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Abstract

A major effort in the practice of evolutionary computation (EC) goes
into deciding how to represent individuals in the evolving population. This
task is actually composed of two subtasks: defining a data structure that
is the representation and defining the encoding that enables to interpret
the representation. In this paper we employ a coevolutionary algorithm—
dubbed OMNIREP—to discover both a representation and an encoding
that solve a particular problem of interest. We describe four experiments
that provide a proof-of-concept of OMNIREP’s essential merit. We think
that the proposed methodology holds potential as a problem solver and
also as an exploratory medium when scouting for good representations.

Keywords: evolutionary algorithms; cooperative coevolution; interpreta-
tion

1 Representations, Encodings, and Coevolution

One of the basic tasks, indeed a sine qua non, of the evolutionary computation
(EC) practitioner is to decide how to represent individuals in the (evolving)
population, i.e., precisely specify the genetic makeup of the artificial entity under
consideration. In his seminal 1989 book, [9] noted that, “Genetic algorithms
require the natural parameter set of the optimization problem to be coded as
a finite-length string over some finite alphabet.” Three decades later the field
of EC has seen problems other than optimization and representations other
than strings, yet the essential necessity of specifying a representation and an
encoding remains firm. As stated by [18], “the way in which candidate solutions
are encoded is a central, if not the central, factor in the success of a genetic
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algorithm.” And, more recently, [7] pointed out that, “Technically, a given
representation might be preferable over others if it matches the given problem
better, that is, it makes the encoding of candidate solutions easier or more
natural.”

The EC practitioner’s foremost task is thus to identify a representation—a
data structure—and its encoding, or interpretation. These can be viewed, in
fact, as two distinct tasks, though they are usually dealt with simultaneously.
To wit, one might define the representation as a bitstring and in the same
breath go on to state the encoding, e.g., “the 120-bit bitstring represents 4
numerical values, each encoded by 30 bits, which are treated as signed floating-
point values” (we will revisit this encoding in Section 2.2). As another example
of a representation and its encoding consider the following: “A floating point
number has 64 bits that encode a number of the form ±p × 2e. The first bit
encodes the sign, 0 for positive numbers and 1 for negative numbers. The next
11 bits encode the exponent e, and the last 52 bits encode the precision p”1 (we
experiment with a floating-point encoding in Section 2.3.)

In this paper we consider the two tasks—discovering a representation and
discovering an encoding—as distinct yet tightly coupled: A representation is
meaningless without an encoding; an encoding is useless without a representa-
tion. Our basic idea herein is to employ a coevolutionary algorithm to discover
both a representation and an encoding that solve a particular problem of interest.

Coevolution refers to the simultaneous evolution of two or more species with
coupled fitness [23]. Coevolving species can either compete (e.g., to obtain
exclusivity on a limited resource) or cooperate (e.g., to gain access to some
hard-to-attain resource). In a competitive coevolutionary algorithm the fitness
of an individual is based on direct competition with individuals of other species,
which in turn evolve separately in their own populations. Increased fitness of
one of the species implies a reduction in the fitness of the other species.

A cooperative coevolutionary algorithm involves a number of independently
evolving species, which come together to obtain problem solutions. The fitness of
an individual depends on its ability to collaborate with individuals from other
species [23].Interestingly, though the idea of coevolution originates (at least)
with Darwin—who spoke of “coadaptations of organic beings to each other” in
Origin of Species—it is arguably somewhat less pervasive in the field of EC than
one might expect.

Our idea can be stated simply: Rather than specify a specific representation
along with a specific encoding in advance, we shall set up a cooperative coevo-
lutionary algorithm to coevolve the two, with a population of representations
coevolving alongside a population of encodings.

We dubbed our algorithmic framework OMNIREP. Consistent with the focal
point of this paper, the “encoding” of OMNIREP is somewhat fluid, referring
to ‘omni’—universal, and ‘rep’—representation; and also denoting an acronym:
originating meaning by coevolving encodings and representations.

Of importance to note is OMNIREP’s not being a specific algorithm but

1www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number
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rather an algorithmic framework, which can hopefully be of use in settings other
than those exemplified herein. We believe that the OMNIREP methodology can
aid researchers not only in solving specific problems but also as an exploratory
tool when one is seeking out a good representation.

