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Abstract. The simultaneous evolution of two or more species with cou-
pled fitness—coevolution—has been put to good use in the field of evolu-
tionary computation. Herein, we present two new forms of coevolutionary
algorithms, which we have recently designed and applied with success.
OMNIREP is a cooperative coevolutionary algorithm that discovers both
a representation and an encoding for solving a particular problem of
interest. SAFE is a commensalistic coevolutionary algorithm that main-
tains two coevolving populations: a population of candidate solutions
and a population of candidate objective functions needed to measure
solution quality during evolution.
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1 Coevolutionary Computation

In biology, coevolution occurs when two or more species reciprocally affect each
other’s evolution. Darwin mentioned evolutionary interactions between flowering
plants and insects in Origin of Species. The term coevolution was coined by Paul
R. Ehrlich and Peter H. Raven in 1964.3

Coevolutionary algorithms simultaneously evolve two or more populations
with coupled fitness [8]. Strongly related to the concept of symbiosis, coevolu-
tion can be mutualistic (cooperative), parasitic (competitive), or commensalistic
(Figure 1):4 1) In cooperative coevolution, different species exist in a relationship
in which each individual (fitness) benefits from the activity of the other; 2) in
competitive coevolution, an organism of one species competes with an organism
of a different species; and 3) with commensalism, members of one species gain
benefits while those of the other species neither benefit nor are harmed.
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(a) (b) (c)

Fig. 1. Coevolution: (a) cooperative: Purple-throated carib feeding from and pollinat-
ing a flower (credit: Charles J Sharp, https://commons.wikimedia.org/wiki/File:
Purple-throated_carib_hummingbird_feeding.jpg); (b) competitive: predator and
prey—a leopard killing a bushbuck (credit: NJR ZA, https://commons.wikimedia.

org/wiki/File:Leopard_kill_-_KNP_-_001.jpg); (c) commensalistic: Phoretic mites
attach themselves to a fly for transport (credit: Alvesgaspar, https://en.wikipedia.
org/wiki/File:Fly_June_2008-2.jpg).

A cooperative coevolutionary algorithm involves a number of independently
evolving species, which come together to obtain problem solutions. The fitness
of an individual depends on its ability to collaborate with individuals from other
species [2, 8, 9, 15].

In a competitive coevolutionary algorithm the fitness of an individual is based
on direct competition with individuals of other species, which in turn evolve
separately in their own populations. Increased fitness of one of the species implies
a reduction in the fitness of the other species [5].

We have recently developed two new coevolutionary algorithms, which will
be reviewed herein: OMNIREP and SAFE [10–12].

OMNIREP aims to aid in one of the major tasks faced by an evolutionary
computation (EC) practitioner, namely, deciding how to represent individuals in
the evolving population. This task is actually composed of two subtasks: defining
a data structure that is the representation and defining the encoding that en-
ables to interpret the representation. OMNIREP discovers both a representation
and an encoding that solve a particular problem of interest, by employing two
coevolving populations.

SAFE—Solution And Fitness Evolution—stemmed from our recently high-
lighting a fundamental problem recognized to confound algorithmic optimiza-
tion: conflating the objective with the objective function [13]. Even when the
former is well defined, the latter may not be obvious. SAFE is a commensalistic
coevolutionary algorithm that maintains two coevolving populations: a popula-
tion of candidate solutions and a population of candidate objective functions. To
the best of our knowledge, SAFE is the first coevolutionary algorithm to employ
a form of commensalism.

We first turn to OMNIREP (Section 2), followed by SAFE (Section 3), and
ending with concluding remarks (Section 4). This chapter summarizes our re-
search. For full details please refer to [10–12]. NB: The code for both OMNIREP
and SAFE is available at https://github.com/EpistasisLab/.
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2 OMNIREP

One Representation to rule them all, One Encoding to find them,
One Algorithm to bring them all and in the Fitness bind them.
In the Landscape of Search where the Solutions lie.

