form global computations? Such systems exhibit glo
information-processing capabilities that are not explici
represented in their elementary components or in their lo
interconnections. Designing suchcellular computers@1# is
an arduous task, which has received much attention du
the past several years.

Cellular automata~CA’s! are the quintessential examp
of cellular computers, as well as the first to historically a
pear on the scene. A CA consists of a regular array of ce
each of which can be in one of a finite number of possi
states, updated synchronously in discrete time steps, acc
ing to a local, identical interaction rule. The state of a cell
the next time step is determined by the current states
surrounding neighborhood of cells. This transition is oft
specified in the form of a rule table, delineating the ce
next state for each possible neighborhood configuration.

An example of a cellular computation is to use a CA
determine the global density of bits in an initial-state co
figuration. Thisdensity-classification problemhas been stud
ied extensively over the past decade. Packard@2# was the
first to introduce the following version of the problem:
one-dimensional~1D!, two-state CA is presented with an a
bitrary initial configuration, and should converge in time to
state of all 1s if the initial configuration contains a density o
1s.0.5, and to all 0s if this density ,0.5; for an initial
density of 0.5, the CA’s behavior is undefined@Fig. 1~a!#.
Spatially periodic boundary conditions are used, resulting
a circular grid. Though this version was proved to be unso
able@3#, it has nonetheless attracted several researchers
ing to evolve high-performance~though imperfect!CA rules
by employing evolutionary algorithms@4–6#.

Capcarre`re, Sipper, and Tomassini@7# showed that there
exists a perfect solution to the density-classification prob
~i.e., one that classifies all input configurations correct!,
upon defining a different output specification@Fig. 1~b!#.

Considering the problem of density classification by c
lular automata, we prove two necessary conditions that a
must satisfy in order to classify density perfectly:
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~1! The density of the initial configuration must be co
served over time.

~2! The rule table must exhibit a density of 0.5.
The first condition is of particular interest as it creates

link between the problem of density classification and
well-studied class of density-conserving CA’s. Effective
these latter have received much attention within the phy
community, e.g., for modeling of traffic flow@8# and surface
growth @9#.

II. NOTATION AND DEFINITIONS

A configuration is the state of all cells of the CA at
given time step. Thetransition rule sis the complete lookup
table, delineating a cell’s state at the next time step for ev
possible local configuration of neighboring states. Thesuc-
cessor function Sis derived by simultaneously applyings to
the entire configuration yielding the configuration at the n
time step.s denotes a configuration of states,s0 denotes the
input configuration at timet50, ands t denotes the configu
ration at time stept, resulting fromt successive application
of S to s0, i.e., s t5St(s0).

FIG. 1. Two 1D CA density classifiers. White squares repres
cells in state 0, black squares represent cells in state 1. Grid si
n5149. The pattern of configurations is shown for the first 1
time steps, with time increasing down the page. The random in
configuration~i.e., input!contains a majority of 1s in both cases.
~a! The GKL CA (r 53), which correctly classifies approximatel
81.5% out of a random sample of initial configurations.~b! The CA
of Capcarrereet al. @7# (r 51) which classifies perfectly all initial
configurations using a different output definition; if there is a m
jority of 1s ~respectively, 0s) in the input, then the output consist
of one or more blocks of at least two consecutive 1s (0s), inter-
spersed by an alternation of 0s and 1s.
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Let I (s) be the number 1s of configurations. Density
D(s) thus equalsI (s)/usu, where usu is the length~i.e.,
number of cells! of s. The bitwise inversion of configuration
s is denoted bys̄.

Following Wolfram@10#, the transition rules can be writ-
ten as a string containing the next-state bit for every nei
borhood configuration.

For 1D CA’s,s ( i , j ) denotes theu i 2 j u bits of configuration
s positioned between bitsi and (j 21), inclusive. (s)k is the
concatenation ofk configurationss.

In this paper we consider two-state,d-dimensional toroi-
dal CA’s, whose radiusr is defined as an extension of th
von-Neumann neighborhood: a cell hasr neighbors on both
sides of each dimension; in addition, the cell itself is
cluded in its neighborhood.

The density-classification problem is defined as follow
Definition. Considering a toroidal, two-state CA, a succe

sor functionS is said to be aperfect density classifier, if S,
when applied to an arbitrary initial configuration of an
length, progresses toward a configuration, that allows to
fectively distinguish whether the density of 1s, in the origi-
nal configuration, is greater or smaller than a predetermi
thresholdr. @This definition is not mathematically tight, as
rests upon the notion of ‘‘effective computation’’—as inde
does the famous Church-Turing thesis. We have opted
such a definition because, otherwise, many clearly inef
tive CA’s might be considered as density classifiers~e.g., the
identity rule, which simply maps any configuration to
self!.#

III. A PERFECT DENSITY CLASSIFIER MUST
CONSERVE DENSITY

In this section we prove that a perfect CA density clas
fier cannot alter the density of the input configuration. W
first prove this result for one-dimensional CA’s and then p
vide an informal argument as to the validity of the proof
any dimension.

