
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997 83

A Phylogenetic, Ontogenetic, and Epigenetic
View of Bio-Inspired Hardware Systems

Moshe Sipper,Member, IEEE, Eduardo Sanchez,Member, IEEE,
Daniel Mange,Member, IEEE, Marco Tomassini, Andrés Ṕerez-Uribe, and André Stauffer,Member, IEEE

Abstract—If one considers life on Earth since its very be-
ginning, three levels of organization can be distinguished: the
phylogeneticlevel concerns the temporal evolution of the genetic
programs within individuals and species, theontogenetic level
concerns the developmental process of a single multicellular
organism, and theepigeneticlevel concerns the learning processes
during an individual organism’s lifetime. In analogy to nature, the
space ofbio-inspired hardware systems can be partitioned along
these three axes, phylogeny, ontogeny, and epigenesis, giving rise
to the POE model. This paper is an exposition and examination of
bio-inspired systems within the POE framework, with our goals
being: 1) to present an overview of current-day research, 2) to
demonstrate that the POE model can be used to classify bio-
inspired systems, and 3) to identify possible directions for future
research, derived from a POE outlook. We first discuss each
of the three axes separately, considering the systems created to
date and plotting directions for continued progress along the axis
in question. We end our exposition by a discussion of possible
research directions, involving the construction of bio-inspired
systems that are situated along two, and ultimately all three axes.
This could give rise to novel systems endowed with evolutionary,
reproductive, regenerative, and learning capabilities.

Index Terms—Embryonics, epigenesis, evolutionary compu-
tation, evolvable hardware, immune systems, neural networks,
ontogeny, phylogeny.

I. INTRODUCTION: BIOLOGICAL INSPIRATION AS A BRIDGE

FROM THE NATURAL SCIENCES TOENGINEERING

T RADITIONALLY, the development of the engineering
disciplines (civil, electrical, computer engineering, etc.)

and that of the natural sciences (physics, chemistry, biology,
etc.) have proceeded along separate tracks. The natural scien-
tist is a detective: faced with the mysteries of nature, such
as meteorological phenomena, chemical reactions, and the
development of living organisms, he or she seeks toanalyze
existing processes, toexplain their operation, tomodelthem,
and topredict their future behavior. The engineer, on the other

Manuscript received November 18, 1996; revised January 17, 1997. This
work was supported in part by Grants 20-42270.94 and 21-45630.95 from the
Swiss National Science Foundation.

M. Sipper, E. Sanchez, D. Mange, A. Pérez-Uribe, and A. Stauffer are
with the Logic Systems Laboratory, Swiss Federal Institute of Technology,
IN-Ecublens, CH-1015 Lausanne, Switzerland (e-mail: sipper@di.epfl.ch;
sanchez@di.epfl.ch; mange@di.epfl.ch; andres.perez@di.epfl.ch; stauffer@di.
epfl.ch).

M. Tomassini is with the Logic Systems Laboratory, Swiss Federal Insti-
tute of Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland, and the
Computer Science Institute, University of Lausanne, Lausanne, Switzerland
(e-mail: tomassini@di.epfl.ch).

Publisher Item Identifier S 1089-778X(97)03302-X.

hand, is abuilder: faced with social and economic needs, he or
she tries tocreateartificial systems (bridges, cars, electronic
devices) based on a set ofspecifications(a description) and
a set of primitives (elementary components such as bricks,
beams, wires, motors, and transistors).

These two major branches of human endeavor have been
drawing closer together during the past decades. It is common
nowadays for scientists to use tools created by engineers. To
cite one example of many, we are witness to the systematic
use of electronics in the medical world for such tasks as
decoding the human genome, visually representing highly
complex chemical molecules, computerized tomography, and
so on.

More recently, engineers have been allured by certain natu-
ral processes, giving birth to such domains as artificial neural
networks and evolutionary computation. Living organisms are
complex systems exhibiting a range of desirable characteris-
tics, such as evolution, adaptation, and fault tolerance, that
have proved difficult to realize using traditional engineering
methodologies. Such systems are characterized by a genetic
program, the genome, that guides their development, their
functioning, and their death. If one considers life on Earth
since its very beginning, then the following three levels of
organization can be distinguished [1], [2].

– Phylogeny:The first level concerns the temporal evolu-
tion of the genetic program, the hallmark of which is the
evolution of species, orphylogeny. The multiplication
of living organisms is based upon the reproduction of
the program, subject to an extremely low error rate at
the individual level, so as to ensure that the identity
of the offspring remains practically unchanged. Mutation
(asexual reproduction) or mutation along with recombi-
nation (sexual reproduction) give rise to the emergence
of new organisms. The phylogenetic mechanisms are
fundamentally nondeterministic, with the mutation and
recombination rate providing a major source of diver-
sity. This diversity is indispensable for the survival
of living species, for their continuous adaptation to a
changing environment, and for the appearance of new
species.

– Ontogeny:Upon the appearance of multicellular organ-
isms, a second level of biological organization manifests
itself. The successive divisions of the mother cell, the
zygote, with each newly formed cell possessing a copy

1089–778X/97$10.00 1997 IEEE

Draf
t

84 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

Fig. 1. The POE model. Partitioning the space of bio-inspired hardware
systems along three axes: phylogeny, ontogeny, and epigenesis. See the text
for definition of these terms.

of the original genome, is followed by a specialization of
the daughter cells in accordance with their surroundings,
i.e., their position within the ensemble. This latter phase
is known as cellular differentiation. Ontogeny is thus
the developmental process of a multicellular organism.
This process is essentially deterministic: an error in a
single base within the genome can provoke an ontoge-
netic sequence which results in notable, possibly lethal,
malformations.

– Epigenesis:The ontogenetic program is limited in the
amount of information that can be stored, thereby ren-
dering the complete specification of the organism im-
possible. A well-known example is that of the human
brain with some 10 neurons and 10 connections,
far too large a number to be completely specified in
the four-character genome of length approximately 3

10 . Therefore, upon reaching a certain level of
complexity, there must emerge a different process that
permits the individual to integrate the vast quantity of
interactions with the outside world. This process is known
as epigenesis and primarily includes the nervous system,
the immune system, and the endocrine system. These
systems are characterized by the possession of a basic
structure that is entirely defined by the genome (the
innate part), which is then subjected to modification
through lifetime interactions of the individual with the
environment (the acquired part). The epigenetic processes
can be loosely grouped under the heading oflearning
systems.

In analogy to nature, the space of bio-inspired hardware
systems can be partitioned along these three axes: phylogeny,
ontogeny, and epigenesis; we refer to this as the POE model
(Fig. 1) [3]. The distinction between the axes cannot be
easily drawn where nature is concerned; indeed the definitions
themselves may be subject to discussion. We therefore define
each of the above axes within the framework of the POE
model as follows: the phylogenetic axis involvesevolution,
the ontogenetic axis involves thedevelopmentof a single
individual from its own genetic material, essentially without
environmental interactions, and the epigenetic axis involves
learning through environmental interactions that take place
after formation of the individual. As an example, consider the
following three paradigms, whose hardware implementations
can be positioned along the POE axes: (P) evolutionary

algorithms are the (simplified) artificial counterpart of phy-
logeny in nature, (O) multicellular automata are based on
the concept of ontogeny, where a single mother cell gives
rise, through multiple divisions, to a multicellular organism,
and (E) artificial neural networks embody the epigenetic
process, where the system’s synaptic weights and perhaps
topological structure change through interactions with the
environment. Within the domains collectively referred to as
soft computing [4], often involving the solution of ill-defined
problems coupled with the need for continual adaptation
or evolution, the above paradigms yield impressive results,
frequently rivaling those of traditional methods.

This paper is an exposition and examination of bio-inspired
hardware systems within the POE framework; our goals are:
1) to present an overview of current-day research, 2) to
demonstrate that the POE model can be used to classify bio-
inspired systems, and 3) to identify possible directions for
future research, derived from a POE outlook. We begin in the
next section with an examination of the phylogenetic axis (due
to space restrictions, and in following the main theme of this
TRANSACTIONS, this axis shall be given particular attention).
In Section III we present the ontogenetic axis, followed by
a discussion of the third axis, epigenesis, in Section IV. Our
paper ends in Section V with conclusions and directions for
future research, based on the POE model. Specifically, we shall
consider the possibilities of combining two axes, along with
the ultimate goal of combining all three. This presents a vision
for the future which may see the advent of novel hardware
systems, inspired by the successful examples provided by
nature.

II. THE PHYLOGENETIC AXIS: EVOLVABLE HARDWARE

In this section we explore the phylogenetic axis of bio-
inspired systems, also referred to as evolvable hardware. The
main motivation is to attain adaptive systems that are able
to accomplish difficult tasks, possibly involving real-time
behavior in a complex, dynamical environment. We begin by
briefly introducing two underlying themes, artificial evolution
and large-scale programmable circuits.

A. Artificial Evolution

The idea of applying the biological principle of natural
evolution to artificial systems, introduced more than three
decades ago, has seen impressive growth in the past few
years. Usually grouped under the termevolutionary algorithms
or evolutionary computation, we find the domains of genetic
algorithms, evolution strategies, evolutionary programming,
and genetic programming [5]–[12]. As a generic example of
artificial evolution, we consider genetic algorithms [8].