In a literature review of the field of memetic computing (MC), Neri and
Cotta [19] stated that, “an MC approach is a linked collection of operators
without any prefixed structure but with the only aim of solving the problem”
(see also [20]). OMNIREP fits perfectly within this definition, given our desire
to evolve a framework with less prefixed structure regarding the specifics of the
encodings and representations.

An objection that might be raised is that the distinction between “repre-
sentation” and “encoding” is a malleable one. Indeed, they can be two sets of
loci in a single individual, which together map to a single element in the search
space. We counter-argue by noting that in computer science one often makes
the distinction between “inert” data and “active” programs. Moreover, the real
value of OMNIREP comes from the higher-order epistatic interactions produced
by representing the points in the search space as a “representation” and “encod-
ing”. The coevolutionary dynamics thus engendered create new ways of moving
through the search space that could potentially increase or decrease evolvability.

This paper describes four basic examples of the OMNIREP idea, the intent
being to provide a proof-of-concept of its essential merit. The setup and the re-
sults are described in the next section, after which—in light of our experiments—
we discuss related research in Section 3. We surmise that some of the latter
might benefit from OMNIREP thinking. We offer concluding remarks in Sec-
tion 4.

Though the experiments described herein might be regarded as somewhat
simplistic, we believe the significance of the results presented lies beyond their
preliminary nature, in that we show how an essential part of an evolution-
ary computation, and in particular a genetic programming practitioner’s job—
finding a good representation—might be tackled through automated means. We
therefore wish to share this idea with the community at large, hoping to see it
used to tackle other problems.

2 OMNIREP: Setup, Experiments, and Results

2.1 Cooperative coevolution

We begin by describing the basic setup that is common to all experiments.2

OMNIREP uses cooperative coevolution with two coevolving populations, one
of representations, the other of encodings. The evolution of each population is
identical to a single-population evolutionary algorithm—except where fitness is
concerned (Figure 1). Below we describe the various components and parame-

2The OMNIREP code is available at https://github.com/EpistasisLab/.
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Figure 1: Fitness computation in OMNIREP, where two populations coevolve, one
comprising representations, the other encodings. Fitness is computed by combining a
representation individual (R) with an encoding individual (E).

ters of the system (see Table 1 for a summary3).
Selection. Tournament selection with tournament size 4, i.e., choose 4

individuals at random from the population and return the individual with the
best fitness as the selected one.

Crossover. Single-point crossover, i.e., select a random crossover point and
swap two parent genomes beyond this point to create two offspring.

Mutation is problem-specific and is described below per experiment.
Fitness. To compute fitness the two coevolving populations cooperate.

Specifically, to compute the fitness of a single individual in one population, we
use representatives from the other population [23]. The representatives (also
called cooperators) are selected via a greedy strategy as the 4 fittest individuals
from the previous generation. When evaluating the fitness of a particular repre-
sentation individual, we combine it 4 times with the top 4 encoding individuals,
compute 4 fitness values, and use the average fitness over these 4 evaluations as
the final fitness value of the representation individual. In a similar manner we
use the average of 4 representatives from the representations population when
computing the fitness of an encoding individual. (Other possibilities include
using the best fitness of the 4, the worst fitness, and selecting a different mix of
representatives, e.g., best, median, and worst.) The specific manner by which
a single fitness value is computed per representation-encoding pair is described
below for each experiment.

3Some parameters may seem arbitrary but our recent findings provide some justification
for this [25].
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Table 1: Evolutionary parameters. Shown first are common parameters, followed by
experiment-specific ones.