Theorem 1.Let S be a successor function of a perfe
one-dimensional density classifier. Then

;s0 , ;t, D~s0!5D@St~s0!#.

The proof of this theorem involves five lemmas prov
below.

Lemma 1.1. Let Sbe a perfect density classifier success
function. Then,;s0 ,;t, D(s0),r⇒D@St(s0)#,r, and
D(s0).r⇒D@St(s0)#.r.

Proof. This follows straightforwardly from our earlie
definition of the density-classification problem. Since a CA
deterministic and memoryless, if it ever reaches a configu
tion sn belonging to the complementary class, it will the
wrongly classifys0 andsn as belonging to the same clas

Lemma 1.2. Let s be the transition rule of a perfect densi
classifier with radiusr. Then, s(02r 11)50 and s(12r 11)
51.

Proof. If s(02r 11)51 ands(12r 11)51, or s(02r 11)50
and s(12r 11)50, then the input configurations 0n and 1n,
where n is the size of the CA, are classified as belongi
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to the same class, thus contradictings’s being a perfect den-
sity classifier transition rule. Ifs(02r 11)51 and s(12r 11)
50, then 0n and 1n give rise to a cycle of alternating con
figurations, thus contradictings’s being a perfect density
classifier@12#.

Lemma 1.3.For any input configurations0 of sizen, and
for any density thresholdr, there existm0 ,m1 such that
D(0m0s01m1).r andD(0(m011)s01(m121)),r.

Proof. Assuming 1/(12r) is not an integer, then, settin
m01m15 dn/(12r) e2n, it is straightforward to see that i
I (s0)50, we can setm15 dn/(12r) e2n and m050, with
the result thatD(0m0s01m1).r and D(0(m011)s01(m121))
,r. Now, if I (s0)Þ0, then decreasingm1 by I (s0) and
increasingm0 by the same amount will satisfy the lemma.

If 1/(12r) is an integer, then settingm01m15 dn/(1
2r) e2n11 leads to the same result.

Lemma 1.4. Let S be the successor function for a on
dimensional CA,s0 an initial configuration, andp an inte-
ger, such that I @S(s0)#5I (s0)1p. Then, I $S@(s0)k#%
5I @(s0)k#1kp.

Proof. As our CA’s are toroidal,S@(s0)k#5(s1)k. Then,
I $S@(s0)k#%5I @(s1)k#5k* I (s1)5k* I (s0)1kp5I @(s0)k#
1kp.

Lemma 1.5.Let S be a successor function of a perfe
one-dimensional density classifier, and letr be the radius of
the CA. For any configurations0, if I @S(s0)#5I (s0)1p
then24r<p<6r .

Proof. Let s0 be a configuration such thatI @S(s0)#
5I (s0)1p. Define a configurationy0, such that y0

50m0R1s0R21m1, where R25s0
(0,r ) and R15s0

(n2r ,n) and
m0 ,m1>2r 11.

Then, given Lemma 1.2 and our definition ofR1 andR2,
we conclude thatS(y0)5C10m022rC2s1C31m122r , where
C1 is the 2r -bit-long configuration obtained at the border
12r02r , C2 is the r-bit-long configuration obtained at th
border of 02rR1, andC3 is the r-bit-long configuration ob-
tained at the border ofR212r .

From Lemma 1.3 we know that we can definem0 ,m1
such thatD(y0).r, and that if we decreasem1 by 1 and
increasem0 by 1, D(y0),r. ~Note that we can increase bot
m0 and m1 by 2r 11 so thatm0 ,m1>2r 11 as required
above.! Then, as D(y0).r, we know that D(y1).r
~Lemma 1.1!, which, given the chosen values ofm0 ,m1,
implies that I (y1)>I (y0). ExpandingI (y1) and I (y0), we
can derive that I (C1)1I (C2)1I (C3)1p22r 2I (R1)
2I (R2)>0.

Analogously, if we definem0 ,m1 such thatD(y0),r and
if we decreasem0 by 1 and increasem1 by 1, thenD(y0)
.r. Then, asD(y0),r, we know thatD(y1),r ~Lemma
1.1!, which, given the chosen values ofm0 ,m1, implies that
I (y1)<I (y0), from which we derive thatI (C1)1I (C2)
1I (C3)1p22r 2I (R1)2I (R2)<0.