One of the basic tasks of the EC practitioner is to decide how to represent
individuals in the (evolving) population, i.e., precisely specify the genetic makeup
of the artificial entity under consideration. As stated by [3]: “Technically, a
given representation might be preferable over others if it matches the given
problem better, that is, it makes the encoding of candidate solutions easier or
more natural.”

One of the EC practitioner’s foremost tasks is thus to identify a representation—
a data structure—and its encoding, or interpretation. These can be viewed, in
fact, as two distinct tasks, though they are usually dealt with simultaneously. To
wit, one might define the representation as a bitstring and in the same breath
go on to state the encoding, e.g., “the 120-bit bitstring represents 4 numeri-
cal values, each encoded by 30 bits, which are treated as signed floating-point
values”.

OMNIREP uses cooperative coevolution with two coevolving populations,
one of representations, the other of encodings. The evolution of each population
is identical to a single-population evolutionary algorithm—except where fitness
is concerned (Figure 2).

Selection, crossover, and mutation are performed as in a standard single-
population algorithm. To compute fitness the two coevolving populations coop-
erate. Specifically, to compute the fitness of a single individual in one population,
OMNIREP uses representatives from the other population [8]. The representa-
tives are selected via a greedy strategy as the 4 fittest individuals from the
previous generation. When evaluating the fitness of a particular representation
individual, OMNIREP combines it 4 times with the top 4 encoding individuals,
computes 4 fitness values, and uses the average fitness over these 4 evaluations as
the final fitness value of the representation individual. In a similar manner OM-
NIREP uses the average of 4 representatives from the representations population
when computing the fitness of an encoding individual.

In [10] we applied OMNIREP successfully to four problems:

– Bitstring and bit count. Solve cubic polynomial regression problems, y =
ax3 + bx2 + cx + d, where the objective was to find the coefficients a, b, c, d
for a given dataset of x, y values (independent and dependent variables). An
individual in the representations population was a bitstring of length 120.
An individual in the encodings population was a list of 4 integer values, each
of which specified the number of bits allocated to the respective parameter
(a, b, c, d) in the representation individual.

– Floating point and precision. Solve regression problems, y =
∑49

j=0 ajx
ej ,

where aj ∈ R ∩ [0, 1], x ∈ R ∩ [0, 1], ej ∈ {0, . . . , 4}, j = 0, . . . , 49. An
individual in the representations population was a list of 50 real values ∈ [0, 1]
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Fig. 2. Fitness computation in OMNIREP, where two populations coevolve, one com-
prising representations, the other encodings. Fitness is computed by combining a rep-
resentation individual (R) with an encoding individual (E).

(the coefficients aj). An individual in the encodings population was a list of
50 integer values, each specifying the precision of the respective coefficient,
namely, the number of digits d ∈ {1, . . . , 8} after the decimal point.

– Program and instructions. Find a program that is able to emulate the output
of an unknown target program. We considered the evolution of a program
composed of 10 lines, each line executing a mathematical, real-valued, uni-
variate function, or instruction. The representation individual was a program
comprising 10 lines, each one executing a generic instruction of the form
x=fi(x), where fi ∈ {f1,...,f5}. The program had one variable, x, which
was set to a specific value v at the outset, i.e., to each (10-line) program, the
instruction x=v was added as the first line. v was thus the program’s input.
After a program finished execution, its output was taken as the value of x.
To run a program one needs to couple it with an encoding individual, which
provides the specifics of what each fi performs. Figure 3 shows an example.

– Image and blocks. Herein, we delved into evolutionary art, wherein artwork
is generated through an evolutionary algorithm. Our goal was to evolve im-
ages that closely matched a given target image, a “standard of beauty” as
it were. The representation individual’s genome was a list of pixel indexes,
with each index considered the start of a same-color block of pixels. The en-
coding individual was a list equal in length to the representation individual,
consisting of tuples (bi, ci), where bi was block i’s length, and ci was block



New Pathways in Coevolutionary Computation 5

Fig. 3. OMNIREP ‘program and instructions’ ex-
periment: Sample representation and encoding in-
dividuals, the former being a 10-line program with
generic instructions, and the latter being the instruc-
tion meanings.

