
International Journal of Modern Physics C, Vol.
@ World Scientific Publishing Company

STUDYING PROBABILISTIC FAULTS IN EVOLVED
NON-UNIFORM CELLULAR AUTOMATA

MOSHE SIPPER
Logic S,.tem, Labomtof'J, SaIiI, Fedeml In,tit_te 01 7'ecl&nology

IN-Ecublenl, CH-I015 La",anne, SVlitzerland
E-mail: Mo,he.SipperOdi.epji.ch

MARCO TOMASSINI
Logic S,,'etn$ Laborurory, SVIt" Federul In"i'u'e 01 TecAnology, and

In,titute 01 Compute,. Science, Unive,.,it, 01 Lau'4nne
E-mlJil: M4n:o. TomIJI,iniOdi.ep)l.ch

OLIVIER BEURET
Logic S"tem, Laboratorr, Swi" Federal Inltitute of Technology

IN.Ecublenl, CH-I015 La.,onne, Switzerland
E-mail: Olifter.Be.~tOdi.e,fl.ch

We study the effects of random faults on the behavior of one-dimensional, non-uniform
cellular automata (CA), where the local update rule need not be identical for all grid
sites. The CA systems examined were obtained via an approach known as cellular
programming, which involves the evolution of non-uniform CAs to perform non-trivial
computational tasks. Using the "system replicas" methodology, involving a comparison
between a perfect, non-perturbed version of the CA and a faulty one, we find that our
evolved systems exhibit graceful degradation in performance, able to tolerate a certain
leveloffaults. We then "zoom" into the fault-tolerant zone, where "good" computational
behavior is exhibited, introducing measures to fine-tune our understanding of the faulty
CAs' operation. We study the error level as a function of time and space, as well as the
recuperation time needed to recover from faults. Our investigation reveals an intricate
interplay between temporal and spatial factors, with the presence of different rules in
the grid giving rise to complex dynamics. Studies along this line may have applications
to future computing systems that will contain thousands or even millions of computing
elements, rendering crucial the issue of resilience.

KeJUlonl,; Non-Uniform Cellular Automata; Cellular Programming; Fault Tolerance;

Damage Spreading.

1. Introduction
Cellular automata (CA) are discrete dynamical systems containing a finite or infi-
nite number of simple components that interact locally.l,2 Each component can be
considered a lattice site in a low-dimensional grid space having only a finite number

7, No.6 (1996) 92&-939

Received 31 October 1996
ReYi8ed 6 Navember 1996

923

Draf
t

924 M. Sipper, M. Tomuri"i, tJ O. Be.~t

of possible states. In synchronous, uniform CAs the values of all the sites in the grid
are updated simultaneously at each discrete time step according to a given identical
rule that depends on the state of the site itself and on that of a small number of
neighboring lattice points. Non-uniform CAs can also be considered in which the
local update rule need not be identical for all grid sites.3-6

Though simple in their definition and elementary components, some CAs have
been shown to be capable of complex global behavior, even in one dimension, includ-
ing chaotic phenomena and universal computation.6,7 CAs have been widely used
in the past to model natural and social phenomena and as computing machines
in domains where global behavior arises from local interactions, e.g., for low-level

image processing.8,9
CAs are massively parallel systems amenable to hardware implementation due to

the simplicity of basic components (cells) as well as the local cellular connectivity.
Most classical software and hardware systems, especially parallel ones, exhibit a
very low level of fault-tolerance, i.e., they are not resilient in the face of errors;
indeed, where software is concerned, even a single error can often bring an entire
program to a grinding halt. Future computing systems may contain thousands or
even millions of computing elements (e.g., Ref. 10). For such large numbers of
components, the issue of resilience can no longer be ignored since faults will be
likely to occur with high probability. Networks of automata exhibit in principle
some fault-tolerance. As an example one can cite artificial neural networks, many
of which show graceful degradation in performance when presented with noisy input;
furthermore, the malfunction of a neuron or damage to a synaptic weight causes
but a small change in the system's overall behavior, rather than bringing it to a
complete standstill. Cellular computing systems, such as CAs, may thus be seen
as a simple and convenient framework within which to study the effects of such
errors.