Hence, we know thatI (C1)1I (C2)1I (C3)1p22r
2I (R1)2I (R2)50, meaning thatp—the variation of num-
ber of 1s betweens0 and s1—is exactly equal toI (R1)
1I (R2)2I (C1)2I (C2)2I (C3)12r . Given the lengths of
R1 ,R2 ,C1 ,C2, andC3, we compute that24r<p<6r .

We are now able to prove Theorem 1.
Proof of Theorem 1. We will proceed by contradiction.
3-2
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NECESSARY CONDITIONS FOR DENSITY . . . PHYSICAL REVIEW E64 036113
Assume there exists a configurations0, such that
I @S(s0)#5I (s0)1p, p being a nonzero integer. From
Lemma 1.4 we know that we can create a configurationt0
5(s0)k, such thatI @S(t0)#5I (t0)1kp. However, if we set
k57r , wherer is the radius of the CA in question, then w
have a configurationt0, wherein I @S(t0)#5I (t0)17rp,
which contradicts Lemma 1.5, sincepÞ0.

Hence p50, and thus, for all configurationss0 ,
I @S(s0)#5I (s0).

To avoid a lengthy proof, we provide an informal arg
ment as to the validity of Theorem 1 tod-dimensional CA’s.
Lemmas 1.1 and 1.2 straightforwardly hold for any dime
sion. Lemma 1.3 can be extended to any dimension if
define the blocks 0m0 and 1m1 to be n-dimensional blocks
stacked up along the same dimension on each side. To ex
Lemma 1.4 tod dimensions, we note that ifI @S(s0)#
5I (s0)1p, a configuration y0 can be defined as th
d-dimensional vector ofk stacking up ofs0 along any one
dimension; then,I @S(y0)#5I (y0)1kp. Finally, taking into
account the aforementioned modification for Lemma 1.3,
would obtain a bounded value forp in Lemma 1.5~albeit
different from the one for the one-dimensional case! but still
independent from the size of the chosen configuration. Th
having proved both the necessity of a bounded variation
1s and the possibility of creating a configuration with
large a variation of 1s as desired, theorem 1 holds fod
dimensions.

IV. A PERFECT DENSITY CLASSIFIER’S RULE MUST
EXHIBIT A DENSITY OF 0.5

Having obtained a necessary condition on the global s
cessor functionS, we prove in this section a theorem relatin
to the local transition rule,s, namely, it must exhibit a den
sity of 0.5.

Theorem 2. Let s be the transition rule of a perfect, two
state, toroidal density classifier of any dimension. Then,
any density threshold of 1s, r, D(s)50.5.

The proof of this theorem involves five lemmas and
result on consecutive-l graphs proved by Ref.@11#.

A consecutive-l graph, G( l ,n,q,h), is ann-node directed
graph, wherein there exists an edge, (i , j ), if and only if j
P$qi1k(mod n):h<k<h1 l 21%. Du et al. @11# proved
that such a graph contains a Hamiltonian cycle@13# if q
5 l , h50, andl>gcd(n,q)>2.

Lemma 2.1. For any radiusr, one-dimensional, two-stat
toroidal CA, there exists a configurations0 of length 22r 11,
such that all 22r 11 neighborhoods are present once and o
once.

Proof. Consider the directed graphG, whose vertices are
the 22r 11 binary numbers 0, . . . ,22r 1121, defined as fol-
lows: there is an edge from vertexvn to vertexvm , if and
only if the last 2r bits of vn are identical to the first 2r bits
of vm . Then, finding a Hamiltonian cycle inG is equivalent
to finding an input configurations0 satisfying the conditions
of the lemma.

The set of edges ofG can be defined as follows:i→ j if
j P$2i 1k(mod n):0<k<1%. We thus obtain a
consecutive-2directed graph,G( l ,n,q,h), with q5 l 52 and
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h50. As the number of nodesn is a power of 2, we have
q5 l ,h50 andh>gcd(n,q)>2. Thus, following the results
of Ref. @11# G contains a Hamiltonian cycle, thereby provin
the lemma.

Lemma 2.2. Let s0 be ad-dimensional configuration o
length 22dr11, such that all 22dr11 neighborhoods of a
d-dimensionalCA are present once and only once. Then,s̄0,
the bitwise inversion ofs, is also such a configuration.