A genetic algorithm is an iterative procedure that consists
of a constant-size population of individuals, each one repre-
sented by a finite string of symbols, known as thegenome,
encoding a possible solution in a given problem space. This
space, referred to as thesearch space, comprises all possible
solutions to the problem at hand. The algorithm sets out
with an initial population of individuals that is generated at

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 85

random or heuristically. At every evolutionary step, known
as ageneration, the individuals in the current population are
decoded and evaluated according to some predefined quality
criterion, referred to as thefitness, or fitness function. To form a
new population (the next generation), individuals are selected
according to their fitness and then transformed via genetically
inspired operators, of which the most well known arecrossover
and mutation. Iterating this procedure, the genetic algorithm
may eventually find an acceptable solution, i.e., one with high
fitness.

Evolutionary algorithms are common nowadays, having
been successfully applied to numerous problems from differ-
ent domains, including optimization, automatic programming,
machine learning, economics, immune systems, ecology, pop-
ulation genetics, studies of evolution and learning, and social
systems [11].

B. Large-Scale Programmable Circuits

An integrated circuit is called programmable when the
user can configure its function by programming. The circuit
is delivered after manufacturing in a generic state and the
user can adapt it by programming a particular function. In
this paper we consider solely programmablelogic circuits,
where the programmable function is a logic one, ranging from
simple Boolean functions to complex state machines. The
programmed function is coded as a string of bits representing
the configurationof the circuit. Note that there is a difference
between programming a standard microprocessor chip and
programming a programmable circuit—the former involves the
specification of a sequence of actions, or instructions, while
the latter involves a configuration of the machine itself, often
at the gate level.

The first programmable circuits allowed the implementation
of logic circuits that were expressed as a logic sum of products.
These are the PLD’s (programmable logic devices), whose
most popular version is the PAL (programmable array logic).
More recently a novel technology has emerged, affording
higher flexibility and more complex functionality: the field-
programmable gate array (FPGA) [13]. An FPGA is an array
of logic cells placed in an infrastructure of interconnections,
which can be programmed at three distinct levels (Fig. 2):
1) the function of the logic cells, 2) the interconnections
between cells, and 3) the inputs and outputs. All three levels
are configured via a string of bits that is loaded from an
external source, either once or several times. In the latter case
the FPGA is considered reconfigurable.

FPGA’s are highly versatile devices that offer the de-
signer a wide range of design choices. This potential power,
however, necessitates a suite of tools to design a system.
Essentially, these generate the configuration bit string, given
such inputs as a logic diagram or a high-level functional
description.

C. Evolvable Hardware: The Present

If one carefully examines the work carried out to date under
the heading evolvable hardware, it becomes evident that this

Fig. 2. A schematic diagram of an FPGA. An FPGA is an array of logic cells
placed in an infrastructure of interconnections, which can be programmed at
three distinct levels: 1) the function of the logic cells, 2) the interconnections
between cells, and 3) the inputs and outputs. All three levels are configured
via a configuration bit string that is loaded from an external source, either
once or several times.

mostly involves the application of evolutionary algorithms to
the synthesis of digital systems [14] (recently, Kozaet al.
[15] studied analog systems as well). From this perspective,
evolvable hardware is simply a subdomain of artificial evo-
lution, where the final goal is the synthesis of an electronic
circuit. The work of Koza [9], which includes the application
of genetic programming to the evolution of a three-variable
multiplexer and a two-bit adder, may be considered an early
precursor along this line. It should be noted that at the time
the main goal was that of demonstrating the capabilities of
the genetic programming methodology, rather than designing
actual circuits. We argue that the term evolutionary circuit
design would be more descriptive of such work than that of
evolvable hardware (see also [16]). For now, we shall remain
with the latter (popular) term; however, we shall return to the
issue of clarifying definitions in Section II-E.

Evolvable hardware, taken as a design methodology, offers a
major advantage over classical methods. The designer’s job is
reduced to constructing the evolutionary setup, which involves
specifying the circuit requirements, the basic elements, and
the testing scheme used to assign fitness (this latter phase is
often the most difficult). If these have been well designed,
evolution may then (automatically) generate the desired circuit.
Currently, most evolved digital designs are suboptimal with re-
spect to traditional methodologies; however, improved results
are regularly demonstrated. When examining work carried
out to date, one can derive a rough classification of current
evolvable hardware, in accordance with the genome encoding
(i.e., the circuit description), and the calculation of a circuit’s
fitness.

1) Genome Encoding:

• High-level languages. Using a high-level functional lan-
guage to encode the circuits in question means that the
final solution must be transformed to obtain an actual
circuit. Thus, such a representation is far removed from
the structural (schematic) description. In [9], the evolved

86 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

solution is a program describing the (desired) multiplexer
or adder rather than an interconnection diagram of logic
elements (the actual hardware representation). Hemmiet
al. [17] used a high-level hardware description language
to represent the genomes. Kozaet al. [15] and Kitano
[18] used the rewriting operation, in addition to crossover
and mutation, to enable the formation of a hierarchical
structure. This is still done within the framework of a
high-level language.

• Low-level languages. The idea of directly incorporating
the bit string representing the configuration of a pro-
grammable circuit within the genome was expressed early
on by Atmar [19] and more recently by de Garis [20] and
Higuchi et al. [21]. As a first step one must choose the
basic logic gates (e.g., AND, OR, and NOT) and suitably
codify them, along with the interconnections between
gates, to produce the genome encoding. An example of
this approach is offered in [22]. Higuchiet al. [23] used
a low-level bit string representation of the system’s logic
diagram to describe small-scale PAL’s, where the circuit
is restricted to a logic sum of products. The limitations of
the PAL circuits have been overcome to a large extent by
the introduction of FPGA’s, as used, e.g., by Thompson
[24].

The use of a low-level circuit description that requires
no further transformation is an important step forward
since this potentially enables placing the genome directly
in the actual circuit, thus paving the way toward truly
evolvable hardware (we shall elaborate upon this point
in Section II-E). Until recently, however, FPGA’s had
presented two major problems: 1) the genome’s length
was on the order of tens of thousands of bits, rendering
evolution practically impossible using current technol-
ogy, and 2) within the circuit space, consisting of all
representable circuits, a large number were invalid (e.g.,
containing short circuits).

With the introduction of the new family of FPGA’s,
the Xilinx 6200 [25], these problems have been reduced.
As with previous FPGA families, there is a direct corre-
spondence between the bit string of a cell and the actual
logic circuit; however, this now always leads to a viable
system (i.e., with no short circuits). Moreover, as opposed
to previous FPGA’s where one had to configure the entire
system, the new family permits the separate configuration
of each cell, a markedly faster and more flexible process.
Thompson [24] has employed this latter characteristic to
reduce the genome’s size, without, however, introducing
real-time, partial system reconfigurations.

2) Fitness Calculation:

• Off-line evolvable hardware. The use of a high-level
language for the genome representation means that one
has to transform the encoded system to evaluate its
fitness. This is carried out by simulation, with only the
final solution found by evolution actually implemented in
hardware. This form of simulated evolution is known as
off-line evolvable hardware [14].

• On-line evolvable hardware. As noted above, the low-
level genome representation enables a direct configuration
(and reconfiguration) of the circuit, thus entailing the
possibility of using real hardware during the evolutionary
process. This has been calledon-line evolution by some
of the works found in [14].

D. Common Features of Current Phylogenetic Hardware

Examining work carried out to date we find many common
characteristics that span most current systems, both on-line
and off-line, often differing from biological evolution (this
difference is not necessarily disparaging, as discussed in
Section V).

• Evolution pursues a predefined goal: the design of an
electronic circuit, subject to precise specifications. Upon
finding the desired circuit, the evolutionary process ter-
minates.

• The population has no material existence. At best, in
what has been called on-line evolution, there is one
circuit available, onto which individuals from the (off-
line) population are loadedone at a time, to evaluate
their fitness.

• The absence of a real population in which individu-
als coexist simultaneously entails notable difficulties in
the realization of interactions between “organisms.” This
usually results in a completely independent fitness calcu-
lation, contrary to nature which exhibits a coevolutionary
scenario.

• If one attempts to resolve a well-defined problem, involv-
ing the search for a specific combinatorial or sequential
logic system, there are no intermediate approximations.
Fitness calculation is carried out by consulting a lookup
table which is a complete description of the circuit in
question, that must be stored somewhere. This casts
some doubts as to the utility of applying an evolutionary
process, since one can directly implement the lookup table
in a memory device, a solution which may often be faster
and cheaper.

• The evolutionary mechanisms are executed outside the
resulting circuit. This includes the operators (selection,
crossover, mutation) as well as fitness calculation. As
for the latter, while what has been advanced as on-line
evolution uses a real circuit for fitness evaluation, the
fitness values themselves are stored elsewhere.

• The different phases of evolution are carried out sequen-
tially, controlled by a central software unit.

E. Categorizing Current and Future Evolvable Hardware

The phylogenetic axis admits four qualitative subdivisions
(Fig. 3).

• At the bottom of this axis, we find what is in essenceevo-
lutionary circuit design, where all operations are carried
out in software, with the resulting solution possibly loaded
onto a real circuit. Though a potentially useful design
methodology, this falls completely within the realm of

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 87

Fig. 3. The phylogenetic axis admits four subdivisions, based on two dis-
tinguishing characteristics. The first involves the distinction betweenoff-line
operations carried out in software, andon-line ones which take place on an
actual circuit. The second characteristic concernsopen-endedness. When the
fitness criterion is imposed by the user in accordance with the task to be
solved, one attains a form ofguidedevolution. This is to be contrasted with
open-endedevolution occurring in nature, which admits no externally imposed
fitness criterion, but rather an implicit, emergent, dynamical one (that could
arguably be summed up as survivability).

traditional evolutionary techniques. As examples one can
cite the works of [15], [17], [18], and [23].

