

From Size Perception to Counting:
An Evolutionary Computation Point of View

Gali Barabash Katz
Dept. of Cognitive Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

barabash@post.bgu.ac.il

Amit Benbassat
Dept. of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

amitbenb@cs.bgu.ac.il

Liana Diesendruck
National Center for

Supercomputing Applications
University of Illinois at Urbana-

Champaign
Illinois, USA

ldiesend@illinois.edu

Moshe Sipper

Dept. of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel
sipper@cs.bgu.ac.il

Avishai Henik
Dept. of Psychology

Zlotowski Center for Neuroscience
Ben-Gurion University of the Negev

Beer-Sheva, Israel
henik@bgu.ac.il

ABSTRACT
The ability to perceive size is shared by humans and animals.
Babies present this basic ability from birth, and it improves with
age. Counting, on the other hand, is a more complex task than size
perception. We examined the theory that the counting system
evolved from a more primitive system of size perception (the
leading alternative being that the two systems evolved
separately). By using evolutionary computation techniques, we
generated artificial neural networks (ANNs) that excelled in size
perception and presented a significant advantage in evolving the
ability to count over those that evolved this ability from scratch.
This advantage was observed also when evolving from ANNs that
master other simple classification tasks. We also show that ANNs
who train to perceive size of continuous stimuli present better
counting skills than those that train with discrete stimuli.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General - Cognitive simulation;
I.2.6 [Artificial Intelligence]: Learning - Connectionism and
neural nets, Knowledge acquisition

General Terms
Algorithms, Theory

Keywords
Numerical Cognition, Size Perception, Genetic Algorithms,
Neural networks, NEAT

1. INTRODUCTION
The field of numerical cognition encompasses many aspects of
numerical processing including the processing of symbolic stimuli
(e.g., Arabic numbers) versus non-symbolic ones (e.g., an array of
dots) and the processing of discrete stimuli versus continuous
ones. Within this field, we focus on the differences between size
perception and actual counting. The ability to perceive size (i.e.,
to estimate the area of a blob) and to count (i.e., how many blobs
are presented) is shared by humans [1] and animals [2].

It has been proposed that the basic numerical intuitions (e.g., “the
number sense”) [4] are supported by an evolutionarily, ancient,
approximate number system (ANS) [3] which enables the
representation of approximate number of items in visual or
auditory arrays without verbally counting [5]. This core system
for numerical processing might be the root for high-level human
numerical abilities, such as arithmetic [4].

We consider two potential hypotheses regarding the development
of the counting system. One is that the counting system has
evolved from a more primitive system, designed to perceive and
evaluate size or amount of substance [3, 6]. The other is that size
perception and counting evolved independently, most likely in
different epochs of time [6].

1.1 The Current Study
In order to test our hypothesis (i.e., the counting system evolved
from a more primitive system of size perception) we used genetic
algorithms. We first evolved ANNs that can perceive size
successfully and then further evolved these same networks to
count. Our main goal was to examine if these ANNs have an
advantage in evolving the ability to count over new learners (i.e.,
ANNs that did not first evolve to perceive size).

We used NEAT1, a method for evolving artificial neural networks
using genetic algorithms, in order to evolve ANNs that could
perceive size and count. NEAT simulates evolution by starting

1 NeuroEvolution of Augmenting Topologies. We used the

NEAT4J Java implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright © 2013 ACM 978-1-4503-1964-5/13/07...$15.00.

1675

Draf
t

max = output.length

with small, simple networks which become increasingly complex
through evolution [9]. The complexity of the final networks were
analyzed by examining the number of inner nodes added to the
networks as the task became more complex.

2. METHODS
2.1 Stimuli
We used a 2 by 4 two-dimensional Boolean array to represent the
visual input. A total of 256 (28) possible stimuli can be produced
by the array; some of these are discrete and some are continuous.
We define a stimulus as continuous if there is a path from each
visible cell in the array to every other visible cell that passes
through visible cells (in single up/down/left/right steps).
According to this definition, of the 256 possible stimuli, 147 are
discrete and 109 are continuous (see Figure 1).

a)

b)

Figure 1. Examples of continuous (a) and discrete (b) 2X4
arrays.
Three sets of stimuli were generated in order to accommodate all
the experiments planned in this study. The “Continuous” and the
“Discrete” stimuli collections were composed each of 108 stimuli
randomly divided into training and test sets of 54 stimuli2 each
(with no repetitions). A combined collection of continuous and
discrete stimuli (“Both”) was also generated; its training set
contained a total of 128 (256/2) stimuli, while its test set included
the other 128 stimuli.

