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ABSTRACT 
The ability to perceive size is shared by humans and animals. 
Babies present this basic ability from birth, and it improves with 
age. Counting, on the other hand, is a more complex task than size 
perception. We examined the theory that the counting system 
evolved from a more primitive system of size perception (the 
leading alternative being that the two systems evolved 
separately). By using evolutionary computation techniques, we 
generated artificial neural networks (ANNs) that excelled in size 
perception and presented a significant advantage in evolving the 
ability to count over those that evolved this ability from scratch. 
This advantage was observed also when evolving from ANNs that 
master other simple classification tasks. We also show that ANNs 
who train to perceive size of continuous stimuli present better 
counting skills than those that train with discrete stimuli. 
 

Categories and Subject Descriptors 
I.2.0 [Artificial Intelligence]: General - Cognitive simulation; 
I.2.6 [Artificial Intelligence]: Learning - Connectionism and 
neural nets, Knowledge acquisition 
 

General Terms 
Algorithms, Theory 
 

Keywords 
Numerical Cognition, Size Perception, Genetic Algorithms, 
Neural networks, NEAT  
 

 

1. INTRODUCTION 
The field of numerical cognition encompasses many aspects of 
numerical processing including the processing of symbolic stimuli 
(e.g., Arabic numbers) versus non-symbolic ones (e.g., an array of 
dots) and the processing of discrete stimuli versus continuous 
ones. Within this field, we focus on the differences between size 
perception and actual counting. The ability to perceive size (i.e., 
to estimate the area of a blob) and to count (i.e., how many blobs 
are presented) is shared by humans [1] and animals [2]. 
 
It has been proposed that the basic numerical intuitions (e.g., “the 
number sense”) [4] are supported by an evolutionarily, ancient, 
approximate number system (ANS) [3] which enables the 
representation of approximate number of items in visual or 
auditory arrays without verbally counting [5]. This core system 
for numerical processing might be the root for high-level human 
numerical abilities, such as arithmetic [4].  
 
We consider two potential hypotheses regarding the development 
of the counting system. One is that the counting system has 
evolved from a more primitive system, designed to perceive and 
evaluate size or amount of substance [3, 6]. The other is that size 
perception and counting evolved independently, most likely in 
different epochs of time [6]. 

1.1 The Current Study 
In order to test our hypothesis (i.e., the counting system evolved 
from a more primitive system of size perception) we used genetic 
algorithms. We first evolved ANNs that can perceive size 
successfully and then further evolved these same networks to 
count. Our main goal was to examine if these ANNs have an 
advantage in evolving the ability to count over new learners (i.e., 
ANNs that did not first evolve to perceive size). 

We used NEAT1, a method for evolving artificial neural networks 
using genetic algorithms, in order to evolve ANNs that could 
perceive size and count. NEAT simulates evolution by starting 

                                                                 
1 NeuroEvolution of Augmenting Topologies. We used the 

NEAT4J Java implementation. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
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max = output.length 

with small, simple networks which become increasingly complex 
through evolution [9]. The complexity of the final networks were 
analyzed by examining the number of inner nodes added to the 
networks as the task became more complex.  

2. METHODS 
2.1 Stimuli 
We used a 2 by 4 two-dimensional Boolean array to represent the 
visual input. A total of 256 (28) possible stimuli can be produced 
by the array; some of these are discrete and some are continuous. 
We define a stimulus as continuous if there is a path from each 
visible cell in the array to every other visible cell that passes 
through visible cells (in single up/down/left/right steps). 
According to this definition, of the 256 possible stimuli, 147 are 
discrete and 109 are continuous (see Figure 1).  

a) 

 

b)  

 

Figure 1. Examples of continuous (a) and discrete (b) 2X4 
arrays. 
Three sets of stimuli were generated in order to accommodate all 
the experiments planned in this study. The “Continuous” and the 
“Discrete” stimuli collections were composed each of 108 stimuli 
randomly divided into training and test sets of 54 stimuli2 each 
(with no repetitions). A combined collection of continuous and 
discrete stimuli (“Both”) was also generated; its training set 
contained a total of 128 (256/2) stimuli, while its test set included 
the other 128 stimuli. 