Description Value
Common

Number of evolutionary runs 1000
Maximal number of generations 1000

Stop if fitness < 0.001
Size of representations population 100

Size of encodings population 50
Type of selection Tournament
Tournament size 4

Type of crossover single-point
Probability of mutation (representations) 0.3

Probability of mutation (encodings) 0.3
Evolve encodings population every 3 generations

Number of representatives used for fitness 4
Number of top individuals copied (elitism) 2

Size of training and test sets 200
Experiment 1 (bitstring and bit count)

Size of representation individual 120 (bits)
Size of encoding individual 4 (integers)

Minimal number of bits per coefficient 10
Maximal number of bits per coefficient 30

Experiment 2 (floating point and precision)
Number of evolutionary runs 100

Size of representation individual 50 (floats)
Size of encoding individual 50 (integers)

Minimal precision 1 digit
Maximal precision 8 digits

Experiment 3 (program and instructions)
Size of representation individual (program) 10 (integers)

Size of encoding individual 5 (integers)
Experiment 4 (image and blocks)

Number of evolutionary runs per image 10
Number of images 9

Maximal number of generations 20000
Size of representations population 20

Size of encodings population 10
Size of representation individual 5000 (integers)

Size of encoding individual 5000 (tuples)
Minimal block size 1 pixel
Maximal block size 10 pixels
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Figure 2: Experiment 1: Sample representation and encoding individuals.

Elitism. The 2 individuals with the highest fitness in a generation are
copied (“cloned”) into the next generation unchanged.

Evolutionary rates differ between the two populations, with the encoding
population evolving more slowly, specifically, every 3 generations.

2.2 Experiment 1: Bitstring and bit count

Problem. Cubic polynomial regression:

y = ax3 + bx2 + cx + d ,

where a, b, c, d, x ∈ R ∩ [0, 1]. Given 200 pairs of (xi, yi) values, i = 1, . . . , 200,
where xi is the independent variable and yi is the dependent variable, find the
coefficients, a, b, c, d.

Populations. Our first experiment involves the simple yet quintessentially
“classic” genetic-algorithm (GA) bitstring setup, but with the added twist of
evolving the encoding. An individual in the representations population is a
bitstring of length 120. An individual in the encodings population is a list of
4 integer values, or genes, each of which specifies the number of bits allocated
(left to right) to the respective parameter (a, b, c, or d) in the representation
individual (Figure 2). We set the minimum bit count per coefficient to 10 and
the maximum to 30. Note that the 4 genes do not have to add up to 120.

Initialization. For every coevolutionary run: both populations are ini-
tialized randomly (random bits or random values in the appropriate range,
respectively); target coefficients a, b, c, d ∈ [0, 1] are chosen at random; a ta-
ble of 200 (xi, yi) training pairs is generated using the target coefficients, with
each xi ∈ [0, 1] randomly chosen (these are used for fitness evaluation during
evolution); a table of 200 (xi, yi) test pairs is generated using the target coeffi-
cients, with each xi ∈ [0, 1] randomly chosen (these are used for post-evolution
evaluation of the best solution).

Parameters. The full list of evolutionary parameters is given in Table 1.
Mutation. Mutation in a representation individual is bitwise, namely, flip

each bit with probability 0.3. Mutation in an encoding individual is done with
probability 0.3 (per individual) by selecting a random gene (of the 4) and re-
placing it with a new random (integer) value in the appropriate range.

Fitness. As noted above, a representation individual and an encoding indi-
vidual are combined for fitness purposes. The 4 integer values of the encoding
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individual define the number of bits that make up the respective coefficients in
the representation individual. Each coefficient is a simple signed float, where
the first bit represents the sign (0 for positive numbers and 1 for negative num-
bers), and the rest represent the fraction of the maximal value. For example,
0110, represents the value +6/7 and 1110 represents the value −6/7.

The combination of an encoding individual and a representation individual
thus yields 4 real-valued coefficients, which can thereupon be used in conjunction
with the data table to compute 200 output values. A single fitness value then
equals the mean absolute error with respect to the known target values. As
explained above in Section 2.1, the final fitness is computed as the average over
4 representation-encoding pairs.

Results. We performed 1000 evolutionary runs, each with a maximum of
1000 generations. A run terminated if a fitness threshold of 0.001 was attained
(the perfect fitness score is 0).

The results are shown in Table 2 (note: this table summarizes all results in
the paper, including the experiments described below). In addition to attaining
good fitness and test scores, we note that, interestingly, OMNIREP chose similar
bit counts for a, b, and c, while d received fewer bits. The total time for a batch
of runs in this and the following experiments (i.e., one line of Table 2) was
between 1-3 days on a node in our cluster (Intel R© Xeon R© E5-2650L).