Proof. Consider any two of the 22dr11 possible neighbor-
hoods ofs̄0 : ā and b̄. Then, by definition, there exista,b,
the two corresponding neighborhoods ofs0. As each neigh-
borhood is present once and only once,aÞb, and thusā

Þb̄. Given that there are only 22dr11 neighborhoods ins̄0,
and given that there are 22dr11 possible different neighbor
hoods for ad-dimensional CA, then all neighborhoods a
present once and only once ins̄0.

Lemma 2.3. For any constantr, there exists a one
dimensional, two-state configurations0 of length 22r , such
that for any 2 blocksa andb of length 2r 11 in s0 , aÞb.

Proof. One may see that the proof of Lemma 2.1 s
holds for even powers of 2. Thus, we know that there ex
a configuration of length 22r , such that any 2r -long block
ai . . . a( i 12r 21)mod22r is different from any other 2r -long
block aj . . . a( j 12r 21)mod22r, iÞ j . In such a configuration
any 2r 11-long block ai . . . a( i 12r )mod22r is thus different
from any other 2r 11-long blockaj . . . a( j 12r )mod22r, iÞ j .

Lemma 2.4. For anyd-dimensional, 2-state toroidal CA
and for any radiusr, there exists a configuration wherein a
22dr11 possible neighborhoods are present once and o
once.

Proof. We will prove this lemma by induction.
The base of the induction,d51, is proved by Lemma 2.1
Induction step—Assume ad-dimensional configuration

s0 that includes all 22dr11 possible neighborhoods, eac
present once and only once.

We next construct b05a1 . . . a22r, the
(d11)-dimensional configuration, by ‘‘stacking up’’ alon
the (d11)th dimension 22r a8s, where aP$s0 ,s̄0%. We
construct the sequencea1 . . . a22r, such that any block
a i . . . a ( i 12r )mod22r is different from any other block
a j . . . a ( j 12r )mod22r, iÞ j . One can see this is possible: if w
denote the casea5s0 by 0 and the casea5s̄0 by 1, we
can then invoke Lemma 2.3.

From the induction assumption and from Lemma 2.2,
know that along each hyperplanea i there are 22dr11 differ-
ent neighborhoods. Each of these neighborhoods inclu
along its (d11)th dimension the sequence of bi
b( i 2r )mod22r . . . b( i 1r )mod22r. We know that this sequence i
different for each hyperplane from the construction co
straint that any blocka i . . . a ( i 12r )mod22r is different from
any other blocka j . . . a ( j 12r )mod22r, iÞ j . Thus, all 22dr11

different neighborhoods on hyperplanea i are different from
all 22dr11 different neighborhoods on hyperplanea j , iÞ j .
Then, we know that we have 22r* 22dr11522(d11)r 11 differ-
ent neighborhoods inb0, which is also the maximum numbe
of possible neighborhoods. Thus,b0 is a configuration of
dimensiond11, in which all 22(d11)r 11 possible neighbor-
3-3



du

h
n

ity

is

f

om

r

then

ust
nd
ity-

sity
las-

in
the

a-
the

MATHIEU S. CAPCARRÈRE AND MOSHE SIPPER PHYSICAL REVIEW E64 036113
hoods are present once and only once. This proves the in
tion stepd to d11.

Lemma 2.5. Let s0 be ad-dimensional configuration, suc
that all 22dr11 possible input states are present once and o
once, in any dimensiond. Then,D(s0)50.5.

Proof. The density of all neighborhoods, i.e., the dens
of all the numbers from 0 to 22dr1121 is 0.5. When ‘‘mov-
ing’’ along s0 to collect all neighborhoods, each bit
counted exactly the same number of times, namely, 2dr11
times. Thus, the density ofs0 is the same as the density o
all possible neighborhoods, i.e., 0.5.

We are now able to prove Theorem 2.
Proof of Theorem 2. Assume configurations0 contains all

22dr11 possible neighborhoods once and only once. Fr
Lemma 2.4 we know that such as0 exists. From Theorem 1
we deduce that—given thatS is a perfect density classifie
successor function—D@S(s0)#5D(s0), which, from
Lemma 2.5, we know to be 0.5. Moreover, as all 22dr11
er

st

-
,

:
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possible neighborhoods are present once and only once,
D@S(s0)#5D(s), and henceD(s)50.5.

V. CONCLUSION

We have shown that a perfect CA density classifier m
conserve the density in time of the initial configuration, a
its rule table must exhibit a density of 0.5. Thus, nondens
conserving CA’s@such as the GKL rule of Fig. 1~a!#, or,
indeed, any specification of the problem that involves den
change, precludes the ability to perform perfect density c
sification. These two necessary conditions might thus aid
the search for locally interacting systems that compute
global density property.
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