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Ontogenetic hardware!
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Abstract

Ontogeny is the process by which a single mother cell, the zygote, gives rise, through successive divisions, to a
complete organism, possibly containing trillions of cells (e.g. in humans). This paper describes research whose
inspiration is drawn from the process of ontogenetic development. By adopting certain features of cellular
organization, and by transposing them to the world of integrated circuits on silicon, we show that certain properties
unique to the living world, such as self-replication, self-repair, and growth, can also be attained in artificial objects
(integrated circuits). Specifically, we identify and describe three classes of ontogenetic hardware: (1) self-replicating
hardware; (2) embryonic hardware; and (3) L-systems based hardware, dubbed L-hardware. For each class we present
an example of a hardware realization, along with a discussion of possible applications. Continued research on
ontogenetic hardware may yield novel bio-inspired systems endowed with replicative, growth, and regenerative
capabilities. © 1997 Elsevier Science Ireland Ltd.
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1. Introduction

A human being consists of approximately 60
trillion (60 x 10'?) cells. At every moment, in each
of these cells, the genome, a string of 3 billion
characters, is decoded to produce the proteins
needed for the survival of the organism. This
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genome contains the individual’s genetic inheri-
tance, and, at the same time, the instructions for
both the construction and the operation of the
organism. The parallel execution of 60 trillion
genomes in as many cells occurs ceaselessly
throughout the individual’s lifetime. Faults are
rare and, in the majority of cases, are successfully
detected and repaired.

This process is remarkable for its complexity
and its precision. Moreover, it relies on com-
pletely discrete processes: the chemical structure
of DNA is a sequence of four bases (adenine,
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cytosine, guanine, and thymine). Each three-base
group (known as a codon) is decoded in the cell
to produce a particular amino acid, a future con-
stituent of the final protein (except for a few
codons which act as start and stop signals to
control protein synthesis (Watson et al., 1987)).

The process by which such complex organisms
come to be is known as ontogeny. It involves the
successive divisions of a mother cell, the zygote,
with each newly formed cell possessing a copy of
the original genome, followed by a specialization
of the daughter cells in accordance with their
surroundings, i.e. their position within the ensem-
ble. This latter phase is known as cellular differen-
tiation. Ontogeny is thus the developmental
process of a multicellular organism. Note that the
process is essentially deterministic: an error in a
single base within the genome can provoke an
ontogenetic sequence which results in notable,
possibly lethal, malformations.

This paper describes research whose inspiration
is drawn from the basic processes of molecular
biology, and in particular from ontogenetic devel-
opment (Ransom, 1981). By adopting certain fea-
tures of cellular organization, and by transposing
them to the world of integrated circuits on silicon,
we show that certain properties unique to the
living world, such as self-replication, self-repair,
and growth, can also be attained in artificial
objects (integrated circuits).

Ontogenetic hardware represents one axis of the
recently introduced POE model of bio-inspired
systems (Sanchez et al., 1997; Sipper et al., 1997).
The model is based on the observation that if one
considers life on Earth since its very beginning,
three levels of organization can be distinguished:
the phylogenetic level concerns the temporal evo-
lution of the genetic programs within individuals
and species; the ontogenetic level concerns the
developmental process of a single multicellular
organism; and the epigenetic level concerns the
learning processes during an individual organ-
ism’s lifetime. In analogy to nature, the space of
bio-inspired hardware systems can be partitioned
along these three axes, phylogeny, ontogeny, and
epigenesis, giving rise to the POE model (Fig. 1,
Sanchez et al., 1997; Sipper et al.,, 1997). The
distinction between the axes cannot be easily

drawn where nature is concerned, indeed the defi-
nitions themselves may be subject to discussion.
Sipper et al. (1997) therefore defined each of the
above axes within the framework of the POE
model as follows: the phylogenetic axis involves
evolution; the ontogenetic axis involves the devel-
opment of a single individual from its own genetic
material, essentially without environmental inter-
actions; and the epigenetic axis involves learning
through environmental interactions that take
place after formation of the individual. For a
detailed introduction of the POE model the reader
should refer to the above references.