Representation Encoding
x=v f1: mul10

x=f1(x) f2: fabs

x=f2(x) f3: tan

x=f3(x) f4: mul10

x=f4(x) f5: minus2

x=f2(x)

x=f2(x)

x=f5(x)

x=f2(x)

x=f1(x)

x=f5(x)

i’s color. If a pixel was uncolored by any block it was assigned a default base
color. Sample evolved artwork is shown in Figure 4.

Fig. 4. Sample
artwork evolved by
OMNIREP.

OMNIREP was able to solve all problems successfully. Moreover, it usually
found better encodings (e.g., more compact—using less bits or less precision)
than fixed-representation schemes, with no degradation in performance. For full
details see [10].

3 SAFE

We have recently highlighted a fundamental problem recognized to confound
algorithmic optimization, namely, conflating the objective with the objective
function [13]. Even when the former is well defined, the latter may not be obvious.
We presented an approach to automate the means by which a good objective
function might be discovered, through the introduction of SAFE—Solution And
Fitness Evolution—a commensalistic coevolutionary algorithm that maintains
two coevolving populations: a population of candidate solutions and a population
of candidate objective functions [11,12].

Consider a robot navigating a maze, wherein the challenge is to evolve a
robotic controller such that the robot, when placed in the start position, is
able to make its way to the goal. It seems intuitive that the fitness of a given
robotic controller be defined as a function of the distance from the robot to the
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objective, as done, e.g., by [7]. However, reaching the objective may be difficult
since the robot is faced with a deceptive landscape, where higher fitness (i.e.,
being reasonably close to the goal) may not imply that the robot is “almost
there”. It is quite easy for the robot to attain a fairly good fitness value, yet be
stuck behind a wall in a local optimum—quite far from the objective in terms
of the path needed to be taken. Indeed, our experiments with such a fitness-
based evolutionary algorithm [12] produced the expected failure, demonstrated
in Figure 5.

maze1 maze2

Fig. 5. In a maze problem a robot begins at the start square and must make its way
to the goal square (objective). Shown above are paths (green) of robots evolved by a
standard evolutionary algorithm with fitness measured as distance-to-goal, evidencing
how conflating the objective with the objective function leads to a non-optimal solution.

One solution to this conflation problem was offered by [7] in the form of
novelty search, which ignores the objective and searches for novelty. However,
novelty for the sake of novelty alone lacks incentive for solutions that reach and
stay at the objective.

Perhaps, though, the issue lies with our ignorance of the correct objective
function. That is the motivation behind the SAFE algorithm.

SAFE is a coevolutionary algorithm that maintains two coevolving popu-
lations: a population of candidate solutions and a population of candidate ob-
jective functions. The evolution of each population is identical to a standard,
single-population evolutionary algorithm—except where fitness computation is
concerned, as shown in Figure 6.

We applied SAFE to two domains: evolving robot controllers to solve mazes
[12] and multiobjective optimization [11].

Applying SAFE within the robotic domain, an individual in the solutions
population was a list of 16 real values, representing the robot’s control vector
(“brain”). The controller determined the robot’s behavior when wandering the
maze, with its phenotype taken to be the final position, or endpoint. The end-
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Fig. 6. A single generation of SAFE vs. a single generation of a standard evolutionary
algorithm. The numbered circles identify sequential steps in the respective algorithms.
The objective function can comprise a single or multiple objectives.

point was used to compute standard distance-to-goal fitness and to compute
phenotypic novelty: compare the endpoint to all endpoints of current-generation
robots and to all endpoints in an archive of past individuals whose behaviors
were highly novel when they emerged. The final novelty score was then the av-
erage of the 15 nearest neighbors.

An individual in the objective-functions population was a list of 2 real values
[a, b], each ∈ [0, 1].

Every solution individual was scored by every candidate objective-function
individual in the current population (Figure 6A). Candidate SAFE objective
functions incorporated both ‘distance to goal’ (the evolving a parameter) as well
as phenotypic novelty (the evolving b parameter) in order to calculate solution
fitness, weighting the two objectives in a simple linear fashion. The best (highest)
of these objective-function scores was then assigned to the individual solution
as its fitness value.