• Moving upward along the axis, one finds research in
which a real circuit is used during the evolutionary
process, though most operations are still carried out off-
line, in software. Examples are [22] and [26], where
fitness calculation is carried out on a real circuit. Thomp-
son et al. [22] evolved a hardware controller for a
two-wheeled autonomous mobile robot that was required
to display simple wall-avoidance behavior in an empty
rectangular arena. A standard genetic algorithm was used,
with a population of 30 individuals, each one consisting
of a 60-bit representation of a dynamic state machine.
Thompson [26] evolved an FPGA circuit, consisting of
10 10 cells, to discriminate between square waves of
1 kHz and 10 kHz presented as inputs. Again, a standard
genetic algorithm was employed, with a population of 50
individuals, each one a string of 1800 bits (18 configura-
tion bits per cell), representing a possible circuit. In both
cases, a single real circuit was available (one robot in the
first experiment and a single FPGA board in the second),
with a sequential evaluation of every individual taking
place on that circuit, at each evolutionary generation. An
interesting aspect of these works concerns the uncon-
strained use of hardware. While conventional (human)
design requires constraints to be applied to the circuit’s
spatial structure and dynamical behavior, evolution can do
away with these. The circuits evolved by [22] and [26]
had no spatial structure enforced (e.g., limitations upon
recurrent connections), no impositions upon modularity,

nor any dynamical constraints such as a synchronizing
clock or handshaking between modules.

Another example that can be situated within this subdi-
vision of the phylogenetic axis is the works of Murakawa
et al. [27] and Iwata et al. [28]. One of the major
obstacles which they wished to overcome is that of large
genome size (defining the FPGA’s configuration). Toward
this end they proposed two solutions: 1) variable-length
chromosome genetic algorithm (VGA), where the genome
does not directly represent the configuration bit string
but rather codifies the possible logical operations and
interconnections [28]. A decoder is therefore necessary
to translate the genome into an FPGA configuration
string. This decoder is, however, much simpler than the
compilation tools associated with high-level hardware
description languages (such as VHDL1); therefore this
solution reduces the genome’s size without incurring a
high computational cost. 2) Evolution at the function
level, where the basic units are not elementary logic gates
(e.g., AND, OR, and NOT), but rather higher-level func-
tions (e.g., sine-wave generator, multiplier) [27]. Since no
such commercial FPGA currently exists, they proposed
a novel architecture, dubbed (function-based
FPGA). One can combine both solutions, using VGA
encoding with an architecture.

The methodologies proposed by [27] and [28] were
targeted at applications involving real-time adaptation in
a changing environment. This raises a problem regarding
fitness evaluation: since each individual in the (off-line)
population is sequentially downloaded onto the (single)
real circuit available, real-time behavior cannot be at-
tained during the evolutionary phase, but only upon its
termination. Their solution to this problem was to usetwo
real circuits, one submerged within the environment in
question, executing the configuration of the best evolved
individual so far, the other serving for (sequential) fitness
calculation. This two-circuit system enables the use of
an actual circuit, while additionally exhibiting real-time
behavior.

It is important to note that while experiments of the
above type have been referred by some as on-line evo-
lution, there is a prominent off-line aspect since the
population is stored in an external computer, which also
controls the evolutionary process. It would probably be
more appropriate to reserve the term on-line for the next
subdivision.

• Still further along the phylogenetic axis, one finds systems
in which all operations (selection, crossover, mutation),
as well as fitness evaluation, are carried out on-line, in
hardware. The major aspect missing concerns the fact that
evolution is not open ended, i.e., there is a predefined goal
and no dynamic environment to speak of. An example is
the work of Goekeet al. [30], where an evolving cellular
system was implemented in which evolution takes place

1Very High Speed Integrated Circuit (VHSIC) Hardware Description Lan-
guage. See, e.g., [29].

88 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

completely on-line. It is based on the cellular automata
model, a discrete dynamical system that performs com-
putations in a distributed fashion on a spatially extended
grid. A cellular automaton consists of an array of cells,
each of which can be in one of a finite number of
possible states, updated synchronously in discrete time
steps according to alocal, identical interaction rule [31],
[32]. Thestateof a cell at the next time step is determined
by the current states of a surrounding neighborhood of
cells. This transition is usually specified in the form of
a rule table, delineating the cell’s next state for each
possible neighborhood configuration. The cellular array
(grid) is -dimensional, where is used in
practice. Nonuniform cellular automata have also been
considered in which the local update rule need not be
identical for all grid cells [33], [34].

Based on thecellular programmingevolutionary algo-
rithm of Sipper [34] (see also [35]–[39]), Goekeet al. [30]
implemented an evolving, one-dimensional, nonuniform
cellular automaton. Each of the system’s 56 binary-state
cells contains a genome that represents its rule table.
These genomes are initialized at random, thereupon to be
subjected to evolution. The environment imposed on the
system specifies the resolution of a global synchronization
task: upon presentation of a random initial configuration
of cellular states, the system must reach, after a bounded
number of time steps, a configuration whereupon the
states of the cells oscillate between all zeros and all
ones on successive time steps. This may be compared
to a swarm of fireflies, thousands of which may flash
on and off in unison, having started from totally unco-
ordinated flickerings. Each insect has its own rhythm,
which changes only through local interactions with its
neighbors’ lights [40] (for a review on other phenomena
in nature involving synchronous oscillation, see [41]).
Due to the local connectivity of the system, this global
behavior involving the entire grid comprises a difficult
task. Nonetheless, applying the evolutionary process of
[34], the system evolves (i.e., the genomes change) such
that the task is solved [30].

The evolving cellular system described in the previous
paragraph exhibits complete on-line evolution, all opera-
tors being carried out in hardware with no reference to an
external computer. This demonstrates that evolving ware,
evolware [30], [37], can be constructed (Fig. 4). The
evolware board was implemented using FPGA circuits,
configured such that each cell within the system behaves
in a certain general manner, after which evolution is used
to find the cell’s specific behavior, i.e., its rule table. Thus,
the system consists of a fixed part and an evolving part,
both specified via FPGA configuration strings. An inter-
esting outlook on this setup is to consider the evolutionary
process as one where an organism evolves within a given
species, the former specified by the FPGA’s evolving
part, the latter specified by the fixed part. This raises the
interesting issue of evolving the species itself.

• The last subdivision, situated at the top of the phylo-
genetic axis, involves a population of hardware entities
evolving in an open-ended environment. When the fitness
criterion is imposed by the user in accordance with
the task to be solved (currently the rule with artificial
evolution techniques), one attains a form of guided, or
directed, evolution. This is to be contrasted with open-
ended evolution occurring in nature, which admits no
externally imposed fitness criterion, but rather an implicit,
emergent, dynamical one (that could arguably be summed
up as survivability). Open-ended, undirected evolution
is the only form of evolution known to produce such
devices as eyes, wings, and nervous systems and to
give rise to the formation of species. Undirectedness
may have to be applied to artificial evolution if we
want to observe the emergence of completely novel
systems.

We argue that only the last category can be truly considered
evolvable hardware, a goal which still eludes us at present.
We point out that a more correct term would probably be
evolving hardware. A natural application area for such systems
is within the field of autonomous robots, which involves
machines capable of operating in unknown environments
without human intervention [42]. A related application domain
is that of controllers for noisy, changing environments. An-
other interesting example would be what we call Hard-Tierra,
involving the hardware implementation (e.g., using FPGA
circuits) of the Tierra “world,” which consists of an open-
ended environment of evolving computer programs [43].2 A
small-scale experiment along this line was undertaken in [44].
The idea of Hard-Tierra is important since it demonstrates that
open-endedness does not necessarily imply a real, biological
environment.

III. T HE ONTOGENETIC AXIS: REPLICATING

AND REGENERATING HARDWARE

The ontogenetic axis involves thedevelopmentof a single
individual from its own genetic material, essentially without
environmental interactions. As can be seen in Fig. 5 (based
on [45] and [46]) ontogeny can be considered orthogonal to
phylogeny. The main process involved in the ontogenetic axis
can be summed up asgrowth, or construction. Ontogenetic
hardware exhibits such characteristics as replication and re-
generation which find their use in many applications. For
example, replicating systems have the ability to self-repair
upon suffering heavy damage [47] and have been proposed as
an economical means of space exploration [48]. Replication
can in fact be considered a special case of growth—this
process involves the creation of an identical organism by

2Tierra is a virtual world, consisting of computer programs that can undergo
evolution. In contrast to evolutionary algorithms where fitness is defined by the
user, the Tierra “creatures” (programs) receive no such direction. Rather, they
compete for the natural resources of their computerized environment, namely,
CPU time and memory. Since only a finite amount of these are available,
the virtual world’s natural resources are limited, as in nature, giving rise to
competition between creatures. Ray observed the formation of an “ecosystem”
within the Tierra world, including organisms of various sizes, parasites, and
hyper-parasites [43].

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 89

Fig. 4. The firefly evolware board. The system is an evolving, one-dimensional, nonuniform cellular automaton. Each of the 56 cells contains a genome that
represents its rule table; these genomes are randomly initialized, thereupon to be subjected to evolution. The board contains the following components: 1) LED
indicators of cell states (top), 2) switches for manually setting the initial states of cells (top, below LED’s), 3) Xilinx FPGA chips (below switches), 4) display
and knobs for controlling two parameters (“time steps” and “configurations”) of the cellular programming algorithm (bottom left), 5) a synchronization indicator
(middle left), 6) a clock pulse generator with a manually adjustable frequency from 0.1 Hz to 1 MHz (bottom middle), 7) an LCD display of evolved rule tables
and fitness values obtained during evolution (bottom right), and 8) a power-supply cable (extreme left). (Note that this is the system’s sole externalconnection.)