Prior to being inserted into the NEAT system, the stimulus was 
flattened into a one-dimensional array of 0’s and 1’s. 

2.2 Procedure 
Several different types of evolutionary procedures were tested 
during the study. Every evolutionary run was performed 30 times 
using each of the 3 stimuli collections (continuous, discrete, and 
both), resulting in a total of 90 runs per run type.  

The procedure is similar for all run types. Every run begins with a 
training stage, where the population is trained until its average 
fitness score exceeds the value 0.9993. Next, an evaluation of the 
population takes place. During this test stage, each individual is 
evaluated in relation to each of the tasks relevant to the fitness 
functions used; an additional test on counting accuracy was 
performed in all runs. For example, the “Size Perception” 
population trained to perceive size was tested on size perception 
but also on counting. 

In order to avoid overfitting to the training set, the algorithm 
observes the variation of the population’s fitness over time. After 
each generation is evaluated, the difference between the best 
fitness score of the current and the previous generation is 

                                                                 
2 This number was chosen because there were 147 discrete and 

109 continuous stimuli out of 256, and we wanted to keep an 
equal number of stimuli in the training and test groups; thus we 
chose the minimal group (i.e., 109) and divide it into two equal 
groups of 54 stimuli (one for training and one for testing). 

3 0.999 in Size Perception and in Counting and 0.998 in 
Subitizing as it was found to be sufficient in order to excel in 
this task in the testing stage. 

calculated. Similar values for the last 100 generations are kept in 
the system. If the sum of these values drops below 10% 
improvement in fitness over 100 generations, the algorithm 
terminates and the best individual from that point is saved in order 
to be tested later. 

2.3 Genetic Algorithm Parameters 
In all evolutionary runs we used the following parameters 

 Population size of 100 individuals 

 Fitness termination condition of 0.999 or 0.998 (see Footnote 
3). 

 Mutation probability Pm = 0.25 

 Crossover probability Pc = 1 

2.4 Fitness Calculation 
Each run type defines the expected output it should get from 
NEAT. When a result from NEAT is received, the fitness function 
checks if the expected output is equal to the observed one. If so, it 
assigns a 100% score, otherwise, it calculates a score according to 
the distance of each digit from the expected array to the observed 
one (after sorting both arrays) as follows: 

,   

 

 

 

3. SIMULATIONS 
3.1 Simulation 1: From Size Perception to 
Counting 
We created five evolutionary run types in order to test our 
hypothesis. The goal was to train a set of ANNs in a certain task 
and then switch to a different task by changing the fitness 
function in mid-run. The algorithm performs the switch from one 
fitness function to the other after a predefined number of 
generations chosen experimentally passes. We opted for this 
approach instead of waiting for the networks to excel in the tasks, 
in order to avoid the “overfitting” phenomenon (bloated networks 
with too many inner-nodes that excel specifically on the training 
inputs rather than solving the more general problem) in the 
consecutive runs. Thus, we switched from the classification tasks 
to more complex tasks after 25 generations (see Table 1).  

Table 1. The size perception, counting and control groups 
genetic algorithms with their fitness functions and outputs. 

# Run type Fitness and Output 

1
Size 

Perception 
(SP) 

A given input is classified as BIG if its number 
of ones ≥ array.length/2, and otherwise as 
SMALL. The same logic is applied to the 
output. BIG is an output with a number of ones 
which is ≥ [array.length/2]. SMALL is an 
output of a number of ones which is < 
[array.length/2]. 

2
Counting 

(C) 

For a given input, the exact number of ones 
given - is expected to be in the output (without 
order considerations). 

3

Size 
Perception 

and 
Counting 
(SP-C) 

The size perception fitness function is switched 
to the counting fitness function in mid-run after 
25 generations (the entire run takes in average 
48.5 generations). 

, 
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4 
Control 1 

(C1) 

The set of inputs was divided randomly into 
two groups, one group expected a BIG output, 
and the other an SMALL one, similar to SP 
(see Table item 1). 