Prior to being inserted into the NEAT system, the stimulus was
flattened into a one-dimensional array of 0’s and 1’s.

2.2 Procedure
Several different types of evolutionary procedures were tested
during the study. Every evolutionary run was performed 30 times
using each of the 3 stimuli collections (continuous, discrete, and
both), resulting in a total of 90 runs per run type.

The procedure is similar for all run types. Every run begins with a
training stage, where the population is trained until its average
fitness score exceeds the value 0.9993. Next, an evaluation of the
population takes place. During this test stage, each individual is
evaluated in relation to each of the tasks relevant to the fitness
functions used; an additional test on counting accuracy was
performed in all runs. For example, the “Size Perception”
population trained to perceive size was tested on size perception
but also on counting.

In order to avoid overfitting to the training set, the algorithm
observes the variation of the population’s fitness over time. After
each generation is evaluated, the difference between the best
fitness score of the current and the previous generation is

2 This number was chosen because there were 147 discrete and

109 continuous stimuli out of 256, and we wanted to keep an
equal number of stimuli in the training and test groups; thus we
chose the minimal group (i.e., 109) and divide it into two equal
groups of 54 stimuli (one for training and one for testing).

3 0.999 in Size Perception and in Counting and 0.998 in
Subitizing as it was found to be sufficient in order to excel in
this task in the testing stage.

calculated. Similar values for the last 100 generations are kept in
the system. If the sum of these values drops below 10%
improvement in fitness over 100 generations, the algorithm
terminates and the best individual from that point is saved in order
to be tested later.

2.3 Genetic Algorithm Parameters
In all evolutionary runs we used the following parameters

 Population size of 100 individuals

 Fitness termination condition of 0.999 or 0.998 (see Footnote
3).

 Mutation probability Pm = 0.25

 Crossover probability Pc = 1

2.4 Fitness Calculation
Each run type defines the expected output it should get from
NEAT. When a result from NEAT is received, the fitness function
checks if the expected output is equal to the observed one. If so, it
assigns a 100% score, otherwise, it calculates a score according to
the distance of each digit from the expected array to the observed
one (after sorting both arrays) as follows:

,

3. SIMULATIONS
3.1 Simulation 1: From Size Perception to
Counting
We created five evolutionary run types in order to test our
hypothesis. The goal was to train a set of ANNs in a certain task
and then switch to a different task by changing the fitness
function in mid-run. The algorithm performs the switch from one
fitness function to the other after a predefined number of
generations chosen experimentally passes. We opted for this
approach instead of waiting for the networks to excel in the tasks,
in order to avoid the “overfitting” phenomenon (bloated networks
with too many inner-nodes that excel specifically on the training
inputs rather than solving the more general problem) in the
consecutive runs. Thus, we switched from the classification tasks
to more complex tasks after 25 generations (see Table 1).

Table 1. The size perception, counting and control groups
genetic algorithms with their fitness functions and outputs.

Run type Fitness and Output

1
Size

Perception
(SP)

A given input is classified as BIG if its number
of ones ≥ array.length/2, and otherwise as
SMALL. The same logic is applied to the
output. BIG is an output with a number of ones
which is ≥ [array.length/2]. SMALL is an
output of a number of ones which is <
[array.length/2].

2
Counting

(C)

For a given input, the exact number of ones
given - is expected to be in the output (without
order considerations).

3

Size
Perception

and
Counting
(SP-C)

The size perception fitness function is switched
to the counting fitness function in mid-run after
25 generations (the entire run takes in average
48.5 generations).

,

1676

4
Control 1

(C1)

The set of inputs was divided randomly into
two groups, one group expected a BIG output,
and the other an SMALL one, similar to SP
(see Table item 1).

5

Control 1
and

Counting
(C1-C)

The control 1 fitness function switched to the
counting fitness function after 25 generations.
We expected an output of the exact number of
ones, similar to C (see Table item 3).

3.1.1 Results
We conducted 3 different two-way ANOVA (Analysis of
Variance), for 3 different dependent variables (counting score,
generations, inner nodes). The design was between subjects (since
each algorithm condition produced a different population of
ANNs) of 3 (Stimuli: both/continuous/discrete) X 5 (Run:
SP/C1/C/SP-C/C1-C). In the following analyses we present the
planned comparisons relevant to our theory considerations, with
significance level of p<.05.