This paper concentrates on one particular axis,
namely, the ontogenetic one, the aim being to give
a detailed account of our research into hardware
implementations inspired by ontogenetic pro-
cesses. After a brief introduction of large-scale
programmable circuits (Section 2), we identify
and describe three classes of bio-inspired hard-
ware systems, situated along the ontogenetic axis:
(1) self-replicating hardware (Section 3); (2) em-
bryonic hardware (Section 4); and (3) L-systems
based hardware, dubbed L-hardware (Section 5).
For each class we present an example of a hard-
ware realization, along with a discussion of possi-
ble applications. Our paper ends in Section 6 with
conclusions and Pesavdirections for future re-
search.

Before continuing it is important to note that
our systems are not molecular machines but
rather based on current-day electronics technol-
ogy. In his paper, Drexler (1989) noted that living
things are characterized by heavy use of diffusive
transport, matching assembly, topological struc-

Phylogeny (P)

Ontogeny (O)

Epigenesis (E)

Fig. 1. The POE model. Partitioning the space of bio-inspired
hardware systems along three axes: phylogeny, ontogeny, and
epigenesis.
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tures, and adaptive parts. He called systems that
share these characteristics (whether living or not)
O-style systems (where O stands for organic).
Mechanical systems are characterized by heavy
use of channeled transport, positional assembly,
geometric structures, and inert parts. Drexler
called systems that share these characteristics M-
style systems (where M stands for mechanical).
He further noted that the difference between O-
style and M-style is not a hard distinction, but a
matter of degree, and that they form, at least in
principle, a continuum. Having said this, we em-
phasize that the ontogenetic hardware presented
in this paper is essentially M-style. This must be
kept in mind, especially when considering the
biological inspiration, which is just that—inspira-
tion.

2. Large-scale programmable circuits

An integrated circuit is called programmable
when the user can configure its function by pro-
gramming. The circuit is delivered after manufac-
turing in a generic state and the user can adapt it
by programming a particular function. In this
paper we consider solely programmable logic cir-
cuits, where the programmable function is a logic
one, ranging from simple boolean functions to
complex state machines. The programmed func-
tion is coded as a string of bits representing the
configuration of the circuit. Note that there is a
difference between programming a standard mi-
croprocessor chip and programming a pro-
grammable circuit—the former involves the
specification of a sequence of actions, or instruc-
tions, while the latter involves a configuration of
the machine itself, often at the gate level.

The most commonly used device in the past few
years is the field-programmable gate array
(FPGA) (Sanchez, 1996). An FPGA is an array of
logic cells placed in an infrastructure of intercon-
nections, which can be programmed at three dis-
tinct levels (Fig. 2): (1) the function of the logic
cells; (2) the interconnections between cells; and
(3) the inputs and outputs. All three levels are
configured via a string of bits that is loaded from
an external source, either once or several times. In
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Fig. 2. A schematic diagram of a field-programmable gate
array (FPGA). An FPGA is an array of logic cells placed in an
infrastructure of interconnections, which can be programmed
at three distinct levels: (1) the function of the logic cells; (2) the
interconnections between cells; and (3) the inputs and outputs.
All three levels are configured via a configuration bit string
that is loaded from an external source, either once or several
times.

the latter case the FPGA is considered re-
configurable.

FPGAs are highly versatile devices that offer
the designer a wide range of design choices. How-
ever, this potential power necessitates a suite of
tools in order to design a system. Essentially,
these generate the configuration bit string, given
such inputs as a logic diagram or a high-level
functional description. FPGAs have been widely
used recently in the burgeoning field of evolvable
hardware, giving rise to systems situated along the
phylogenetic axis (Sanchez and Tomassini, 1996;
Sanchez et al., 1997; Sipper et al., 1997).

3. Self-replicating hardware

The ontogenetic axis involves the development
of a single individual from its own genetic mate-
rial, essentially without environmental interac-
tions. As can be seen in Fig. 3 (based on Dawkins,
1989) ontogeny can be considered orthogonal to
phylogeny. The main process involved in the on-
togenetic axis can be summed up as growth, or
construction. Ontogenetic hardware exhibits such
characteristics as replication and regeneration
which find their use in many applications. To
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date, we have identified three classes of ontoge-
netic hardware: self-replicating systems, described
in this section; embryonic hardware; and L-hard-
ware, described in the following two sections.
Replicating systems have the ability to self-repair
upon suffering heavy damage (Mange et al., 1996)
and have been proposed as an economical means
of space exploration (Freitas and Gilbreath,
1980). Replication can in fact be considered a
special case of growth—this process involves the
creation of an identical organism by duplicating
the genetic material of a mother entity onto a
daughter one, thereby creating an exact clone. As
put forward by Sipper et al. (1997), it is important
to distinguish between two distinct terms, replica-
tion and reproduction, which are often considered
synonymous. Replication is an ontogenetic, devel-
opmental process, involving no genetic operators,
resulting in an exact duplicate of the parent or-
ganism (as in the budding process of the hydra,
Wolpert, 1991). Reproduction, on the other hand,
is a phylogenetic process, involving genetic opera-
tors such as crossover and mutation, thereby giv-
ing rise to variety and ultimately to evolution
(note that reproduction has been justly placed on
the vertical axis of Fig. 3).