Using the the same data as in the original experiment, we performed a com-
parative, fixed-encoding experiment, where no encoding evolution took place,
only single-population evolution of the 120-bit bitstring, where each coefficient
was allotted 30 bits. Evolution took slightly less time and fitness was similar.
The OMNIREP version was far more compact, using significantly less bits.

2.3 Experiment 2: Floating point and precision

Problem. Regression:

y =

49∑
j=0

ajx
ej ,

where aj , x ∈ R ∩ [0, 1], ej ∈ {0, . . . , 4}, j = 0, . . . , 49. Given 200 pairs of
(xi, yi) values, i = 1, . . . , 200, where xi is the independent variable and yi is the
dependent variable, find the 50 coefficients, {a0, . . . , a49}.

Populations. Driven by the example given in Section 1 involving floating-
point precision, an individual in the representations population is a list of 50 real
values ∈ [0, 1] (the coefficients ai). An individual in the encodings population
is a list of 50 integer values, each specifying the precision of the respective
coefficient, namely, the number of digits d ∈ {1, . . . , 8} after the decimal point.

Initialization. For every coevolutionary run: both populations are initial-
ized randomly (random real values or random integer values in the appropriate
range, respectively); target {ai}49i=0 ∈ [0, 1], {ei}49i=0 ∈ {0, . . . , 4} are chosen at
random; a table of 200 (xi, yi) training pairs is generated using the target co-
efficients and exponents, with each xi ∈ [0, 1] randomly chosen; a table of 200
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Table 2: Results. Values reported below are medians over all runs in the particular
experiment (the choice of median rather than average is explained in Section 2.4).
Shown: generation (gen) at which best-of-run fitness was attained, fitness, test score,
and additional statistics where applicable (fitness and test scores pertain to the solution
obtained by combining a representation individual with an encoding individual.)

(1a) Experiment 1 with OMNIREP: coevolution of bitstrings and bit counts. Shown
also: bit counts per coefficients a, b, c, d.

(1b) Experiment 1 with a fixed encoding: no encoding evolution, each coefficient
allotted a fixed 30 bits.

(2a) Experiment 2 with OMNIREP: coevolution of floating-point values and their
precision (number of digits after decimal point). Shown also: median of medians,
i.e., the overall median precision of each run’s median evolved precision.

(2b) Experiment 2 with a fixed encoding: no encoding evolution, each coefficient
assigned the maximal 8-digit precision.

(3a) Experiment 3 with OMNIREP: coevolution of programs and instructions.

(3b) Experiment 3 with a fixed random encoding.

(3c) Experiment 3 with a fixed encoding, part random, part taken from the target
encoding.

(4) Experiment 4 with OMNIREP: coevolution of image blocks and sizes plus colors.

experiment gen fitness test additional statistics

(1a) OMNIREP 606 0.005 0.005 a, b, c, d: 20, 21, 20, 11
(1b) fixed 528 0.006 0.006

(2a) OMNIREP 996 0.011 0.011 precision: 3
(2b) fixed 979 0.01 0.01

(3a) OMNIREP 15 0.028 0.026
(3b) fixed 7 0.438 0.44
(3c) fixed 7 0.3 0.308

(4) OMNIREP 19995 0.48 —
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(xi, yi) test pairs is generated using the target coefficients and exponents, with
each xi ∈ [0, 1] randomly chosen.

Parameters. The full list of evolutionary parameters is given in Table 1.
Mutation. Mutation is done with probability 0.3 (per individual) by se-

lecting a random gene (of the 50) and replacing it with a new random value
(real-valued or integer, respectively) in the appropriate range ([0, 1] for repre-
sentation individuals, {1, . . . , 8} for encoding individuals).

Fitness. A representation individual and an encoding individual are com-
bined for fitness purposes. The 50 integer values of the encoding individual
define the number of digits after the decimal point of the respective coefficient
in the representation individual. The combination of an encoding individual
and a representation individual thus yields 50 real-valued coefficients, which can
thereupon be used in conjunction with the data table to compute 200 output
values. A single fitness value then equals the mean absolute error with respect
to the known target values (4 such fitness values are averaged, see Section 2.1).