In this paper we study the effects of random faults on the behavior of one-
dimensional CAs that perform given computational tasks. The CA systems exam-
ined were obtained via an approach known as cellular programming, which involves
the evolution of non-uniform CAs to perform non-trivial computational tasks.11-16
In particular, we are interested in the systems' behavior as a function of the error
level; we wish to learn whether there exist error-rate regions in which the automata
can be considered to perform their task in an "acceptable" manner. Moreover, the
amount and speed of recovery after the appearance of a fault is quantified and mea-
sured. We also observe how disturbances spread throughout the system to learn
under what conditions the perturbation remains limited and does not propagate to
the entire system.

In the next section related fault studies in cellular systems are briefly reviewed,
followed by a section describing our CA systems and the computational mea-
sures employed. We then present the results obtained, ending with concluding
remarks.

Stadyin9 Probabilutic Fa.l" in Evolved Non.Unifonn Cellular A.tomato 925

2. Previous Work on Faults and Damage in Lattice Models

The question of how errors spread and propagate in cooperative systems has been
studied in a variety of fields. Given the difficulty of creating analytical models for
but the simplest systems, most investigations have been conducted by computer
simulation, especially in the &.rea of statistical physics of many-body systems. One
system that has received much attention is Kauft'tnan's model, which consists of a
non-uniform CA with irregular connectivity in which each cell (lattice site) follows
a transition rule that is a random boolean function of the state of its neighbors; the
rules as well as the connections between cells are randomly selected at the outset and
then remain fixed throughout the system's run.I7 The system has been observed to
converge toward limit cycles; it can be perturbed by "mutations," which are random
changes of rules. Staufl'er18 and other researchers have studied the spreading of
damage on various kinds of two-dimensional lattices as a function of the probability
p of mutating rules within the grid. Critical values of p have been found at which
a phase transition seems to occur; above the critical p the damage spreads to the
entire lattice, while below it the system is stable with respect to damage spreading.

Another well-known system in which the time evolution of damage has been
investigated is the Ising ferromagnet and related spin systems. In these "thermal
systems" transition probabilities are a function of the temperature. Reference 19
employed Monte Carlo simulations using Metropolis dynamics, finding that there
exists a critical temperature Tc, above which (i.e., at high temperatures) an initial
damage at a few sites spreads rapidly to the entire system, while below T c the
damage eventually dissipates. Some apparent inconsistencies in this work, due to
the use of different transition probability functions, have been resolved in Ref. 20.

The general objective of the kind of research summarized above is the study of
the temporal limit behavior of the system as a function of some parameter, such
as the probability of fault or the thermal noise. For some systems critical behavior
has been shown to occur and in some cases critical exponents were computationally
determined. A recent review of damage dynamics in collective systems from the
point of view of computational physics can be found in Ref. 21.

3. Computational Tasks and Probabilistic Faults in Cellular Automata

Although the simulation methodology is similar, the main difference between the
studies described in the previous section and the work presented herein stems from
the fact that we focus on CAs that perform a specified computational task, rather
than on the long-teml dynamics of a physical system under given constraints. From
our computational point of view, what is important is the way in which the task
perfonnance is affected when the system is perturbed.

Programming a CA to execute a given task or to simulate a certain physi-
cal system is in general a difficult endeavor. This results from the local dynam-
ics of the system, which renders the design of local interaction rules to perform
global computational tasks extremely arduous. Normally the correspondence, or

926 M. Sipper, M. To",u..ni, & O. Be.ret

approximate correspondence, between CA rules and the desired global dynamics
has to be found by ingenuity or trial and error. Recently, an alternative approach
has been suggested, which consists of applying a process of artificial evolution to
"search" for the CA rules necessary to implement a prespecified task.11-16,22-24

The details of these methods can be found in the cited references, the general
idea being as follows: one starts with a population of arbitrary, randomly-assigned
rules that are evaluated according to the quality, or fitness, of the corresponding
CA on the task at hand. Rules that perform better are selected and recombined,
random mutations being occasionally applied to maintain population diversity. This
evolutionary process may eventually converge toward rules that are "good enough,"
if not optimal (for recent general reviews on artificial evolution, the reader is referred
to Refs. 25-27). The advantage of this methodology is that little design work is
needed since the evolutionary process automatically finds suitable rules. To date,
several CAs have been evolved to perform diverse computational tasks, including
random number generation14,15 and image processing.2s,29 Two different algorithms
have been used to evolve CAs. The standard genetic algorithm used by Ref. 23
gives rise to uniform CAs, whereas the algorithm of Ref. 11, known as cellular
programming, involves non-uniform ones. The latter was found to produce quasi-
uniform systems, meaning that only a few distinct rules exist in the grid upon
termination of the evolutionary process.