developmental process|-»(_ phenotype
reproductive process

developmental process

Phylogeny

Ontogeny

Fig. 3. The phylogenetic and ontogenetic axes can be consid-
ered orthogonal. The figure shows two generations preceded
and followed by an indefinite number of generations. On-
togeny involves the development of the phenotype in a given
generation (horizontal arrows), while phylogeny involves the
succession of generations through reproduction of the geno-
type (vertical arrows). Note that genes, the basic constituents
of the genome, act on two quite different levels: they partici-
pate in the developmental process, influencing the develop-
ment of the phenotype in a given generation, and they
participate in genetics, having themselves copied down the
generations (reproduction) (Dawkins, 1989).
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Fig. 4. A schematic diagram of von Neumann’s self-replicating
cellular automaton. The system is a universal constructor
(UC), namely, a machine capable of constructing, through the
use of a ‘constructing arm’, any configuration whose descrip-
tion can be stored on its input tape. This universal constructor
is therefore capable, given its own description, of constructing
a copy of itself, i.e. of self-replicating.

Research on replicating systems began with von
Neumann’s work in the late 1940s on self-replicat-
ing machines. This work was later extended by
others, and more recently we have seen the emer-
gence of systems that exhibit other ontogenetic
mechanisms, such as cellular division and cellular
differentiation (discussed in the next section). This
line of research can be divided into four stages,
described below.

3.1. von Neumann’s universal constructor

von Neumann (1966) (see also Pesavento, 1995)
and his successors Banks (1970), Burks (1970) and
Codd (1968) developed self-replicating automata
capable of universal computation (i.e. able to
simulate a universal Turing machine; Hopcroft
and Ullman, 1979) and of universal construction
(i.e. able to construct any automaton described by
an artificial genome; Fig. 4). These systems are
based on the cellular automaton model, originally
conceived by Ulam and von Neumann in the
1940s to study the issue of self-replication within
a formal framework (von Neumann, 1966).
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Cellular automata (CA) are dynamical systems
in which space and time are discrete. A cellular
automaton consists of an array of cells, each of
which can be in one of a finite number of possible
states, updated synchronously in discrete time
steps, according to a local, identical interaction
rule. The state of a cell at the next time step is
determined by the current states of a surrounding
neighborhood of cells (Toffoli and Margolus,
1987).

The cellular array (grid) is n-dimensional,
where n=1,2,3 is used in practice. In this paper
we shall describe systems with n=1, 2, i.e. one-
and two-dimensional grids. The identical rule con-
tained in each cell is essentially a finite state
machine, usually specified in the form of a rule
table, with an entry for every possible neighbor-
hood configuration of states. The cellular neigh-
borhood of a cell consists of the surrounding
(adjacent) cells. For one-dimensional CAs, a cell
is connected to r local neighbors (cells) on either
side, as well as to itself, where r is a parameter
referred to as the radius (thus, each cell has 2r + 1
neighbors). For two-dimensional CAs, two types
of cellular neighborhoods are usually considered:
five cells, consisting of the cell along with its four
immediate nondiagonal neighbors; and nine cells,
consisting of the cell along with its eight sur-
rounding neighbors. When considering a finite-
sized grid, spatially periodic boundary conditions
are frequently applied, resulting in a circular grid
for the one-dimensional case, and a toroidal one
for the two-dimensional case. A one-dimensional
CA is illustrated in Fig. 5 (based on Mitchell,
1996).

While the complexity of the above self-replicat-
ing CAs is such that no full physical implementa-
tion has yet been possible?, the von Neumann cell
has recently been realized in hardware by Beuchat
and Haenni (1997), who constructed a logic mod-
ule that implements a single cell. Each module is
embedded in a plastic box (of dimensions 8 x 8 x
4 cm), whose top face contains a number of
connection points and a LED display showing the

2 For example, the size of von Neumann’s machine has been
estimated at 100000 cells (Pesavento, 1995; Sipper et al.,
1997).

current state of the cell (Fig. 6a). Several such
modules can be fitted together to produce a small
cellular array. The sides of the modules contain
electrical contacts, which allow adjacent cells to
transmit information to each other without addi-
tional wiring.