Results. We performed 100 evolutionary runs, each with a maximum of
1000 generations. A run terminated if a fitness threshold of 0.001 was attained.
The results are shown in Table 2. Good fitness and test scores were attained,
interestingly without evolving to use the maximal precision but less than half
that.

Using the the same data as in the original experiment, we performed a
comparative, fixed-encoding experiment, where each parameter was given the
maximal precision of 8 digits (a plausible choice that would be made by an EC
practitioner). Results were similar to OMNIREP.

2.4 Experiment 3: Program and instructions

Problem. Find a program that is able to emulate the output of an unknown
target program.

We consider the evolution of a program composed of 10 lines, each line ex-
ecuting a mathematical, real-valued, univariate function, or instruction. There
are 28 possible instructions, listed in Table 3.

Populations. The representation individual is a program comprising 10
lines, each one executing a generic instruction of the form x=fi(x), where fi ∈
{f1,...,f5}. The program has one variable, x, which is set to a specific value
v at the outset, i.e., to each (10-line) program, the instruction x=v is added as
the first line. v is thus the program’s input. After a program finishes execution,
its output is taken as the value of x.

To run a program one needs to couple it with an encoding individual, which
provides the specifics of what each fi performs, i.e., which of the 28 functions it
represents. The encoding individual is a list of 5 integer values, each in the range
{1, . . . , 28} (Figure 3). Note that we do not disallow the encoding individual to
have duplicate instructions, as this was deemed more general, allowing evolution
to come up with solutions that use less than 5 instruction types.

Initialization. For every coevolutionary run: both populations are initial-
ized to random values in the appropriate range; a random target representation
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Table 3: Mathematical instructions that make up the programs of experiment 3.

Instruction Returns Instruction Returns

plus1(x) x+1 mul10(x) x*10
plus2(x) x+2 div2(x) x/2
plus3(x) x+3 div3(x) x/3
plus4(x) x+4 div4(x) x/4
plus5(x) x+5 div5(x) x/5
minus1(x) x-1 div10(x) x/10
minus2(x) x-2 sin(x) sin(x)
minus3(x) x-3 cos(x) cos(x)
minus4(x) x-4 tan(x) tan(x)
minus5(x) x-5 floor(x) floor of x
mul2(x) x*2 ceil(x) ceiling of x
mul3(x) x*3 degrees(x) x converted from radians to degrees
mul4(x) x*4 radians(x) x converted from degrees to radians
mul5(x) x*5 fabs(x) absolute value of x

Representation Encoding
x=v f1: mul10

x=f1(x) f2: fabs

x=f2(x) f3: tan

x=f3(x) f4: mul10

x=f4(x) f5: minus2

x=f2(x)

x=f2(x)

x=f5(x)

x=f2(x)

x=f1(x)

x=f5(x)

Figure 3: Experiment 3 (programs): Sample representation and encoding individuals,
the former being a 10-line program with generic instructions, and the latter being the
instruction meanings, i.e., indexes into Table 3.
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and random target encoding are generated; a table of 200 (xi, yi) training pairs
is generated using the target representation and encoding, with each xi ∈ [0, 1]
randomly chosen; a table of 200 (xi, yi) test pairs is generated using the target
representation and encoding, with each xi ∈ [0, 1] randomly chosen.

Parameters. The evolutionary parameters are given in Table 1.
Mutation. Mutation is done with probability 0.3 (per individual) by se-

lecting a random gene (of the 10 or 5, respectively) and replacing it with a new
random (integer) value in the appropriate range ({1, . . . , 5} for representation
individuals, {1, . . . , 28} for encoding individuals).

Fitness. A representation individual and an encoding individual are com-
bined for fitness purposes. The program represented by the former, decoded
using the latter, is run on each of the 200 xi values from the data table, gener-
ating 200 output values. A single fitness value then equals the mean absolute
error with respect to the known target values (4 such fitness values are averaged,
see Section 2.1).