Fig. 5. The phylogenetic and ontogenetic axes can be considered orthogonal.
The figure shows two generations preceded and followed by an indefinite
number of generations. Ontogeny involves the development of the phenotype
in a given generation (horizontal arrows), while phylogeny involves the
succession of generations through reproduction of the genotype (vertical
arrows). Note that genes, the basic constituents of the genome, act on two quite
different levels: they participate in the developmental process, influencing the
development of the phenotype in a given generation, and they participate in
genetics, having themselves copied down the generations (reproduction) [46].

duplicating the genetic material of a mother entity onto a
daughter one, thereby creating an exact clone. It is important

to distinguish between two distinct terms, replication and
reproduction, which are often considered synonymous. Repli-
cation is an ontogenetic, developmental process, involving no
genetic operators, resulting in an exact duplicate of the parent
organism (as in the budding process of the hydra, described
by [49]). Reproduction, on the other hand, is a phylogenetic
process, involving genetic operators such as crossover and
mutation, thereby giving rise to variety and ultimately to
evolution (note that reproduction has been justly placed on
the vertical axis of Fig. 5).

Research on ontogenetic systems began with von Neu-
mann’s work in the late 1940’s on self-replicating machines.
This work was later extended by others, and more recently
we have seen the emergence of systems that exhibit other
ontogenetic mechanisms, such as cellular division and cellular
differentiation. This line of research can be divided into four
stages, placed along the ontogenetic axis (Fig. 6).

• Von Neumann [50] (see also [51]) and his successors
Banks [52], Burks [53], and Codd [54] developed self-
replicating automata capable of universal computation
(i.e., able to simulate a universal Turing machine [55])
and of universal construction (i.e., able to construct any
automaton described by an artificial genome). While

90 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

Fig. 6. The ontogenetic axis admits four stages, based on a number of distinguishing characteristics: universal computation (the ability to simulate a
universal Turing machine), universal construction (the ability to construct any automaton described by an artificial genome), self-repair capabilities, and
unicellular or multicellular organization.

the complexity of these automata is such that no full
physical implementation has yet been possible, the
von Neumann cell has recently been implemented in
hardware [56].

• Langton [57] and his successors Byl [58], Reggiaet al.
[59], and Morita and Imai [60] developed self-replicating
automata which are much simpler and which have been
simulated in their entirety. These machines, however, lack
any computing and constructing capabilities, with their
sole functionality being that of self-replication.

• Tempesti [61] and Perrieret al. [62] developed self-
replicating automata inspired by Langton’s work, yet
endowed with finite [61] or universal [62] computational
capabilities.

• One of the defining characteristics of a biological cell
concerns its role as the smallest part of a living being
which carries the complete plan of the being, that is its
genome [63]. In this respect, the above self-replicating au-
tomata are unicellular organisms: there is a single genome
describing (and contained within) the entire machine.

Mange et al. [47], [63], [64] and Marchalet al. [65]
proposed a new architecture calledembryonics, or em-
bryonic electronics. Based on three features usually asso-
ciated with the ontogenetic process in living organisms,
namely, multicellular organization, cellular differentia-
tion, and cellular division, they introduced a new cellular
automaton, complex enough for universal computation,
yet simple enough for a physical implementation through
the use of commercially available digital circuits. They
developed an artificial cell, abiodule(biological module),
comprising three structures found in living cells (Fig. 7)
[49]: 1) a plastic box constitutes the externalmembrane,
ensuring the cell’s material encasement and realizing
all the electronic functions necessary for communication
with neighboring cells, 2) a processor responsible for
interpreting the genome constitutes thecytoplasm, in
analogy to a ribosome, and 3) a random access memory
(RAM) acts as the cell’snucleus, containing a copy of

the entire genetic makeup, i.e., a genome composed of a
linear sequence of genes.

The biodule cell is used as an elementary unit from
which multicellular organisms can ontogenetically de-
velop to perform useful tasks (e.g., act as universal Turing
machines [66], [67]). Cellular differentiation takes place
by having each cell compute its coordinates (i.e., position)
within a two-dimensional space, after which it can extract
the specific gene within the genome responsible for
the cell’s functionality. Cellular division occurs when a
mother cell, thezygote, arbitrarily placed within the two-
dimensional grid, multiplies to fill a large portion of the
space, thus forming a multicellular organism. In addition
to self-replication, this artificial organism also exhibits
self-repair capabilities, another biologically inspired phe-
nomenon. To embed universal construction, Mangeet al.
are designing the basic cell with a molecular organization,
similar to that of the transcription-translation mechanism
(ribosome) [67]. Such self-replicating machines aremul-
ticellular artificial organisms, in the sense that each of the
several cells comprising the organism contains one copy
of the complete genome.

Several other works can be placed along the ontogenetic
axis, including, e.g., L-systems [68], cellular encoding [69],
graph generation systems [70], and self-replicating programs
[71]. We have not discussed these at length as they are
currently implemented solely in software, while our emphasis
is on hardware systems.

IV. THE EPIGENETIC AXIS: LEARNING HARDWARE

The epigenetic axis involves learning through environmental
interactions that take place after formation of the individual. To
the best of our knowledge, there exist three major epigenetic
systems in living multicellular organisms: the nervous system,
the immune system, and the endocrine system, with the
first two having already served as inspiration for engineers.
The nervous system has received the most attention, giving
rise to the field of artificial neural networks. This will be

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 91

Fig. 7. An artificial cell: the biodule. A processor responsible for interpreting
the genome constitutes the cytoplasm, in analogy to a ribosome, along with
a RAM acting as the cell’s nucleus, containing a copy of the entire genetic
makeup, i.e., the genome. Displayed on the top cover are the cell’s coordinates,
as well as the specific gene within the genome that determines its functionality;
these are acquired during cellular differentiation. The KILL button is used to
induce the self-repair (regeneration) mechanism.

the focus of our discussion below. The immune system has
inspired systems for detecting software errors [72], controllers
for mobile robots [73], and immune systems for computers
[74]. Immunity of living organisms is a major domain of
biology. It has been demonstrated that the immune system
is capable of learning, recognizing, and, above all, eliminat-
ing foreign bodies which continuously invade the organism.
Moreover, when viewed from the engineering standpoint, it
is most interesting that immunity is maintained when faced
with a dynamically changing environment. This feature leads
us to surmise that the immune system, if implemented as
an engineering model, can provide a new tool suitable for
confronting dynamic problems, involving unknown, possibly
hostile, environments. The human endocrine system is made
up of a large number of glandular tissues that have in common
the fact that they secrete directly into the blood stream
chemical messengers, known as hormones, that regulate and
integrate bodily functions (such as reproduction). This system
resembles in some of its functionalities the nervous system
in that both help the individual cope with changes in its
environment.

The nervous system remains the most popular epigenetic
source of inspiration for engineers. From a biological point
of view, it has been determined that the genome contains
the formation rules that specify the outline of the nervous
system [1], [2]. It is primarily the synapses, the zones of
contact between two neurons, where learning takes place,
through interactions with the environment during the organ-
ism’s lifetime. The nervous system of living organisms thus
represents a mixture of the innate and the acquired, the latter
precluding the possibility of its direct hereditary transmission
under Darwinian evolution.

A predominant approach in the field of artificial neural
networks consists of applying a learning algorithm to the

Fig. 8. The epigenetic axis: moving from learned (instinctive) systems to
on-line learning networks.

modification of synaptic weights, using a predesigned network
topology. A prime difference between simple rote learning
and intelligent learning is the generalization process taking
place in the latter. One can view a predesigned network as an
implementation of a learned system that exhibits instinctive
behavior [75]. Indeed, there is growing evidence that the
human brain has many more such instinctive networks than
is usually acknowledged [76], [77], possibly due to their
being faster and less resource-demanding with respect to
learning systems, which adapt continuously within a dynamic
environment. Learning networks exhibit the plasticity neces-
sary to confront complex, dynamical tasks and must be able
to adapt at two distinct levels, changing the dynamics of
interneuron interactions (usually through changes in synaptic
weights) as well as modifying the network topology itself.
Topology modification has proven to be a successful solution
to a problem known as the stability–plasticity dilemma, i.e.,
how can a learning system preserve what it has previously
learned, while continuing to incorporate new knowledge [78].
Evolution may ultimately replace such learning networks by
instinctive ones, e.g., via the Baldwin effect, whereby a learned
(acquired) behavior becomes embedded within the organism’s
genome (i.e., its innate behavioral repertoire) through evolu-
tion [79]–[81] (this may be considered a melange of phylogeny
and epigenesis, an issue which shall be expanded upon in
Section V).

Artificial neural networks have been implemented many
times, mostly in software rather than in hardware, though
only the latter concern us here. On-line learning is essential if
one wishes to obtain learning systems as opposed to merely
learned ones (Fig. 8). While neural network hardware had
already appeared in the 1980’s [82], [83], only today are we
seeing the birth of the technology that enables true on-line
learning.