Each von Neumann module is composed of two
units, a computation unit and a display unit. The
computation unit, implemented in an FPGA (Sec-
tion 2), calculates the cell’s next state by directly
communicating with the adjacent, neighboring
cells. The cell’s state is stored and sent to the
display unit, implemented using a dot-matrix dis-
play, a microcontroller, and a small number of
latches. This latter unit constantly reads the cur-
rent state of the cell, and updates the display
accordingly. These two units are shown in Fig. 6b.

As noted above, the complete von Neumann
system cannot be fully realized due to its size. To
date, Beuchat and Haenni (1997) used the above
module to implement a 25-cell ‘organ’. Von Neu-
mann’s machine is divided into many functional
blocks, such as decoders and pulsers, known as
organs. For example, a pulser P(11001) generates
at the output cell (top right of Fig. 7) the se-
quence of excitations (signals) 11001 a fixed num-
ber of time steps after receiving an excitation (i.e.
a 1 signal) at the input cell (bottom left of Fig. 7).

Rule table:

neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0

Grid:

t=0 [o]1]to]x]o]a]s]o]a]1]o]o]1]1]

t=1 [1][1]aafoa]a]a]a 1|1 o o]1]1]

Fig. 5. Illustration of a one-dimensional, 2-state CA (based on
Mitchell, 1996). The connectivity radius is » = 1, meaning that
each cell has two neighbors, one to its immediate left and one
to its immediate right. Grid size is n = 15. The rule table for
updating the grid is shown on top. The grid configuration over
one time step is shown at the bottom, where configuration
refers to a legal assignment of states to cells in the grid.
Spatially periodic boundary conditions are applied, meaning
that the grid is viewed as a circle, with the leftmost and
rightmost cells each acting as the other’s neighbor.
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Fig. 6. Hardware implementation of the von Neumann cell. (a) Top face of the von Neumann module, including connection points
to other cells and a LED display showing the current state of the cell. (b) General schema: the module is composed of two units,
a computation unit, computing the cell’s next state, and a display unit, handling the dot-matrix display.

It should be noted that while von Neumann’s
system exhibits self-replication it is not capable of
detecting and recovering from faults, an essential
property for a system of such size. Von Neumann
himself had raised the issue of self-repair in his
model though he had not actually shown how this
can be attained. We shall come back to this issue
in the next section, where embryonic hardware
will be shown to possess not only the ability to
self-replicate but also to self-repair.

3.2. Langton’s self-replicating loop

Langton (1984) and his successors Byl (1989),
Reggia et al. (1993) and Morita and Imai (1997)
developed self-replicating automata which are
much simpler than the universal constructors.
These machines, however, lack any computing
and constructing capabilities, their sole function-
ality being that of self-replication (Fig. 8).

3.3. Tempesti’s self-replicating loop with finite
computational capabilities

Tempesti (1995) developed a self-replicating
CA, similar to that of Langton’s, yet with the
added capability of attaching to the automaton an
executable program which is duplicated and exe-
cuted in each of its copies. The program is stored

within the loop, interlaced with the replication
code (Fig. 9).

3.4. Self-replicating loop with universal
computational capabilities (Perrier et al., 1996)

Perrier et al. (1996) demonstrated a self-repli-
cating loop that is capable of implementing any
program, written in a simple yet universal pro-
gramming language. The system consists of three
parts, loop, program, and data, all of which are
replicated, followed by the program’s execution
on the given data. Thus, Perrier et al. (1996)
demonstrated a viable, self-replicating machine
with programmable capabilities (Fig. 10).

Though to date only the von Neumann cell has
been implemented in hardware, the other systems
described above could be similarly realized.

4. Embryonic hardware

One of the defining characteristics of a biologi-
cal cell concerns its role as the smallest part of a
living being which carries the complete plan of the
being, that is its genome (Mange and Stauffer,
1994). In this respect, the self-replicating au-
tomata of the previous section are unicellular
organisms: there is a single genome describing
(and contained within) the entire machine.