5 

Control 1 
and 

Counting 
(C1-C) 

The control 1 fitness function switched to the 
counting fitness function after 25 generations. 
We expected an output of the exact number of 
ones, similar to C (see Table item 3). 

3.1.1 Results 
We conducted 3 different two-way ANOVA (Analysis of 
Variance), for 3 different dependent variables (counting score, 
generations, inner nodes). The design was between subjects (since 
each algorithm condition produced a different population of 
ANNs) of 3 (Stimuli: both/continuous/discrete) X 5 (Run: 
SP/C1/C/SP-C/C1-C). In the following analyses we present the 
planned comparisons relevant to our theory considerations, with 
significance level of p<.05. 

3.1.1.1 Counting Score 
The counting score (based on the fitness calculation in section 
2.4) was higher in networks that first evolved to perceive size or 
to perform other classification tasks than of those that evolved to 
count independently (e.g., SP-C VS C: F (1,435) = 58.49, MSE 
=.0062, p<.01, ηp

2 =.118).  

In addition, when the tasks were easy (i.e., single runs: SP, C1), 
score for discrete stimuli was higher than for continuous stimuli 
(e.g., SP: F (1,435) = 84.47, MSE = .0062, p<.01, ηp

2 =.162) but 
when the tasks became more complex (in C1-C: F (1,435) = 
6.146, MSE = .0062, p<.05, ηp

2 =.0139) the opposite pattern was 
observed and the ANNs with continuous stimuli got better at 
counting (in C and SP-C the differences were not significant, see 
Figure 2). 

 

Figure 2. Counting score of simulation 1 testing sets. 

3.1.1.2 Generations 
SP and C1 runs were faster than all other tasks (SP: M = 48.5, SD 
= 9.21, C1: M = 44.9, SD = 5.15, C: M = 308.22, SD = 4.32, SP-
C: M = 330.7, SD = 16.33, C1-C: M = 334.7, SD = 24.33) .More 
generations were required to evolve the networks to count after 
evolving to perform any other task (C vs. C1-C: F (1,435) = 
183.49, MSE = 172.51, p<.01, ηp

2 =.296). 

3.1.1.3 Inner Nodes 
Complex runs (i.e., C, SP-C, C1-C) generated ANNs with more 
inner nodes than the easier ones (SP, C1): SP: M = 3.64, SD = 

1.64 and SP-C: M = 12.39, SD = 4.6, C1: M = 3.96, SD = 1.37 
and C1-C: M =12.05, SD =5.04, and C: M = 11.81, SD = 4.71. 

In addition, during the complex runs the ANNs evolved on 
discrete stimuli contained more inner nodes than the ones dealing 
with continuous ones (C1-C: F (1,435) = 25.25, MSE = 13.87, 
p<.01, ηp

2 =.05 and SP-C: F (1,435) = 5.55, MSE = 13.87, p<.05, 
ηp

2 = .002, but C was not significant). 

3.2 Simulation 2: Continuous vs. Discrete 
In the runs discussed in the previous subsection, we trained the 
ANNs on a certain stimuli type and tested on the same type (e.g., 
trained on continuous and tested on continuous), which seems to 
imply that continuous stimuli are more suitable to the task of 
evolving counting ability. In order to examine if this is so, or if 
the high score for continuous stimuli in the counting test was just 
due to continuous stimuli being less complex to process than 
discrete stimuli, we proceeded to train on continuous stimuli and 
test on discrete stimuli and vice versa (see Table 2). 

Table 2. The genetic algorithms of the ANNs that trained on 
continuous stimuli and tested on discrete, and vice versa, with 
their fitness functions and outputs. 

# Run type Fitness and Output 

1 SP 

The same as SP in Table 1 but trained on 
continuous stimuli and tested on discrete 
stimuli (and vice versa). 

2 C 

The same as C in Table 1 but trained on 
continuous stimuli and tested on discrete 
stimuli (and vice versa). 