Several network models with modifiable topologies have
been proposed, including growing neural networks [84], neural
networks with incremental learning algorithms [85], and con-
struction algorithms [86]. To our knowledge, none of these
have been implemented as on-line hardware, probably due
to the high cost incurred. Recently, a number of FPGA-
based neural network systems have appeared, though without
dynamic restructuring [87]–[89]. Perez and Sanchez [90], [91]
have developed a network architecture dubbedFAST (flexi-
ble adaptable-size topology) that implements an unsupervised
clustering algorithm, where the network must discover corre-
lations within the input data and cluster, or categorize them
accordingly. The network’s topology changes dynamically,

92 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

Fig. 9. Combining POE axes to create novel bio-inspired systems: The PO
plane involves evolving hardware that exhibits ontogenetic characteristics,
such as growth, replication, and regeneration, the PE plane includes, e.g.,
evolutionary artificial neural networks, the OE plane combines ontogenetic
mechanisms (self-replication, self-repair) with epigenetic (e.g., neural net-
work) learning, and finally, the POE space comprises systems that exhibit
characteristics pertaining to all three axes. An example of the latter would be
an artificial neural network (epigenetic axis), implemented on a self-replicating
multicellular automaton (ontogenetic axis), whose genome is subject to
evolution (phylogenetic axis).

with a new neuron being added when a sufficiently distinct
input pattern is encountered, and an active neuron being
deleted through the application of probabilistic deactivation.
Each neuron maintains an-dimensional reference vector and
a threshold, both of which determine its sensitivity region,
i.e., the input vectors to which it is maximally sensitive. The
network adapts to a particular environment (problem) through
an interplay between three processes: 1) classical learning
(through modifications to reference vectors and thresholds),
2) incremental growth (addition of new neurons), and 3) prun-
ing (deactivation of active neurons). To date, a four-neuron
prototype has been implemented using FPGA’s and FPIC’s
(field-programmable interconnection circuits) and applied to
the solution of pattern recognition and enhancement problems
[90], [91]. This latter approach is currently being applied to
the construction of an on-line robotic neurocontroller. Moreno
[92] examined a number of topology-restructuring neural
network algorithms with respect to their amenability to VLSI
implementation. Other interesting paths are those that combine
two or three axes of the POE model, as discussed in the next
section.

V. CONCLUSIONS: TOWARD NOVEL

BIO-INSPIRED HARDWARE SYSTEMS

We presented the POE model for classifying bio-inspired
hardware systems, based on three axes: phylogeny, ontogeny,
and epigenesis (Fig. 1). We described each axis and provided
examples of systems situated along them.3 A natural extension
which suggests itself is the combination of two, and ultimately
all three axes, to attain novel bio-inspired hardware (Fig. 9).
As examples we propose the following.

• The PO plane. This involves evolving hardware that ex-
hibits ontogenetic characteristics, such as growth, replica-
tion, and regeneration. For example, Sipper and Tomassini
[36], [93] evolved nonuniform cellular automata to act
as random number generators. Mangeet al. [47] showed

3The POE model was recently used to classify all the works presented at
a conference on evolvable systems [3].

that such evolved generators can be implemented by a
multicellular automaton that exhibits self-replication and
self-repair. Thus, the eventual combination of these two
projects can be considered to be in the phylogenetic-
ontogenetic plane.

• The PE plane. The architecture of the brain is the result
of a long evolutionary process, during which a large set
of specialized subsystems interactively emerged, carrying
out tasks necessary for survival and reproduction [94].
Learning (epigenesis) in biological neural systems can
be considered to serve as a mechanism for fine-tuning
these broadly laid out neural circuits [95]. Although it is
impossible that the genes code all structural information
about the brain (Section I), they may be the ultimate
determinant of what it can and cannot learn [96].

The idea of evolutionary, artificial neural networks,
situated in the PE plane, has received attention in recent
years. This involves a population of neural networks,
where evolution takes place at the global (population)
level, with learning taking place at the individual (neural
network) level. Examples are the works of Liu and Yao
[97], Nolfi et al. [98], and Yao [99], though they are
currently completely off-line. Another interesting (natu-
ral) example that may be considered to reside within the
PE plane is that of the Baldwin effect, which exhibits
an intricate interplay between phylogeny and epigenesis
(see Section IV). The use of this process in simulated
systems has been explored, e.g., by [81] and [100]. As a
final case in point regarding the PE plane in nature one
can consider the issue of language acquisition in human
beings, specifically, to what extent is this remarkable
ability innate (phylogenetic) or acquired (epigenetic). (For
a recent discussion and brief historical perspective, see
Dennett [101, ch. 13]. For an exploration of this issue in
artificial settings, see [102]–[104].)

• The OE plane. According to selectionism (e.g., [105]),
selective pressures operate on epigenetic variation during
the ontogeny of the individual (in “somatic” time), not
on a phylogenetic time scale [106]. This suggests the
possibility of combining the ontogenetic mechanisms
discussed above, with the epigenetic (neural network)
learning algorithms. As an example, one can cite the
works of de Garis [107] and Gers and de Garis [108],
which involve the ontogenetic growth of a neural network
that can then undergo epigenetic learning. Currently, only
the ontogenetic part has been reported upon, with learning
yet to be demonstrated. The FAST neural network with
its dynamically changing topology (Section IV) can be
extended into the OE plane by obtaining the topology via
an ontogenetic process (e.g., as proposed by [70]).

Inductive learning can be interpreted as the capability
to infer a response to an unknown situation, achieved
through generalizing from previously encountered, known
situations. Engineers are perpetually confronted with a
tradeoff between generalization and robustness. While
adding a multitude of neurons increases the system’s

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 93

fault tolerance, there is a risk of overfitting if we do
not attempt to generalize [109]. Implementing neurons in
hardware is generally quite expensive, so it is imperative
that cost-effectiveness be considered, trying to obtain the
smallest possible network. Once a good generalization is
obtained (with respect to a certain problem or situation),
fault tolerance can be achieved through other self-repair
mechanisms, e.g., those used by the embryonics system
(Section III).

• The POE space. The development of an artificial neu-
ral network (epigenetic axis), implemented on a self-
replicating multicellular automaton (ontogenetic axis),
whose genome is subject to evolution (phylogenetic axis),
constitutes a possible example situated in the POE space
(Fig. 9).

Bio-inspired hardware systems to date mostly exhibit a clear
separation between the POE axes, each plainly situated along
a single one. Possible extensions were noted above, including
systems that reside in one of the three planes, and eventually
within the POE space. In fact, the success of the “POE
community’s” endeavor can be measured by the disappearance
(extinction?) of the POE model (or rather its utility). This
will ensue from the composition of future systems which may
eventually exhibit characteristics of all three axes, i.e., reside
within the POE space. At such time, the POE model will have
outlived its usefulness.

Note that the systems considered in this paper are bio-
inspired. This means that, while motivated by observations
of nature, strict adherence to her solutions is not asine
qua non. As an example, consider the issue of Lamarckian
evolution, which involves the direct inheritance of acquired
characteristics. While the biological theory of evolution has
shifted from Lamarckism to Darwinism, this does not preclude
the use of artificial Lamarckian evolution [110]. Another
example concerns the time scales of natural processes, where
phylogenetic changes occur at much slower rates than either
ontogenetic or epigenetic ones, a characteristic which need
not necessarily hold in our case. Thus, deviations from what
is strictly natural may definitely be of use in bio-inspired
systems.

Comparing our current artificial systems with those found
in nature is beyond the scope of this paper. Moreover, this
would require devising a sophisticated scheme, involving
a set of comparison criteria and measures. Nonetheless, it
is interesting to consider one aspect, that of genome size.
Table I presents the genome sizes of some natural and artificial
systems, clearly demonstrating our present, comparatively
primitive, state. Even one of the most complex artificial
systems (in terms of genome size), namely, von Neumann’s
self-replicating universal constructor, is almost two orders of
magnitude smaller than a simple bacterium. Furthermore, this
system was not evolved, but rather designed by hand, and is
highly intolerant of errors—inversion of a single bit in the
genome will almost always result in the machine’s complete
destruction. For the evolved systems it is evident that we are
still far removed from even the simplest natural organisms.

TABLE I
GENOME SIZE AND DNA CONTENT (OR ITS ARTIFICIAL ANALOG). (THE

DATA CONCERNING THE NATURAL SYSTEMS IS BASED ON [113] AS

QUOTED IN [114]. THE ESTIMATE OF THE SIZE OF VON NEUMANN’S

SELF-REPLICATING UNIVERSAL CONSTRUCTORIS BASED ON [51])

Note that not only is genome size much smaller for artificial
systems, there is also an absence of noncoding “DNA,” a
prominent feature of natural organisms. The importance of
this phenomenon is not yet fully understood (for studies of
this issue within an artificial evolution framework see [111]
and [112]).

On a more reflective (and somewhat philosophical) note,
one can consider the works described herein as a collective
effort in what amounts, perhaps, to the origins of a new
biology. The evolutionary history of our planet has seen
the nascence and, more prominently, extinction, of untold
numbers of species. An analogous process is taking place at
this very instant in several research facilities around the globe.
Artificial species, such as those described in this paper, are
being born (currently through design, but ultimately, perhaps,
via evolution), to be immediately subjected to competition
with their congeners, giving rise to selection forces at the
species level. In analogy to nature, the years to come may see
the appearance and disappearance of entire artificial species.
Granted, we are currently at the “primordial-soup” stage, yet
it would be interesting to take, especially at this early point,
a historical stance. Our current position is unique in that we
can trace out the entire phylogenetic tree of this new biology,
including the discontinued kingdoms, phyla, classes, orders,
families, genera, and species, thereby obtaining a complete
history, or lineage. This is in contrast to nature, where we can
observe only those species that have survived the millenia, or
have left prominent footmarks in the fossil record (see [101]
for interesting discussions on some of the issues pertaining to
natural evolution).

Looking (and dreaming) toward the future, one can imagine
nano-scale (bioware) systems becoming a reality, which will
be endowed with evolutionary, reproductive, regenerative, and
learning capabilities. Such systems could give rise to novel
species which will coexist alongside carbon-based organ-
isms.

ACKNOWLEDGMENT

The authors are grateful to A. Danchin, D. B. Fogel,
J. R. Koza, and the anonymous reviewers for their careful
reading of this manuscript and their many helpful remarks

94 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

and suggestions. They also thank A. Badertscher for his help
in obtaining the firefly image of Fig. 4.