M. Sipper et al. / BioSystems 44 (1997) 193-207 199

Fig. 7. Hardware implementation of one of the organs of von Neumann’s universal constructor, known as a pulser, using the module
of Fig. 6. The above pulser P(11001) generates at the output cell (top right) the sequence of excitations (signals) 11001 a fixed
number of time steps after receiving an excitation (i.e. a 1 signal) at the input cell (bottom left). Note that the 25 von Neumann
modules are not arranged as a 5 x 5 square—in fact, the arrangement is that of a 7 x 7 square, where unused cells are simply not
implemented. This allows for the construction of a larger organ for the price (literally) of a smaller one.

Mange and Stauffer (1994), Mange et al. (1996,
1997a) and Marchal et al. (1994, 1996) proposed a
new architecture called embryonics, or embryonic
electronics. Based on three features usually associ-
ated with the ontogenetic process in living organ-
isms, namely, multicellular organization, cellular
differentiation, and cellular division, they intro-
duced a new cellular automaton, complex enough
for universal computation, yet simple enough for
a physical implementation through the use of
commercially available digital circuits. They de-
veloped an artificial cell, dubbed biodule (biologi-
cal module), comprising of three structures found
in living cells (Fig. 11): (1) a plastic box consti-
tutes the external membrane, ensuring the cell’s
material encasement and realizing all the elec-
tronic functions necessary for communication
with neighboring cells; (2) a processor responsible
for interpreting the genome constitutes the cyto-
plasm, in analogy to a ribosome; and (3) a ran-
dom access memory (RAM) acts as the cell’s
nucleus, containing a copy of the entire genetic
makeup, i.e. a genome composed of a linear se-
quence of genes.

The biodule cell is used as an elementary unit
from which multicellular organisms can ontoge-
netically develop to perform useful tasks. Cellular
differentiation takes place by having each cell
compute its coordinates (i.e. position) within a
one- or two-dimensional space, after which it can
extract the specific gene within the genome re-
sponsible for the cell’s functionality. Cellular divi-
sion occurs when a mother cell, the zygote,
arbitrarily placed within the grid, multiplies to fill
a large portion of the space, thus forming a
multicellular organism. In addition to self-replica-
tion, this artificial organism also exhibits self-re-
pair capabilities, another biologically inspired
phenomenon. Such self-replicating machines are
multicellular artificial organisms, in the sense that
each of the several cells comprising the organism
contains one copy of the complete genome.

To date, three applications have been demon-
strated, a random number generator (Mange et
al., 1996), a universal Turing machine (Stauffer et
al., 1996; Mange et al., 1997a), and the biowatch
(Stauffer et al., 1997), described ahead. The
biowatch is an artificial ‘organism’ designed to
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Fig. 8. Langton’s self-replicating loop. The structure, embedded within an 8-state CA space (i.e. each cell can be in one of eight
possible states) consists of a looped pathway, containing instructions, with a construction arm projecting out from it. Upon
encountering the arm junction, the instruction is replicated, with one copy propagating back around the loop again and the other
copy propagating down the construction arm, where it is translated as an instruction when it reaches the end of the arm. Note that
the loop lacks any computing and constructing capabilities, its sole functionality being that of self-replication. (a) Time step 0. (b)

Time step 126.

count minutes (from 0 to 59) and seconds (from 0
to 59), comprising in effect a modulo-3600 coun-
ter that is able to self-replicate and self-repair.
The basic architecture, shown in Fig. 12a, consists
of four cells (four biodules), with two cells acting
as the minutes counter and the other two acting
as the seconds counter. The biowatch is shown in
Fig. 13.

Self-replication of the four-cell biowatch can
take place provided the following two conditions
are satisfied: (1) there exists a sufficient number of
spare cells (unused cells to the right-hand side of
the array, at least four in our case); and (2) the
calculation of the cell’s coordinates produces a
cycle, ie. X=0-1-2-3-0—..., where X is
the cell’s horizontal position, or coordinate (Fig.
12b). As the same pattern of coordinates produces
the same pattern of genes, self-replication can be
attained by duplicating the basic coordinate pat-
tern, as long as there are available empty cells
(Fig. 12¢).

Self-repair is achieved as follows (Fig. 12d):
identifying a cell to be eliminated, by pressing
upon the KILL button of the biodule (Fig. 11),
inactivates that cell, which is thereupon consid-
ered ‘dead’ (the X'= 2 cell in Fig. 12d). All cells to
the right of the dead one are then displaced one
position to the right. Obviously, this process re-
quires as many spare cells to the right, as there are
faulty cells to repair.