Results. We performed 1000 evolutionary runs, each with a maximum of
1000 generations. A run terminated if a fitness threshold of 0.001 was attained.
As shown in Table 2 the results were good.

Using the the same data as in the original experiment, we performed two
comparative, fixed-encoding experiments, where no encoding evolution took
place, only single-population evolution of the programs: (1) a random encoding
was generated per each of the 1000 runs, emulating a state of “no knowledge”
about the program encoding; and (2) for each run, the encoding used 2 of the
functions from the known target encoding and 3 random functions, emulating a
state of “partial knowledge” about the program encoding. Results were worse
than OMNIREP in both cases.

There is an interesting reason behind our choice of reporting on median
rather than average values in Table 2. Because of the unconstrained nature
of the programs some runs ended up with huge (i.e., bad) fitness values (e.g.,
when sequences of multiplications arose). We did not deem it necessary to report
averages by removing outliers (e.g., by using rules such as 3× standard deviation
or 1.5 × interquartile range), because our interest lay in overall algorithmic
performance. A good median value means that at least 1 in 2 evolutionary
runs produces satisfactory results. In many cases, EC practitioners would be
content with 1-in-10 runs being good. Likely, through judicious constraints to
the individuals, and fixes to selection, crossover, and mutation, we could avoid
programs that produce large values, but we did not feel this was cardinal in our
current study.

2.5 Experiment 4: Image and blocks

Problem. Evolutionary Art is a branch of EC wherein artwork is generated
through an evolutionary algorithm; it is a growing domain, which has boasted a
specialized conference over the past few years [6]. Our goal herein was to evolve
artistic renderings of given images. We were inspired by the work of Johansson,
who used what is essentially a 1 + 1 evolution strategy—single parent, single
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child, both competing against each other—to evolve a replica of the Mona Lisa
using 50 semi-transparent polygons.4

Populations. A two-dimensional image of dimensions {width, height} is
treated as a one-dimensional list of pixels of size width×height (ranging, in our
case, from 10848 pixels to 68816). The representation individual’s genome is a
list of pixel indexes, pi ∈ {0, . . . , width∗height−1}, i = 1, . . . , 5000, where pi is
the start of a same-color block of pixels. The encoding individual is a list equal
in length to the representation individual, consisting of tuples (bi, ci), where bi
is block i’s length, and ci is block i’s color. If a pixel is uncolored by any block
it is assigned a default base color.

An encoding individual combines with a representation individual to paint
a picture, made up of same-color blocks of length and color indicated by the
former and start positions indicated by the latter.

Initialization. For every coevolutionary run: both populations are ini-
tialized to random values in the appropriate range: a single representation-
individual value (gene) is an integer in the range {0, . . . , width ∗ height − 1},
and a single encoding-individual gene is a tuple (block size, block color), where
block size ∈ {1, . . . , 10} and block color ∈ {0, . . . , 3}; a target painting is chosen
and its list of pixels generated.

Parameters. The evolutionary parameters are given in Table 1.
Mutation. Mutation is done with probability 0.3 (per individual) by select-

ing a random gene and replacing it with a new random value of the appropiate
type.

Fitness. A representation individual and an encoding individual are com-
bined for fitness purposes to produce a list of pixels that define an image. A
single fitness value then equals the mean absolute error with respect to the
known target pixels (4 such fitness values are averaged, see Section 2.1).

Results. We performed 90 evolutionary runs, each with a maximum of
20000 generations. A run terminated if a fitness threshold of 0.001 was attained.
Table 2 shows that we achieved good fitness and Figure 4 presents a gallery of
evolved pictures.

3 Related Research

Having (hopefully) demonstrated a basic proof-of-concept of the OMNIREP
idea, we now present a brief discussion of related work. This is by no means an
in-depth review but only meant to note other works that bear mentioning. While
none of them employ coevolution of representations and encodings, perhaps they
might benefit from an OMNIREP approach.

Generative and Developmental Encoding is a branch of EC concerned with
genetic encodings motivated by biology. A structure that repeats multiple times
can be represented by a single set of genes that is reused in a genotype-to-
phenotype mapping [27].