3.1.1.1 Counting Score
The counting score (based on the fitness calculation in section
2.4) was higher in networks that first evolved to perceive size or
to perform other classification tasks than of those that evolved to
count independently (e.g., SP-C VS C: F (1,435) = 58.49, MSE
=.0062, p<.01, ηp

2 =.118).

In addition, when the tasks were easy (i.e., single runs: SP, C1),
score for discrete stimuli was higher than for continuous stimuli
(e.g., SP: F (1,435) = 84.47, MSE = .0062, p<.01, ηp

2 =.162) but
when the tasks became more complex (in C1-C: F (1,435) =
6.146, MSE = .0062, p<.05, ηp

2 =.0139) the opposite pattern was
observed and the ANNs with continuous stimuli got better at
counting (in C and SP-C the differences were not significant, see
Figure 2).

Figure 2. Counting score of simulation 1 testing sets.

3.1.1.2 Generations
SP and C1 runs were faster than all other tasks (SP: M = 48.5, SD
= 9.21, C1: M = 44.9, SD = 5.15, C: M = 308.22, SD = 4.32, SP-
C: M = 330.7, SD = 16.33, C1-C: M = 334.7, SD = 24.33) .More
generations were required to evolve the networks to count after
evolving to perform any other task (C vs. C1-C: F (1,435) =
183.49, MSE = 172.51, p<.01, ηp

2 =.296).

3.1.1.3 Inner Nodes
Complex runs (i.e., C, SP-C, C1-C) generated ANNs with more
inner nodes than the easier ones (SP, C1): SP: M = 3.64, SD =

1.64 and SP-C: M = 12.39, SD = 4.6, C1: M = 3.96, SD = 1.37
and C1-C: M =12.05, SD =5.04, and C: M = 11.81, SD = 4.71.

In addition, during the complex runs the ANNs evolved on
discrete stimuli contained more inner nodes than the ones dealing
with continuous ones (C1-C: F (1,435) = 25.25, MSE = 13.87,
p<.01, ηp

2 =.05 and SP-C: F (1,435) = 5.55, MSE = 13.87, p<.05,
ηp

2 = .002, but C was not significant).

3.2 Simulation 2: Continuous vs. Discrete
In the runs discussed in the previous subsection, we trained the
ANNs on a certain stimuli type and tested on the same type (e.g.,
trained on continuous and tested on continuous), which seems to
imply that continuous stimuli are more suitable to the task of
evolving counting ability. In order to examine if this is so, or if
the high score for continuous stimuli in the counting test was just
due to continuous stimuli being less complex to process than
discrete stimuli, we proceeded to train on continuous stimuli and
test on discrete stimuli and vice versa (see Table 2).

Table 2. The genetic algorithms of the ANNs that trained on
continuous stimuli and tested on discrete, and vice versa, with
their fitness functions and outputs.

Run type Fitness and Output

1 SP

The same as SP in Table 1 but trained on
continuous stimuli and tested on discrete
stimuli (and vice versa).

2 C

The same as C in Table 1 but trained on
continuous stimuli and tested on discrete
stimuli (and vice versa).

3.2.1 Results
The same ANOVA as in 3.2.1, with an array of 2 (Stimuli:
continuous/discrete) X 2 (Run: SP/C). Similar to previous
analyses, we present the planned comparisons relevant to our
theory considerations, with significance level of p<.05.

3.2.1.1 Counting Score
In both selected runs in the current simulation, we received
significant differences in the counting scores (based on the fitness
calculation in section 2.4) when training the ANNs on continuous
stimuli and tested on discrete than the other way around: F(1,116)
= 6.923, MSE =.009, p <.01, ηp

2 = .056 (see Figure 3).

3.2.1.2 Generations
As expected, training ANNs on continuous stimuli and testing on
discrete ones requires the same number of generations as training
ANNs on discrete stimuli and testing on continuous ones (for SP
it took about 46 generations to learn discrete stimuli and be tested
on continuous and vice versa: M = 46.13, SD = 7.41, for C: M =
308.45, SD = 4.09).

3.2.1.3 Inner nodes
In the complex run (i.e., C) more inner nodes were produced
when the ANNs trained on discrete stimuli (C: M = 15.66, SD =
5.99) than when trained on continuous stimuli (C: M = 11.46, SD
= 3.702, F (1,116) = 9.07, MSE = 14.12, p<.05, ηp

2 = .07). In the
SP run the number of inner nodes stayed the same in both stimuli
types (SP: M = 3.3, SD = 1.84).