In the above system the detection of a malfunc-
tioning cell is done manually, requiring that an
outside observer press the KILL button, i.e. pin-
point the fault. To overcome this shortcoming, as
well as to attain universal construction, Mange et
al. (1997b) have recently added a molecular level
to the cellular level, described above. Essentially,
in this new addition to the embryonics family
each cell is composed of yet finer elements, re-
ferred to as molecules. The system as a whole now
possesses a three-part genome, corresponding to
the three phases it undergoes: (1) first the ‘poly-
merase’ part of the genome is injected, setting the
boundaries between cells, i.e. fixing the dimen-
sions of the molecular array; (2) then the ‘ribo-
somic’ part of the genome is introduced,
programming the system at the molecular level;
and (3) finally the ‘functional’ part of the genome
is injected into the random access memory of each
cell, programming the system at the cellular level
to carry out its intended function (e.g. a
biowatch). The presence of a completely pro-
grammable molecular ‘tissue’ allows the imple-
mentation of a cell of any dimension (subject, of
course, to the availability of sufficient hardware
resources), thus enabling universal construction
(Mange et al., 1997b).

A major advantage of this novel two-level sys-
tem is the ability to automatically detect a mal-
functioning cell, and repair it, provided there is a
sufficient number of reserve molecules (within the
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Fig. 9. Tempesti’s loop is a self-replicating automaton, with the added capability of attaching an executable program which is
duplicated and executed in each of its copies. This is demonstrated above for a simple program that writes out (after the loop’s
replication) LSL, acronym of the Logic Systems Laboratory. (a) Time step 240: the program is being copied into the daughter loop.
(b) Time step 341: the program is being executed in the daughter loop.

cell). When these latter are exhausted, and only in
this case, the cell is incapable of repair at the
molecular level; it thereupon (automatically) gen-
erates a KILL signal that brings about the regen-
erative process at the cellular level (as described
above). The automatic detection of faults is based
on so-called BIST (Built-In Self-Test) techniques
(Abramovici and Stroud, 1995; McCluskey, 1986).

5. L-hardware

Lindenmayer systems—or L-systems for
short—were originally conceived as a mathemati-
cal theory of plant development (Lindenmayer,
1968; Prusinkiewicz and Lindenmayer, 1990). The
central concept of L-systems is that of rewriting,

which is essentially a technique for defining com-
plex objects by successively replacing parts of a
simple initial object using a set of rewriting rules
or productions. The most ubiquitous rewriting
systems operate on character strings. Though such
systems first appeared at the beginning of this
century (Prusinkiewicz and Lindenmayer, 1990),
they have been attracting wide interest as of the
1950s with Chomsky’s work on formal grammars,
who applied the concept of rewriting to describe
the syntactic features of natural languages
(Chomsky, 1956). L-systems, introduced by Lin-
denmayer (1968), are string-rewriting systems,
whose essential difference from Chomsky gram-
mars lies in the method of applying productions.
In Chomsky grammars productions are applied
sequentially, whereas in L-systems they are ap-
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plied in parallel and simultaneously replace all
letters in a given word. This difference reflects the
biological motivation of L-systems, with produc-
tions intended to capture cell divisions in multicel-
lular organisms, where many divisions may occur
at the same time (Prusinkiewicz and Linden-
mayer, 1990).

Our L-hardware is based on the concept of
L-systems, and is demonstrated below for a spe-
cific set of productions. Consider strings (words)
built of two letters, 4 and B. Each letter is
associated with a rewriting rule. The rule 4 > 4B
means that the letter 4 is to be replaced by the
string AB, and the rule B— A means that the
letter B is to be replaced by A (Prusinkiewicz and
Lindenmayer, 1990). The rewriting process starts
from a distinguished string called the axiom. For
example, let the axiom be the single letter B. In
the first derivation step (the first step of rewrit-
ing), axiom B is replaced by A4 using production
B— A. In the second step production 4 —> AB is
applied to replace A with AB. In the next deriva-
tion step both letters of the word 4B are replaced
simultaneously: A4 is replaced by 4B and B is
replaced by 4. This process is shown in Fig. 14
for four derivation steps.

O ¢ o o o o o o

...........

o s s s e s e s s 0

s WY WYNYP ROHRRPRERREN.

Fig. 10. A self-replicating loop with programmable capabili-
ties. The system consists of three parts, loop, program, and
data, all of which are replicated, followed by the program’s
execution on the given data. P denotes a state belonging to the
set of program states, D denotes a state belonging to the set of
data states, and A is a state which indicates the position of the
program.