4www.rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/

12

www.rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/


Figure 4: Experiment 4: Sample results. Each pair of images shows an original (left)
and evolved (right) picture.
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[12] argued in favor of using developmental mechanisms in genetic algo-
rithms, providing a framework that distinguishes between two developmental
mechanisms—learning and maturation. They observed that in some contexts,
maturation and local search can be incorporated into the fitness evaluation, but
illustrated reasons for considering them separately.

Early work by [11] compared the efficiency of two encoding schemes for Ar-
tificial Neural Networks (ANNs) optimized by evolutionary algorithms. Direct
encoding encoded the weights for an a-priori fixed neural network architecture
while cellular encoding encoded both weights and the architecture of the neural
network. The authors noted that, “The advantage of cellular encoding is that
it could automatically find small architectures whose structure and complexity
fit the specificity of the problem.” Indeed, a similar argument could be made
for OMNIREP with respect to finding good encodings and representations.

[4] explored the use of growth processes, or embryogenies, to map geno-
types to phenotypes within evolutionary systems, identifying three main types
of embryogenies in EC: external (non-evolved), explicit (evolved), and implicit
(evolved, indirect). For a problem of tessellating tiles they showed that implicit
embryogeny outperformed the other methods.

[16] presented developmental genetic programming, wherein a fully devel-
oped electrical circuit is produced by progressively executing circuit-constructing
functions from an individual program tree. Thus, the trees did not directly
represent a problem solution—in this case an electrical circuit—but rather in-
structions on how to grow a full-blown circuit from a simple embryo.

In Gene Expression Programming the individuals in the population are en-
coded as linear strings of fixed length, which are afterwards expressed as non-
linear entities of different sizes and shapes (i.e., simple diagram representations
or expression trees) [8].

[13] presented an example of a generative representation for the concurrent
evolution of the morphology and neural controller of simulated robots. Each
robot was constructed from a sequence of construction commands that specified
how to assemble both the morphology and the neural controller.

[1] presented Genetic Library Builder (GLiB), a genetic programming-based
system that introduced two novel mutation operators: 1) compression extracts
environment-specific additions to the primitive language from the genetic ma-
terial of the population, defining new modules; and 2) expansion replaces a
compressed module by its original definition.

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT)
is a form of neuroevolution, i.e., evolving artificial neural networks through evo-
lutionary algorithms [26]. HyperNEAT employs an indirect encoding that can
produce connectivity patterns with symmetries and repeating motifs by inter-
preting spatial patterns generated within a hypercube as connectivity patterns
in a lower-dimensional space.

Though not used extensively, variable-length genomes have been around
for quite some time.5 Early work by [10] presented messy genetic algorithms

5Of course, some representations, such as trees in genetic programming, are inherently
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(mGA), which process variable-length strings that may be either under- or over-
specified with respect to the problem being solved. Again, while different than
what we have done here, there is an interesting common thread, that of allowing
evolution to discover the underlying representation needed: “Prior to this time,
no GA had ever solved a provably difficult problem to optimality without prior
knowledge of good string arrangements. The mGA presented herein repeatedly
achieves globally optimal results without such knowledge . . . ” [10]

[17] presented a general variable length genome, called exG, to address
the problems of fixed-length representations in canonical evolutionary algo-
rithms. They presented some preliminary results and a discussion of the pro-
posed method’s usage.

Grammatical Evolution (GE) was introduced by [24] as a variation on ge-
netic programming. Here, a Backus-Naur Form (BNF) grammar is specified
that allows a computer program or model to be constructed by a simple ge-
netic algorithm operating on an array of bits. The GE approach is appealing
because only the specification of the grammar needs to be altered for different
applications. One might consider subjecting the grammar encoding to evolu-
tion in an OMNIREP manner (as done, e.g., by [2]). [21] combines GE with the
developmental notion of complex genotype-to-phenotype mapping.

Linear genetic programming is a form of genetic programming wherein com-
puter programs in a population are represented as sequences of instructions [3].
This is similar to our second experiment (Section 2.4), except that the encoding
is fixed.