As for the objective-functions population, determining the quality of an
evolving objective function posed a challenge. Eventually we turned to a com-
mensalistic coevolutionary strategy, where the objective functions’ fitness did not
depend on the population of solutions. Instead, it relied on genotypic novelty,
based on the objective-function individual’s two-valued genome, [a, b]. The dis-
tance between two objective functions was simply the Euclidean distance of their
genomes. Each generation, every candidate objective function was compared to
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its cohorts in the current population of objective functions and to an archive
of past individuals whose behaviors were highly novel when they emerged. The
novelty score was the average of the distances to the 15 nearest neighbors, and
was used in computing objective-function fitness.

SAFE performed far better than random search and a standard fitness-based
evolutionary algorithm, and compared favorably with novelty search. Figure 7
shows sample solutions found by SAFE (contrast this with the standard evolu-
tionary algorithm, which always got stuck in a local minimum, as exemplified in
Figure 5). For full details see [12].

maze1 maze2

Fig. 7. Solutions to the maze problems, evolved by SAFE.

The second domain we applied SAFE to was multiobjective optmization [11].
A multiobjective optimization problem involves two or more objectives all of
which need to be optimized. Applications of multiobjective optimization abound
in numerous domains [16].

With a multiobjective optimization problem there is usually no single-best
solution, but rather the goal is to identify a set of ‘non-dominated’ solutions
that represent optimal tradeoffs between multiple objectives—the Pareto front.
Usually, a representative subset will suffice.

Specifically, we applied SAFE to the solution of the classical ZDT problems,
which epitomize the basic setup of multiobjective optimization [6, 17]. For ex-
ample, ZDT1 is defined as:

f1(x) = x1 ,

g(x) = 1 + 9/(k − 1)

k∑
i=2

xi ,

f2(x) = 1−
√
f1/g .

The two objectives are to minimize both f1(x) and f2(x). The dimensionality of
the problem is k = 30, i.e., solution vector x = x1, . . . , x30, xi ∈ [0, 1]. The utility
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of this suite is that the ground-truth optimal Pareto front can be computed and
used to determine and compare multiobjective algorithm performance.

SAFE maintained two coevolving populations. An individual in the solutions
population was a list of 30 real values. An individual in the objective-functions
population was a list of 2 real values [a, b], each in the range [0, 1], defining a
candidate set of weights, balancing the two objectives of the ZDT functions: a
determined f1’s weighting and b determined f2’s weighting.

Note that, as opposed to many other multiobjective optimizers, SAFE did
not rely on measures of the Pareto front (i.e., a Pareto front was not employed
to calculate solution fitness, or as a standard for selecting parent solutions to
generate offspring solutions).

We tested SAFE on four ZDT problems—ZDT1, ZDT2, ZDT3, ZDT4—
recording the evolving Pareto front as evolution progressed. We compared our
results with two very recent studies by Cheng et al. [1] and by Han et al. [4], find-
ing that SAFE was able to perform convincingly better on 3 of the 4 problems.
For full details see [11].

4 Concluding Remarks

The experimentation performed to date is perhaps not definitive yet but we
hope to have offered at least proof-of-concept of our two new coevolutionary
algorithms. Both have been shown to be successful in a number of domains.

There are several avenues of future research that present themselves, includ-
ing:

– Study and apply both algorithms to novel domains. We have been looking
into applying SAFE to datasets created by the GAMETES system, which
models epistasis [14]. We have also created additional art by devising novel
encoding-representation couplings for OMNIREP (Figure 8).

– Study the coevolutionary dynamics engendered by OMNIREP and SAFE.
– Cooperative or competitive versions of SAFE (which is currently commensal-

istic), i.e., finding ways in which the objective-function population depends
on the solutions population.

– Examine the incorporation of more sophisticated evolutionary algorithm
components (e.g., selection, elitism, genetic operators).
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Fig. 8. Additional artwork created by OMNIREP using novel encoding-representation
couplings (involving polygons, and horizontal and vertical blocks). Each row shows a
single evolutionary run, from earlier generations (left) to later generations (right).
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