We next introduce the CAs that are the subject of our study. We concentrate
on one--dimensional, non-uniform CAs with two possible states per cell (denoted 0,
1), and connectivity radius r = 1, meaning that each cell is connected only to its
immediate left and right neighbors. Spatially periodic boundary conditions are used,
resulting in a circular grid. We have applied the cellular progr~!!1ming evolutionary
algorithm to evolve such CAs to perform a number of computational tasks, two of
which shall be considered herein, density and synchronization. The one--dimensional
density task is to decide whether or not the initial conftgurationa contains more than
50% Is, relaxing to a fixed-point pattern of all Is if the initial density of Is exceeds
0.5, and all Os otherwise. In the one--dimensional synchronization task the CA,
given any initial configuration, must reach a final configuration, within M time
steps, that oscillates between all Os and all Is on successive time steps. It should
be emphasized that both tasks comprise non-trivial computational problems for a
small radius CA (r <: N, where N is the grid size), since a global configuration
is to be attained in a locally-connected structure, thereby necessitating some form
of global information propagation (e.g., via emergent computation).23,24 Note that
the density task cannot be perfectly solved by a uniform, two-state CA, as proven
in Ref. 30.b

aThe term "configuration" refers to an asaignment of states to cells in the grid.
bThis result applies to the above statement of the problem, where the CA 's final pattern (i.e.,
output) is specified as a fixed-point configuration. Interestingly, it has recently been proven that
by changing the output specification, namely the final pattern toward which the system should
converge, a two-state, r = 1 uniform CA exists that can perfectly solve the density problem.31

Studying Probabili,tic Faultl in EtIOlved Non-Unilonn Cellular Automata 927

We used cellular programming to evolve non-uniform CAs to perform these
tasks, attajning high performance for the density task, and perfect performance for
the synchronization task.c The operation of non-uniform CAs that were evolved to
perform these tasks is shown in Fig. I.d

The above CAs evolvee in time according to prescribed (evolved) detenninistic
rules; however, noise can be introduced into CA rules, thereby rendering them non-
deterministic. For example, for a two-state CA, at each time step the value that
is the output of a given deterministic rule can be reversed with probability PI,
denoted the fault probability, each site being treated independently of the others
(Fig. 1). Thus, a cell updates its state in a non-deterministic manner, setting
it at the next time step to that specified in the rule table, with probability 1 -
PI, or the complementary state, with probability PI. This definition of noise will
be used in what follows since it reasonably models the functioning of a multi-
component machine in which the computing elements are subject to stochastic
transient faults. Other kinds of perturbations are possible, such as sites becoming
unavailable ("permanent damage") or switching to another rule for a long, possibly
indefinite, period of time. It is also possible to consider the flipping of site states,
either single sites or clusters of sites. Moreover, each site may be updated at each
time step according to one rule with probability P and according to a second rule
with probability 1-p.3 The perturbed Kauffman automata,18 in which a site selects
its rule probabilistical1y, to be then subjected to random mutations, is an example
similar to ours.

The simulation methodology is based on the concept of "system replicas.,,21,32,33
Two systems run in parallel, the original unperturbed one (PI = 0), and a second
system subjected to a non-zero probability of error (PI> 0). Both systems start
with the same initial configuration at time t = 0, after which their temporal behavior
is monitored and the Hamming distance between the two configurations at each time
step is recorded.f This provides us with insight into the faulty CA's behavior, by
measuring the amount by which it diverges from a "perfect" computation. Our
studies are stochastic in nature, involving a number of measures which are obtajned
experimentally, averaged over a large number of initial configurations.

CThe different performance measures ueed, as well as the preciBe results obtained, are delineated,
e.g., in Refs. 11 and 12. Essentially, perfonnance concerns the percentage of input configurations,
over a large random sample, for which a correct response is attained, as well as the number of
time steps until convergence to the correct final pattern. The "perfect perfonnance" attained for
the synchronization task is meant in a stochastic sense since we cannot exhaustively test all 2N
possible initial configurations nor are we in possession to date of a formal proof; nonetheless, we
have tsted our best-performance CAs on numerous configurations, for all of which synchronization
was attained.
dThe CAs discussed in this paper are fully specified in the Appendix.
eNote that we use the term 'evolve' in two distinct ways, the first referring to the artificial evolution
of CA rules, while the second refers to a CA's evolution in time. This is done in order to conform
with existing terminology; the appropriate meaning can be determined from the context..
fThe Hamming distance between two configurations is the number of bits by which they differ.