REFERENCES

[1] A. Danchin, “A selective theory for the epigenetic specification of the
monospecific antibody production in single cell lines,”Ann. Immunol.
(Institut Pasteur), vol. 127C, pp. 787–804, 1976.

[2] , “Stabilisation fonctionnelle et́epiǵeǹese: une approche bi-
ologique de la geǹese de l’identit́e individuelle,” in L’identité, J.-M.
Benoist, Ed. Paris, France: Grasset, 1977, pp. 185–221.

[3] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. P´erez-Uribe,
and A. Stauffer, “Phylogeny, ontogeny, and epigenesis: Three sources
of biological inspiration for softening hardware,” inProc. 1st Int.
Conf. Evolvable Systems: From Biology to Hardware (ICES96)(Lecture
Notes in Computer Science). Heidelberg, Germany: Springer-Verlag,
1997.

[4] R. R. Yager and L. A. Zadeh,Fuzzy Sets, Neural Networks, and Soft
Computing. New York: Van Nostrand Reinhold, 1994.

[5] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. New
York, Oxford Univ. Press, 1996.

[6] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[7] D. E. Godlberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. of Michigan Press, 1975.

[9] J. R. Koza,Genetic Programming. Cambridge, MA: MIT Press, 1992.
[10] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution

Programs, 3rd ed. Heidelberg, Germany: Springer-Verlag, 1996.
[11] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:

MIT Press, 1996.
[12] H.-P. Schwefel,Evolution and Optimum Seeking. New York: Wiley,

1995.
[13] E. Sanchez, “Field-Programmable Gate Array (FPGA) circuits,” in

Toward Evolvable Hardware(Lecture Notes in Computer Science, vol.
1062), E. Sanchez and M. Tomassini, Eds. Heidelberg, Germany:
Springer-Verlag, 1996, pp. 1–18.

[14] E. Sanchez and M. Tomassini, Eds.,Toward Evolvable Hardware(Lec-
ture Notes in Computer Science, vol. 1062). Heidelberg, Germany:
Springer-Verlag, 1996,

[15] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, “Automated
WYWIWYG design of both the topology and component values of
electrical circuits using genetic programming,” inGenetic Programming
1996: Proceedings of the First Annual Conference, J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Cambridge, MA: MIT
Press, 1996, pp. 123–131.

[16] X. Yao and T. Higuchi, “Promises and challenges of evolvable hard-
ware,” in Proc. 1st Int. Conf. Evolvable Systems: From Biology to
Hardware (ICES96)(Lecture Notes in Computer Science). Heidelberg,
Germany: Springer-Verlag, 1997.

[17] H. Hemmi, J. Mizoguchi, and K. Shimohara, “Development and evo-
lution of hardware behaviors,” inToward Evolvable Hardware(Lecture
Notes in Computer Science, vol. 1062), E. Sanchez and M. Tomassini,
Eds. Heidelberg, Germany: Springer-Verlag, 1996, pp. 250–265.

[18] H. Kitano, “Morphogenesis for evolvable systems,” inToward Evolvable
Hardware (Lecture Notes in Computer Science, vol. 1062), E. Sanchez
and M. Tomassini, Eds. Heidelberg, Germany: Springer-Verlag, 1996,
pp 99–117.

[19] J. W. Atmar, “Speculation on the evolution of intelligence and its
possible realization in machine form,” Ph.D. dissertation, New Mexico
State University, Las Cruces, 1976.

[20] H. de Garis, “Evolvable hardware: Genetic programming of a Darwin
machine,” in Artificial Neural Nets and Genetic Algorithms, R. F.
Albrecht, C. R. Reeves, and N. C. Steele, Eds. Heidelberg: Springer-
Verlag, 1993, pp. 441–449.

[21] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya,
“Evolving hardware with genetic learning: A first step toward building
a Darwin machine,” inProc. 2nd Int. Conf. Simulation of Adaptive
Behavior (SAB92). Cambridge, MA: MIT Press, 1993, pp. 417–424.

[22] A. Thompson, I. Harvey, and P. Husbands, “Unconstrained evolution
and hard consequences,” inToward Evolvable Hardware(Lecture Notes
in Computer Science, vol. 1062), E. Sanchez and M. Tomassini, Eds.
Heidelberg: Springer-Verlag, 1996, pp. 136–165.

[23] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, and
B. Manderick, “Evolvable hardware and its application to pattern
recognition and fault-tolerant systems,” inToward Evolvable Hardware,
(Lecture Notes in Computer Science, vol. 1062), E. Sanchez and M.
Tomassini, Eds. Heidelberg: Springer-Verlag, 1996, pp. 118–135.

[24] A. Thompson, “Silicon evolution,” inGenetic Programming 1996:
Proceedings of the First Annual Conference, J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. L. Riolo, Eds. Cambridge, MA: MIT Press, 1996,
pp. 444–452.

[25] Xilinx, The Programmable Logic Data Book, San Jose, CA, 1996.
[26] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with

physics,” in Proc. 1st Int. Conf. Evolvable Systems: From Biology to
Hardware (ICES96)(Lecture Notes in Computer Science). Heidelberg:
Springer-Verlag, 1997.

[27] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T.
Higuchi, “Hardware evolution at function level,” inParallel Problem
Solving from Nature—PPSN IV(Lecture Notes in Computer Science,
vol. 1141), H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
Eds. Heidelberg: Springer-Verlag, 1996, pp. 62–71.

[28] M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, “A pattern
recognition system using evolvable hardware,” inParallel Problem
Solving from Nature—PPSN IV(Lecture Notes in Computer Science,
vol. 1141), H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
Eds. Heidelberg: Springer-Verlag, 1996, pp. 761–770.

[29] A. Rushton, VHDL for Logic Synthesis: An Introductory Guide for
Achieving Design Requirements. London: McGraw-Hill, 1995.

[30] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, and M.
Tomassini, “Online autonomous evolware,” inProc. 1st Int. Conf.
Evolvable Systems: From Biology to Hardware (ICES96)(Lecture Notes
in Computer Science). Heidelberg: Springer-Verlag, 1997.

[31] S. Wolfram, “Statistical mechanics of cellular automata,”Rev. Mod.
Phys., vol. 55, no. 3, pp. 601–644, July 1983.

[32] T. Toffoli and N. Margolus,Cellular Automata Machines. Cambridge,
MA: MIT Press, 1987.

[33] M. Sipper, “Non-uniform cellular automata: Evolution in rule space and
formation of complex structures,” inArtificial Life IV, R. A. Brooks and
P. Maes, Eds. Cambridge, MA: MIT Press, 1994, pp. 394–399.

[34] , Evolution of Parallel Cellular Machines: The Cellular Program-
ming Approach. Heidelberg: Springer-Verlag, 1997.

[35] , “Co-evolving nonuniform cellular automata to perform compu-
tations,” Physica D, vol. 92, pp. 193–208, 1996.

[36] M. Sipper and M. Tomassini, “Generating parallel random number
generators by cellular programming,”Int. J. Mod. Phys. C, vol. 7, no.
2, pp. 181–190, 1996.

[37] M. Sipper, “Designing evolware by cellular programming,” inProc.
1st Int. Conf. Evolvable Systems: From Biology to Hardware (ICES96)
(Lecture Notes in Computer Science). Heidelberg: Springer-Verlag,
1997.

[38] M. Sipper and E. Ruppin, “Co-evolving architectures for cellular ma-
chines,” Physica D, vol. 99, pp. 428–441, 1997.

[39] M. Sipper, “Evolving uniform and nonuniform cellular automata net-
works,” in Annual Reviews of Computational Physics, vol. V, D. Stauf-
fer, Ed. Singapore: World Scientific, 1997.

[40] J. Buck, “Synchronous rhythmic flashing of fireflies II,”Q. Rev. Biology,
vol. 63, no. 3, pp. 265–289, Sept. 1988.

[41] S. H. Strogatz and I. Stewart, “Coupled oscillators and biological
synchronization,”Sci. Amer., vol. 269, no. 6, pp. 102–109, Dec. 1993.

[42] R. A. Brooks, “New approaches to robotics,”Science, vol. 253, no.
5025, pp. 1227–1232, Sept. 1991.

[43] T. S. Ray, “An approach to the synthesis of life,” inArtificial Life II
(SFI Studies in the Sciences of Complexity, vol. X), C. G. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Redwood City, CA:
Addison-Wesley, 1992, pp. 371–408.

[44] P. Galley and E. Sanchez, “A hardware implementation of a Tierra
processor,” Logic Systems Laboratory, Swiss Federal Institute of Tech-
nology, Lausanne, Internal Rep. (in French), 1996.

[45] R. Dawkins,The Blind Watchmaker. New York: Norton, 1986.
[46] , “The evolution of evolvability,” inArtificial Life (SFI Studies

in the Sciences of Complexity, vol. VI), C. G. Langton, Ed. Reading,
MA: Addison-Wesley, 1989, pp. 201–220.

[47] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, and S. Du-
rand, “Embryonics: A new family of coarse-grained field-programmable
gate arrays with self-repair and self-reproducing properties,” inToward
Evolvable Hardware(Lecture Notes in Computer Science, vol. 1062),
E. Sanchez and M. Tomassini, Eds. Heidelberg: Springer-Verlag,1996,
pp. 197–220. (also available as: Dept. Comput. Sci., Swiss Federal Inst.
Technol., Lausanne, Switzerland, Tech. Rep. 95/154, Nov. 1995).