Fig. 11. An artificial cell: the biodule. A processor responsible
for interpreting the genome constitutes the cytoplasm, in anal-
ogy to a ribosome, along with a random access memory
(RAM) acting as the cell’s nucleus, containing a copy of the
entire genetic makeup, i.e. the genome. Displayed on the top
cover are the cell’s coordinates, as well as the specific gene
within the genome that determines its functionality; these are
acquired during cellular differentiation. The KILL button is
used to induce the self-repair (regeneration) mechanism.

We implemented L-hardware in a one-dimen-
sional cellular automaton with connectivity radius
r=1. Essentially, each cell in the CA grid repre-
sents a letter in the string. The simultaneous
replacement of all letters creates a problem where
the implementation is concerned since the string
does not necessarily maintain its original size. Our
solution is to turn the parallel replacement proce-
dure into a sequential one—rather than replace
all letters simultaneously they are replaced one at
a time, with a pointer to keep track of the current
letter being replaced. In order to carry out this
process, two auxiliary letters are introduced, «
and b, along with four additional productions:
{A—>a, B>b, a—>AB, b—>A}. In terms of CA
states, this requires four pointer sub-states and
five string sub-states (Fig. 15a). Basically, the
sequential process works on the lower-case letters,
the end result being a string of upper-case letters,
thus emulating a parallel replacement procedure.
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Mother cell

X= 0 1
(a)
Modulo-3600 counter Spare parts
A A
r N\ N
Q3 Q2 Q3 G G
|Mod 6 Mod10 Mod 6 Mod10|
RESET
COUNT = ¥ = =
X= 0 2 3 0 1 2 3
Mother cell
< Mother counter — Daughter counter _
mod mod mod mod mod mod mod mod
6 10 6 10 6 10 6 10
X= 0 1 2 3 0 1 2 3
(c)
o New counter . ‘ New counter >
. Original counter P Spare parts -
mod mod mod mod mod mod mod
6 10 6 10 6 10 6
X= 0 1 ) (3) 2 (0)3 (1o @)1 3)2
Faulty cell

(d)

Fig. 12. The Biowatch. (a) The basic system architecture consists of four cells (four biodules), aligned in a row, with two cells acting
as the min counter and the other two acting as the second counter. The ‘organism’ is shown after cellular division and cellular
differentiation have taken place: each cell now holds the four-gene genome (cellular division), and has computed its coordinates,
thereafter extracting the specific gene within the genome responsible for its functionality (cellular differentiation). (b) In order to
demonstrate the properties of self-replication and self-repair, four additional spare cells were added to the right, with calculation of
cellular coordinates producing a cycle. The modulo-3600 counter is locally synchronous—each cell’s global clock arrives from one
of the outputs of the counter to its right (Q2 or Q3) or from a reference clock G, with a 1 Hz frequency. (c) As the same pattern
of coordinates produces the same pattern of genes, self-replication of the four-cell biowatch takes place by duplicating the pattern
of coordinates within the spare cells. (d) Self-repair is achieved by displacing all cells to the right of an inactive (‘dead’) cell (the
X =2 cell above). Old coordinates are shown in parentheses.
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Fig. 13. An eight-cell biowatch, consisting of eight connected biodules.

A derivation step in the CA starts by respectively
replacing (in parallel) 4 and B with « and b, thus
applying the first two auxiliary productions, 4 »a
and B—b (Fig. 15b, time step 1). The pointer,
originally positioned at the leftmost cell, then
moves to the right end of the string (steps 2 and
3), and then back to the left again (steps 4 and 5),
introducing a space where a new letter can be
written (note that pointer ‘movement’ is simply a
visual interpretation of the state changes occur-
ring in the CA). This is done in order to accom-
modate the additional letter in the derived string,
required by application of rule @ > AB. The letter
a can now be replaced by 4B (step 6). The pointer
keeps moving back and forth along the string (i.e.
along the CA cells), working in accordance with
the auxiliary productions, until all lower-case let-

Fig. 14. Example of a derivation in an L-system. The set of
productions, or rewriting rules is: {4 - 4B, B— A}. The pro-
cess is shown for four derivation steps.

ters have been replaced by upper-case ones (steps
7-17). The return of the pointer to the leftmost
cell indicates that the sequential rewriting process
has ended, i.e. the original parallel derivation step
has been executed.