4. RESULTS SUMMARY
The trends seem to indicate that counting skills evolve to a higher
level if ANNs are first evolved to perform another, simpler,
classification task and then evolved further to count. This holds
true even if the simple task is not related to size

1677

perception/counting. In addition, training with continuous stimuli
resulted in significantly better counting skills than training with
discrete stimuli, despite the reasonable assumption that discrete
stimuli would lend themselves better to the counting task.

According to our results it is possible that the counting system in
extant animals might have evolved on the back of some primitive
system, instead of being evolved independently. A certain
division between continuous and discrete stimuli appears to be
useful in training ANNs to improve their counting skills.

Figure 3. Counting score of simulation 3 testing sets.

5. DISCUSSION
In this research, we examined two hypotheses: (1) The counting
system developed through evolution from a more primitive size
perception system, and (2) the size perception and counting
systems evolved independently in different periods of time. Our
results indicate that processing discrete stimuli in complex tasks
leads to larger and more complex networks. Interestingly, training
on continuous stimuli and testing on discrete stimuli led to better
counting scores than the other way around. It is possible (and
should be further tested) that the successful ANNs trained on
continuous stimuli developed a unique structure that is not only
economical (less inner nodes) but also well organized (modular).

For example see Figures 4 and 5 that show the structures of two
ANN individuals from the counting (C) runs in Simulation 2
(Both runs present the best result for their run-type). The bottom
row is the input layer, the top row is the output layer, and the
inner nodes are in between. Note that each individual ANN at the
beginning of the evolutionary process has only 8 inputs and
outputs. The hidden nodes and the network's connections are
manipulated during the evolutionary process resulting in the final
networks.

Figure 4. The structure of the best ANN individual from the C
runs that trained on discrete stimuli and tested on continuous
stimuli, achieving a score of 57.4 in counting.

Figure 5. The structure of the best ANN individual from the C
runs that trained on continuous stimuli and tested on discrete
stimuli, achieving a score of 98.1 in counting. In this case,
there was no need for 8 input nodes, thus this individual
survived with a mutation which removed input node #5
through evolution.

It is important to mention that the division between continuous
and discrete stimuli might not reflect the reality in Nature, and
that it should be tested with larger arrays of stimuli. Nevertheless,
it might have implications to treatment methods later on. For
example, people with dyscalculia [8] could be trained in size
perception tasks on continuous stimuli possibly resulting in
improved counting skills.

6. ACKNOWLEDGMENTS
We thank Desiree Meloul for her valued input to this paper.

This work was supported by the European Research Council
under the European Union's Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement n° 295644.

Amit Benbassat is partially supported by the Lynn and William
Frankel Center for Computer Sciences. This research was
supported by the Israel Science Foundation (grant n° 123/11).

7. REFERENCES
[1] Brannon, E. M., Lutz, D., and Cordes, S. 2006. The development

of area discrimination and its implications for number
representation in infancy. Developmental Sci. 9, F59-F64.

[2] Cantlon, J. F., and Brannon, E. M. 2007. How much does
number matter to a monkey? J. Exp. Psychol.Anim. B. 33, 32-41.

[3] Cantlon, J. F., Platt, M. L., and Brannon, E. M. 2009. Beyond the
number domain. Trends Cogn. Sc. 13, 83-91.

[4] Dehaene, S. 2001. Is the number sense a patchwork? Mem. Lang.
16, 89–100.

[5] Halberda, J., Mazzocco, M. M. M., and Feigenson, L. 2008.
Individual differences in non-verbal number acuity correlate with
maths achievement. Nature 455(7213), 665-668.

[6] Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L., and
Rubinsten, O. 2012. Quantities, amounts, and the numerical core
system. Frontiers Hum. Neurosci. 5, 186.

[7] Kashtan, N., Noor, E., and Alon, U. 2007. Varying environments
can speed up evolution, P. Natl. Acad. Sci. 104, 13711-13716.

[8] Molko, N. et al. 2003. Functional and structural alterations of the
intraparietal sulcus in a developmental dyscalculia of genetic
origin. Neuron 40(4), 847–858.

[9] Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural
networks through augmenting topologies. Evol. Comput. 10(2),
99–127.

1678