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 95

[48] “Replicating systems concepts: self-replicating lunar factory and demon-
stration,” Advanced Automation for Space Missions: Proceedings of the
1980 NASA/ASEE Summer StudyR. A. Freitas, Jr. and W. P. Gilbreath,
Eds. Washington, DC: NASA, 1980, chap. 5.

[49] L. Wolpert, The Triumph of the Embryo. New York: Oxford Univ.
Press, 1991.

[50] J. von Neumann,Theory of Self-Reproducing Automata, A. W. Burks.
Ed. Urbana, IL: Univ. of Illinois Press, 1966.

[51] U. Pesavento, “An implementation of von Neumann’s self-reproducing
machine,”Artificial Life, vol. 2, no. 4, pp. 337–354, 1995.

[52] E. R. Banks, “Universality in cellular automata,” inProc. IEEE 11th
Annual Symposium on Switching and Automata Theory, Santa Monica,
CA, Oct. 1970, pp. 194–215.

[53] A. Burks, Ed.,Essays on Cellular Automata. Urbana, IL: Univ. Illinois
Press, 1970.

[54] E. F. Codd,Cellular Automata. New York: Academic, 1968.
[55] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory

Languages and Computation. Redwood City, CA: Addison-Wesley,
1979.

[56] J.-L. Beuchat and J.-O. Haenni, “Von Neumann’s 29-state cellular
automation: A hardware implementation,” submitted for publication.

[57] C. G. Langton, “Self-reproduction in cellular automata,”Physica D,
vol. 10, pp. 135–144, 1984.

[58] J. Byl, “Self-reproduction in small cellular automata,”Physica D, vol.
34, pp. 295–299, 1989.

[59] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, “Simple
systems that exhibit self-directed replication,”Science, vol. 259, pp.
1282–1287, Feb. 1993.

[60] K. Morita and K. Imai, “Logical universality and self-reproduction in
reversible cellular automata,” inProc. 1st Int. Conf. Evolvable Systems:
From Biology to Hardware (ICES96)(Lecture Notes in Computer
Science). Heidelberg: Springer-Verlag, 1997.

[61] G. Tempesti, “A new self-reproducing cellular automation capable of
construction and computation,” inECAL’95: Third European Conference
on Artificial Life (Lecture Notes in Computer Science, vol. 929), F.
Morán, A. Moreno, J. J. Merelo, and P. Chacón, Eds. Heidelberg:
Springer-Verlag, 1995, pp. 555–563.

[62] J.-Y. Perrier, M. Sipper, and J. Zahnd, “Toward a viable, self-
reproducing universal computer,”Physica D, vol. 97, pp. 335–352,
1996.

[63] D. Mange and A. Stauffer, “Introduction to embryonics: Toward new
self-repairing and self-reproducing hardware based on biological-like
properties,” inArtificial Life and Virtual Reality, N. M. Thalmann and
D. Thalmann, Eds. Chichester, UK: Wiley, 1994, pp. 61–72.

[64] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, S. Durand, P. Mar-
chal, and C. Piguet, “Embryonics: A new methodology for designing
field-programmable gate arrays with self-repair and self-reproducing
properties,” Dept. Comput. Sci., Swiss Federal Inst. Technol., Lausanne,
Switzerland, Tech. Rep. 95/152, Oct. 1995.

[65] P. Marchal, C. Piguet, D. Mange, A. Stauffer, and S. Durand, “Embry-
ological development on silicon,” inArtificial Life IV, R. A. Brooks and
P. Maes, Eds. MIT Press: Cambridge, MA, 1994, pp. 365–370.

[66] A. Stauffer, D. Mange, M. Goeke, D. Madon, G. Tempesti, S. Du-
rand, P. Marchal, and C. Piguet, “MICRO TREE: toward a binary
decision machine-based FPGA with biological-like properties,” inProc.
Int. Workshop on Logic and Architecture Synthesis, Institut National
Polytechnique de Grenoble, France, 1996.

[67] D. Mange, D. Madon, A. Stauffer, and G. Tempesti, “Von Neumann
revisited: A Turning machine with self-repair and self-reproduction
properties,” Dept. Comput. Sci., Swiss Federal Inst. Technol., Lausanne,
Switzerland, Tech. Rep. 96/180, Mar. 1966.

[68] P. Prusinkiewicz and A. Lindenmayer,The Algorithmic Beauty of Plants.
New York: Springer-Verlgag, 1990.

[69] F. Gruau, “Artificial cellular development in optimization and compi-
lation,” in Toward Evolvable Hardware, (Lecture Notes in Computer
Science, vol. 1062), E. Sanchez and M. Tomassini, Eds. Heidelberg:
Springer-Verlag, 1996, pp. 48–75.

[70] H. Kitano, “Designing neural networks by genetic algorithms using
graph generation systems,”Complex Syst., vol. 4, pp. 461–476, 1990.

[71] J. R. Koza, “Artificial life: Spontaneous emergence of self-replicating
and evolutionary self-improving computer programs,” inArtificial Life
III (SFI Studies in the Sciences of Complexity, vol. XVII), C. G.
Langton, Ed. Reading, MA: Addison-Wesley, 1994, pp. 225–262.

[72] S. Xanthakis, R. Pajot, and A. Rozz, “Immune system and fault-tolerant
computing,” inEvolution artificielle 94. 1995, Cepadues, cop.

[73] A. Ishiguro, T. Kondo, Y. Watanabe, and Y. Uchikawa, “Immunoid:
An immunological approach to decentralized behavior arbitration of

autonomous mobile robots,” inParallel Problem Solving from Na-
ture—PPSN IV(Lecture Notes in Computer Science, vol. 1141), H.-M.
Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds. Heidel-
berg: Springer-Verlag, 1996, pp. 666–675.

[74] J. O. Kephart, “A biologically inspired immune system for computers,”
in Artificial Life IV, R. A. Brooks and P. Maes, Eds. Cambridge, MA:
MIT Press, 1994, pp. 130–139.

[75] P. Turney, “Myths and legends of the Baldwin effect,” inProc. 13th Int.
Conf. Machine Learning (ICML-96), 1996, pp. 135–142.

[76] J. H. Barkow, L. Cosmides, and J. Tooby, Eds.,The Adapted Mind:
Evolutionary Psychology and the Generation of Culture. New York:
Oxford Univ. Press, 1992.

[77] S. Pinker,The Language Instinct: How the Mind Creates Language.
New York: Morrow, 1994.

[78] G. Carpenter and S. Grossberg, “The ART of Adaptive Pattern Recogni-
tion by a self-organizing neural network,”IEEE Computer, pp. 77–88,
Mar. 1988.

[79] R. W. Anderson, “Learning and evolution: A quantitative genetics
approach,”J. Theoretical Biology, vol. 175, pp. 89–101, 1995.

[80] , “Genetic mechanisms underlying the Baldwin effect are evident
in natural antibodies,” inEvolutionary Programming IV: Proceedings
of the Fourth Annual Conference on Evolutionary Programming, J. R.
McDonnell, R. G. Reynolds, and D. B. Fogel, Eds. Cambridge, MA:
MIT Press, 1995, pp. 547–563.

[81] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Complex Syst., vol. 1, pp. 495–502, 1987.

[82] L. E. Atlas and Y. Suzuki, “Digital systems for artificial neural net-
works,” IEEE Circuits Devices, pp. 20–24, Nov. 1989.

[83] H. P. Graf and L. D. Jackel, “Analog electronic neural network circuits,”
IEEE Circuits Devices, pp. 44–49, July 1989.

[84] B. Fritzke, “Growing cell structures—a self-organizing network in
k dimensions,” in Proc. 1992 Int. Conf. Artificial Neural Networks
(ICANN-92), I. Aleksander and J. Taylor, Eds. Amsterdam, the Nether-
lands: North-Holland, 1992.

[85] A. E. Alpaydin, “Neural models of incremental supervised and un-
supervised learning,” Ph.D. dissertation, Swiss Federal Inst. Technol.,
Lausanne, 1990.

[86] M. Frean, “The Upstart algorithm: A method for constructing and
training feed-forward neural networks,”Neural Computat., vol. 2, pp.
198–209, 1990.

[87] C. Cox and W. E. Balnz, “GANGLION: A fast field-programmable gate
array implementation of a connectionist classifier,”IEEE J. Solid-State
Circuits, vol. 27, no. 3, pp. 288–299, Mar. 1992.

[88] S. L. Bade and B. L. Hutchings, “FPGA-based stochastic neural net-
works implementation,” presented at IEEE Workshop on FPGA’s for
Custom Computing Machines, Apr. 1994.

[89] J. G. Eldredge and B. L. Hutchings, “Density enhancement of a neural
network using FPGA’s and run-time reconfiguration,” presented at IEEE
Workshop on FPGA’s for Custom Computing Machines, Apr. 1994.

[90] A. Perez and E. Sanchez, “FPGA implementation of an adaptable-
size neural network,” inProc. Int. Conf. Artificial Neural Networks
(ICANN96) (Lecture Notes in Computer Science, vol. 1112) C. von
der Malsburg, W. von Seelen, J. C. Vorbr¨uggen, and B. Sendhoff, Eds.
Heidelberg: Springer-Verlag, 1996, pp. 383–388.

[91] , “Neural networks structure optimization through on-line hard-
ware evolution,” inProc. World Congr. Neural Networks (WCNN96).
1996, INNS (International Neural Networks Society) Press, pp.
1041–1044.

[92] J. M. Moreno,VLSI Architectures for Evolutive Neural Models, Ph.D.
dissertation, Universitat Politecnica de Catalunya, Barcelona, 1994.