Within a memetic computing framework, Iacca et al. [15] proposed, “a
bottom-up approach which starts constructing the algorithm from scratch and,
most importantly, allows an understanding of functioning and potentials of each
search operator composing the algorithm.” Caraffini et al. [5] proposed a compu-
tational prototype for the automatic design of optimization algorithms, consist-
ing of two phases: a problem analyzer first detects the features of the problem,
which are then used to select the operators and their links, thus performing the
algorithmic design automatically. Both these works share the desire to tackle
basic algorithmic design issues in a (more) automatic manner.

Within the context of membrane systems (also called P systems), Zhang et
al. [29] proposed a novel way to design a P system for directly obtaining the ap-
proximate solutions of combinatorial optimization problems without the aid of
evolutionary operators. Iacca et al. [14] presented a coevolutionary algorithm,
proposing a memetic computing structure wherein a population of candidate so-
lutions, termed coevolving aging particles, are perturbed, independently, along
each dimension. Both these works address basic representational issues.

Tangentially related to our work herein is the extensive research on param-
eters and hyper-parameters in EC, some of which has focused on self-adaptive
algorithms, wherein the parameters to be adapted are encoded into the chro-
mosomes and undergo crossover and mutation. The reader is referred to [25]
for a comprehensive discussion of this area. Another tangential connection is to

variable-length. Herein, we simply refer to the literature on “variable-length genomes”.
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“smart” crossover and mutation operators, wherein, interestingly, coevolution
has also been applied [28].

4 Concluding Remarks

We presented four experiments that provide a proof-of-concept of the idea of
coevolving representations and encodings. We perceive OMNIREP not as a
particular algorithm but rather as a meta-algorithm, which might hopefully
be suitable for other settings. Essentially, any scenario where some form of
representation may be interpreted in several ways, or where the representation
and encoding can be rendered “fluid” rather than fixed, might be a candidate
for an OMNIREP approach.

We think that the framework expounded here can aid researchers not only in
solving specific problems but also as an exploratory route when one is seeking
out a good representation. One could use OMNIREP to select a “winning”
encoding and then continue with fixed-encoding evolution.

Future exploration might look into more applications and application areas
for OMNIREP. For example, experiment 3 (programs) might be expanded to
full-blown coevolution of programs in common programming languages such as
Java and Python, along with their interpreters or compilers [22].

Various tricks of the EC trade can be applied to OMNIREP, e.g., lexicase
selection, smart variation operators (e.g., [28]), hall-of-fame, novelty search, and
more.

Many real-life problems are ones that exhibit constraints, multiple objec-
tives, or both. Such problems would be well worth exploring. Last, but not
least, we plan to address issues relating to computational costs incurred when
running OMNIREP-like algorithms.

Thinking wider, once one embraces the “fluidity” of representations, other
setups come to mind. We have considered here two populations, one of repre-
sentations and one of encodings, which we might rename OMNIREP-e, the ‘e’
referring not only to ‘encodings’ but also to ‘explicit’, since the encodings are
explicitly embodied in their own population.

Another version we suggest is implicit OMNIREP, OMNIREP-i (Figure 5).
Consider the cubic polynomial example, wherein we sought four coefficients,
a, b, c, d. We could set up four coevolving populations, which are identical at
the outset in that they all contain individuals that represent numerical param-
eters. However, when combined to asses fitness, the individuals from the first
population are used for coefficient a, those from the second population for co-
efficient b, and so forth. Thus, in time, each population will implicitly come to
represent, or specialize, in one coefficient.

Yet another ominrep version, OMNIREP-l, might introduce the idea of levels
(Figure 6): an individual in the first population is decoded by an individual in
the second population, which in turn is decoded by an individual in the third
population, and so forth (hopefully not ad infinitum). This might produce
better and more compact solutions (as we saw in our experiments, the current
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Figure 5: In OMNIREP-i each coevolving population evolves to specialize in a specific
task.

OMNIREP-e can evolve compact encodings).
A major goal of artificial intelligence is that of mimicking humans by aiming

to jointly discover interpretations and representations, ultimately resulting in
meaningful insight and understanding. While this is a grander goal than that
dealt with in this paper, we believe we may have taken a small step towards it.
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