The hardware implementation uses FPGA cir-
cuits in a similar manner to the biodule of the
previous section. Each CA cell of the L-hardware
requires five state bits: two bits for the pointer
sub-states and three bits for the string sub-states.

6. Concluding remarks

We described research whose inspiration is
drawn from the process of ontogenetic develop-
ment. By adopting certain features of cellular
organization, and by transposing them to the
world of integrated circuits on silicon, we showed
that certain properties unique to the living world,
such as self-replication, self-repair, and growth,
can also be attained in artificial objects (integrated
circuits). We identified and described three classes
of ontogenetic hardware: (1) self-replicating hard-
ware; (2) embryonic hardware; and (3) L-hard-
ware. For each class we presented an example of
a hardware realization, and discussed some possi-
ble applications.
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Pointer sub-states: [__| empty

move right

move left

replace
o[vAl B[ Al [ [ |
1[val b] a] | | |
2 [al=bl a T T ]
3.[al bf<a] [ [ |
4 [aJeb] [ a] | |
5[val [ bl af | |
6 [_A[>B] b a] | |
7 (Al B[>b] a] [ |
8 [_A] B[ bJ<a] [ |

(a)

(b)
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String sub-states: [___| empty
[a] ltetterto replace
[CB] letterto replace
replaced letter
replaced letter
9 AT BJvb] [ a] |
10[ A] B] Al> | al |
1M [CA] B[ Al af< [ |
12[ AT B[ Afva] [ |
13 A] B] A} AI<-B] |
14 [ A] B] Al<-A] Bl |
15 [ A] BJ<-A] A] B] |
16 [ AJ<-B] A] A] B] ]
17 [vA] B[] A] A] B ]

Fig. 15. L-hardware is implemented in a one-dimensional cellular automaton with connectivity radius r = 1. Since the string does not
necessarily maintain its original size, the parallel replacement procedure is executed sequentially, using two auxiliary letters, ¢ and
b, along with four additional productions: {4 —>a, B—b, a— AB, b—> A}. Basically, the sequential process works on the lower-case
letters, with a pointer to keep track of the current letter being replaced, the end result being a string of upper-case letters. (a) The
state of a CA cell is composed of two sub-states: pointer and string. For example, state ‘|4’ means that the pointer is situated in
this cell, and that the cell holds the letter 4. (b) Demonstration of the last derivation step of Fig. 14. Note that one parallel

derivation step requires, in this case, 17 CA time steps.

Several other works can be placed along the
ontogenetic axis, including, e.g. cellular encoding
(Gruau, 1996), graph generation systems (Kitano,
1990), and self-replicating programs (Koza, 1994).
We have not discussed these as they are currently
implemented solely in software, while our empha-
sis was on hardware systems. These works can
provide a basis for future research. Other lines of
investigation which suggest themselves concern
the melange of the different concepts presented in
this paper. For example, we discussed the incor-
poration of the self-replication idea within the
embryonic-hardware framework. Another possi-
bility, which we are currently exploring, is the

combination of L-hardware and embryonic hard-
ware, to attain more robust systems.

Another extension which suggests itself is the
combination of two and ultimately all three axes
of the POE model (Section 1) in order to attain
novel bio-inspired hardware, as discussed by Sip-
per et al. (1997) and Sanchez et al. (1997). For
example, Sipper and Tomassini (1996a,b) and Sip-
per (1997) evolved, via an evolutionary algorithm
known as cellular programming, non-uniform cel-
lular automata to act as random number genera-
tors. Mange et al. (1996) showed that such
evolved generators can be implemented by a mul-
ticellular automaton that exhibits self-replication
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and self-repair. Thus, the eventual combination of
these two projects can be considered to be in the
phylogenetic-ontogenetic  plane. Perez  and
Sanchez (1996a,b) have developed neural network
hardware that implements an unsupervised clus-
tering algorithm, where the network’s topology
changes dynamically. Currently, the topology
changes through epigenetic (neural network)
mechanisms, however, one can imagine extending
this system into the ontogenetic—epigenetic plane
by obtaining the topology via an ontogenetic pro-
cess (Kitano, 1990).

Continued research on ontogenetic hardware
may vyield novel bio-inspired systems endowed
with replicative, growth, and regenerative capabil-
ities. Such systems hold potential both scientifi-
cally, as vehicles for studying natural phenomena,
as well as practically, showing a range of ensuing
applications.
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