[93] M. Sipper and M. Tomassini, “Co-evolving parallel random number
generators,” inParallel Problem Solving from Nature—PPSN IV(Lec-
ture Notes in Computer Science, vol. 1141), H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds. Heidelberg: Springer-Verlag,
1996, pp. 950–959.

[94] M. S. Gazzaniga, “Organization of the human brain,”Science, vol. 245,
pp. 947–952, 1989.

[95] B. Happel and J. M. Murre, “Design and evolution of modular neural
network architectures,”Neural Networks, vol. 7, no. 6/7, pp. 985–1004,
1994.

[96] J. Changeux and A. Danchin, “Selective stabilization of developing
synapses as a mechanism for the specification of neural networks,”
Nature, vol. 264, pp. 705–712, 1976.

[97] Y. Liu and X. Yao, “Evolutionary design of artificial neural networks
with different nodes,” inProc. IEEE Int. Conf. Evolutionary Computa-
tion (ICEC’96), 1996, pp. 670–675.

96 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

[98] S. Nolfi, D. Parisi, and J. L. Elman, “Learning and evolution in neural
networks,”Adaptive Behavior, vol. 3, no. 1, pp. 5–28, 1994.

[99] X. Yao, “Evolutionary artificial neural networks,”Int. J. Neural Syst.,
vol. 4, no. 3, pp. 203–222, 1993.

[100] D. Ackley and M. Littman, “Interactions between learning and evolu-
tion,” in Artificial Life II (SFI Studies in the Sciences of Complexity,
vol. X), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds.
Redwood City, CA: Addison-Wesley, 1992, pp. 487–509.

[101] D. C. Dennett,Darwin’s Dangerous Idea: Evolution and the Meanings
of Life. New York: Simon & Schuster, 1995.

[102] G. M. Werner and M. G. Dyer, “Evolution of communication in
artificial organizms,” inArtificial Life II (SFI Studies in the Sciences
of Complexity, vol. X), C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, Eds. Redwood City, CA: Addison-Wesley, 1992, pp.
659–687.

[103] B. MacLennan, “Synthetic ethology: An approach to the study of
communication,” inArtificial Life II (SFI Studies in the Sciences of
Complexity, vol. X), C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, Eds. Redwood City, CA: Addison-Wesley, 1992, pp.
631–658

[104] L. Steels, “A self-organizing spatial vocabulary,”Artificial Life, vol. 2,
no. 3, pp. 319–332, 1995.

[105] G. M. Edelman,Neural Darwinism: The Theory of Neuronal Group
Selection. New York: Basic Books, 1987.

[106] S. R. Quartz and T. J. Sejnowski, “The neural basis of cognitive devel-
opment: A constructivism manifesto,”Behavioral and Brain Sciences,
submitted for publication.

[107] H. de Garis, “‘Cam-Brain’ ATR’s billion neuron artificial brain project:
A three year progress report,” inProc. IEEE Third Int. Conf. Evolution-
ary Computation (ICEC’96), 1996, pp. 886–891.

[108] F. Gers and H. de Garis, “CAM-Brain: A new model for ATR’s
cellular automata based artificial brain project,” inProc. 1st Int. Conf.
Evolvable Systems: From Biology to Hardware (ICES96)(Lecture Notes
in Computer Science). Heidelberg: Springer-Verlag, 1997.

[109] A. Roy, S. Govil, and R. Mirand, “A neural network learning theory
and a polynomial time RBF algorithm,”IEEE Trans. Neural Networks,
to be published.

[110] J. D. Farmer and A. d’A. Belin, “Artificial life: The coming evolution,”
in Artificial Life II (SFI Studies in the Sciences of Complexity, vol.
X), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds.
Redwood City, CA: Addison-Wesley, 1992, pp. 815–840.

[111] D. G. Stork, B. Jackson, and S. Walker, “Non-optimality via pre-
adaptation in simple neural systems,” inArtificial Life II (SFI Studies
in the Sciences of Complexity, vol. X), C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, Eds. Redwood City, CA: Addison-Wesley,
1992, pp. 409–42.

[112] A. S. Wu and R. K. Lindsay, “Empirical studies of the genetic algorithm
with noncoding segments,”Evolutionary Computation, vol. 3, no. 2, pp.
121–147, 1995.

[113] T. Cavalier-Smith,The Evolution of Genome Size. Chichester, UK:
Wiley, 1985.

[114] J. Maynard Smith and E. Szathmáry,The Major Transitions in Evolution.
Oxford: Freeman, 1995.

Moshe Sipper (S’87–M’95) received the B.A. de-
gree in computer science from the Technion–Israel
Institute of Technology, Israel, and the M.Sc. and
Ph.D. degrees from Tel Aviv University, Israel.

He is a Senior Researcher in the Logic Systems
Laboratory at the Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland. His chief interests
involve the application of biological principles to ar-
tificial systems, including evolutionary computation,
cellular automata (with an emphasis on evolving
cellular machines), bio-inspired systems, evolving

hardware, complex adaptive systems, artificial life, and neural networks. He
has authored and co-authored several scientific papers in these areas, as well
as his recent bookEvolution of Parallel Cellular Machines: The Cellular
Programming Approach(Heidelberg: Springer-Verlag, 1997).

Dr. Sipper was co-organizer of a special session entitled “Toward Evol-
ware,” held as part of the IEEE International Conference on Evolutionary
Computation (ICEC’97) and is Program Chairman of the Second International
Conference on Evolvable Systems: From Biology to Hardware (ICES98), to
be held in Lausanne in September 1998.

Eduardo Sanchez (M’84) received the diploma
in electrical engineering from the Universidad del
Valle, Cali, Colombia, in 1975 and the Ph.D. degree
from the Swiss Federal Institute of Technology,
Lausanne, Switzerland, in 1985.

He is Professor of Computer Science in the Logic
Systems Laboratory at the Swiss Federal Institute
of Technology, where he is engaged in teaching
and research. His chief interests include computer
architecture, VLIW processors, reconfigurable logic,
and evolvable hardware.

Dr. Sanchez was co-organizer of the inaugural workshop in the field of
bio-inspired hardware systems, the proceedings of which are entitledToward
Evolvable Hardware(Heidelberg: Springer-Verlag, 1996).

Daniel Mange (S’68–M’69) received the M.S. and
Ph.D. degrees from the Swiss Federal Institute of
Technology, Lausanne, Switzerland.

Since 1969, he has been a Professor at the Swiss
Federal Institute of Technology. He held a position
as Visiting Professor at the Center for Reliable
Computing, Stanford University, Stanford, CA, in
1987. He is Director of the Logic Systems Labora-
tory, and his chief interests include firmware theory
(equivalence and transformation between hardwired
systems and programs), cellular automata, artificial

life, and embryonics (embryonic electronics). He has authored and co-authored
several scientific papers in these areas, as well as the bookMicroprogrammed
Systems: An Introduction to Firmware Theory(London: Chapman & Hall,
1992).

Dr. Mange was Program Co-chairman of the First International Conference
on Evolvable Systems: From Biology to Hardware (ICES96), held in Tsukuba,
Japan, and is General Chairman of the Second International Conference on
Evolvable Systems: From Biology to Hardware (ICES98), to be held in
Lausanne in September 1998.

Marco Tomassini received the diploma in chem-
istry and physics from the Colegio Nacional Agustin
Alvarez, Mendoza, Argentina, and the D.Sc. degree
in theoretical chemistry from the University of Pe-
rugia, Italy.

He is Professor of Computer Science at the Uni-
versity of Lausanne and a Senior Researcher in
the Logic Systems Laboratory at the Swiss Fed-
eral Institute of Technology, Lausanne, Switzerland.
After completing his studies he conducted research
in computational solid state physics and chemistry.

During the past decade his interests have centered on parallel and distributed
computing, bio-inspired systems, and modeling of physical and economical
phenomena.

Dr. Tomassini was organizer of the Sixth Joint EPS-APS International
Conference on Physics Computing and co-organizer of the inaugural workshop
in the field of bio-inspired hardware systems, the proceedings of which are
entitledToward Evolvable Hardware(Heidelberg: Springer-Verlag, 1996).

SIPPERet al.: VIEW OF BIO-INSPIRED HARDWARE SYSTEMS 97

Andr és Ṕerez-Uribe received the diploma in elec-
trical engineering from Universidad del Valle, Cali,
Colombia, in 1993. From 1994 to 1996 he held
a Swiss government fellowship and is currently a
Ph.D. candidate in the Department of Computer
Science at the Swiss Federal Institute of Technology
in Lausanne.

Since 1994 he has been with the Logic Systems
Laboratory, Swiss Federal Institute of Technology,
working on the digital implementation of neural
networks with adaptable topologies, in collaboration

with the Centre Suisse d’Electronique et de Microtechnique SA (CSEM).
His research interests include neural networks, field-programmable devices,
neurocontrollers, and bio-inspired systems.

Andr é Stauffer (S’68–M’69) received the diploma
in electrical engineering and the Ph.D. degree from
the Swiss Federal Institute of Technology, Lau-
sanne, Switzerland.

He is a Senior Lecturer in the Department of
Computer Science at the Swiss Federal Institute
of Technology. He spent one year as a Visiting
Scientist at the IBM T. J. Watson Research Center
in Yorktown Heights, NY. He also collaborates with
the Centre Suisse d’Electronique et de Microtech-
nique SA in Neuchˆatel, Switzerland. In addition to

digital design, his research interests include circuit reconfiguration and bio-
inspired systems.

Dr. Stauffer was co-organizer of a special session entitled “Toward Evol-
ware,” held as part of the IEEE International Conference on Evolutionary
Computation (ICEC’97).