3.2.1 Results 
The same ANOVA as in 3.2.1, with an array of 2 (Stimuli: 
continuous/discrete) X 2 (Run: SP/C). Similar to previous 
analyses, we present the planned comparisons relevant to our 
theory considerations, with significance level of p<.05. 

3.2.1.1 Counting Score 
In both selected runs in the current simulation, we received 
significant differences in the counting scores (based on the fitness 
calculation in section 2.4) when training the ANNs on continuous 
stimuli and tested on discrete than the other way around: F(1,116) 
= 6.923, MSE =.009, p <.01, ηp

2 = .056 (see Figure 3). 

3.2.1.2 Generations 
As expected, training ANNs on continuous stimuli and testing on 
discrete ones requires the same number of generations as training 
ANNs on discrete stimuli and testing on continuous ones (for SP 
it took about 46 generations to learn discrete stimuli and be tested 
on continuous and vice versa: M = 46.13, SD = 7.41, for C: M = 
308.45, SD = 4.09). 

3.2.1.3 Inner nodes 
In the complex run (i.e., C) more inner nodes were produced 
when the ANNs trained on discrete stimuli (C: M = 15.66, SD = 
5.99) than when trained on continuous stimuli (C: M = 11.46, SD 
= 3.702, F (1,116) = 9.07, MSE = 14.12, p<.05, ηp

2 = .07). In the 
SP run the number of inner nodes stayed the same in both stimuli 
types (SP: M = 3.3, SD = 1.84).  

4. RESULTS SUMMARY 
The trends seem to indicate that counting skills evolve to a higher 
level if ANNs are first evolved to perform another, simpler, 
classification task and then evolved further to count. This holds 
true even if the simple task is not related to size 
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perception/counting. In addition, training with continuous stimuli 
resulted in significantly better counting skills than training with 
discrete stimuli, despite the reasonable assumption that discrete 
stimuli would lend themselves better to the counting task.  
 

According to our results it is possible that the counting system in 
extant animals might have evolved on the back of some primitive 
system, instead of being evolved independently. A certain 
division between continuous and discrete stimuli appears to be 
useful in training ANNs to improve their counting skills. 

 

Figure 3. Counting score of simulation 3 testing sets. 
 

5. DISCUSSION 
In this research, we examined two hypotheses: (1) The counting 
system developed through evolution from a more primitive size 
perception system, and (2) the size perception and counting 
systems evolved independently in different periods of time. Our 
results indicate that processing discrete stimuli in complex tasks 
leads to larger and more complex networks. Interestingly, training 
on continuous stimuli and testing on discrete stimuli led to better 
counting scores than the other way around. It is possible (and 
should be further tested) that the successful ANNs trained on 
continuous stimuli developed a unique structure that is not only 
economical (less inner nodes) but also well organized (modular).  

For example see Figures 4 and 5 that show the structures of two 
ANN individuals from the counting (C) runs in Simulation 2 
(Both runs present the best result for their run-type). The bottom 
row is the input layer, the top row is the output layer, and the 
inner nodes are in between. Note that each individual ANN at the 
beginning of the evolutionary process has only 8 inputs and 
outputs. The hidden nodes and the network's connections are 
manipulated during the evolutionary process resulting in the final 
networks.  

 

Figure 4. The structure of the best ANN individual from the C 
runs that trained on discrete stimuli and tested on continuous 
stimuli, achieving a score of 57.4 in counting. 

 

Figure 5. The structure of the best ANN individual from the C 
runs that trained on continuous stimuli and tested on discrete 
stimuli, achieving a score of 98.1 in counting. In this case, 
there was no need for 8 input nodes, thus this individual 
survived with a mutation which removed input node #5 
through evolution. 

It is important to mention that the division between continuous 
and discrete stimuli might not reflect the reality in Nature, and 
that it should be tested with larger arrays of stimuli. Nevertheless, 
it might have implications to treatment methods later on. For 
example, people with dyscalculia [8] could be trained in size 
perception tasks on continuous stimuli possibly resulting in 
improved counting skills. 
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