928 M. Sipper, M. Tom...i"i, fj O. B~t

Fig. 1. The operation of evolved, non-unifonn, r = 1 CAs. Grid size is N = 149. White squares
represent cells in state 0, black squares represent cells in state 1. The pattern of configurations is
shown for the first 200 time steps, with time increasing down the page. The initial configurations
were generated by randomly setting the state of each grid cell to 0 or 1 with unifonn probability.
(a) A CA that was evolved to perfonn the density task. The operation of a "perfect" system is
shown, i.e., with fault probability PI = O. Initial density of Is > 0.5. (b) A CA that was evolved
to perfonn the synchronization task. PI = O. (c) The CA of (b) is run with PI = 0.0001. (d) The
CA of (b) is run with PI = 0.001.

Studying Probabilutic Fault6 in Etloltled Non-Unifonn Cellular Automata 929

The non-uniform CAs studied are ones that have evolved via cellular program-
ming to perform either the density or sYnchronization tasks, with our fault-tolerance
investigation picking up upon termination of the evolutionary process. Figures 1 (C)
and l(d) depict the operation of an evolved, non-uniform CA on the synchronization
task for two different non-zero PI values.

4. Results

Figure 2 depicts the average Hamming distance as a function of the fault probability
PI' We note that the curve is sigmoid-shaped, exhibiting three observable regions:
a slow-rising slope (PI ~ 0.(xx)5) , followed by a sharp one (0.(xx)5 < PI ~ 0.01),
ending with an attenuated slope (PI> 0.01); this latter region exhibits an ex-
tremely large Hamming distance, signifying an unacceptable level of computational
error. The most important result concerns the first (left-hand) region, which can be
considered the fault-tolerant zone, where the faulty CA operates in a near-perfect
manner. This demonstrates that our evolved CAs exhibit "graceful degradation"
in the face of errors. We also note that there is no essential difference between
the two tasks, density and synchronization, except for the higher error level in the
"unacceptable" zone attained by the density CAs. These simulations (as well as
the rest reported in this section) were repeated several times, obt8ining virtually
identical results.

Fig. 2. Average Hamming distance versus fault probability PI' Five CAs were studied - two that

were evolved to perform the density task, and three that were evolved to perform the synchroniza-
tion task. Grid size is N = 149. For each PI value the CA under test was run on 1000 randomly
generated initial configurations for 300 time steps. At each time step the Hamming distance be-
tween the "perfect" CA and the faulty one is recorded. The average over all configurations and
all time steps is represented as a point in the graph.

930 AI. Sipper. AI. Tom "i, tJ O. BnNt

The above measure furnishes us with our first glimpse into the workings of the
faulty CAs, demonstrating an important global characteristic, namely their ability
to t~rate a certain level of faults. We now wish to "zoom" into the fault-tolerant
woe, where "good" computational behavior is exhibited, introducing measures to
fine-tune our understanding of the faulty CAs' operation. In what follows we shall
concentrate on one task, synchronization, due to the improved evolved performance
results in comparison to the density task, obtained for the deterministic versions of
the CAs (see previous section).g We now wish to study the propagation of errors in
time; toward this end we examine the Hamming distance between the perfect and
faulty versions, as a function of time (step). Our results are depicted in Fig. 3. We
note that while Hamming distance is limited within the region suggested by Fig. 2,
there are differences between the CAs. M~t notable is the high error rate attained
by CA 2 in the last 100 time steps.

Further investigation revealed that this is due to critical zones. These are specific
rules or rule blocks (i.e., blocks of cells containing the same rule) that cause an
"avalanche" of error spreading, which may eventually encompass the entire system,
as demonstrated in Fig. 4. Figure 4(a) shows that the CA's error rate peaks around
cell 00, which is at the border of rule blocks (see Appendix). Indeed, when this cell is
perturbed (Fig. 4(b», the error may eventually spread to the entire system, resulting
in the diminished performance in later time steps, evident in Fig. 3. Interestingly,
this CA has the lowest error rate for the initial part of the computation (Fig. 3).
CA 3 exhibits the opposite time behavior, starting with a higher error rate, which
increases, however, more slowly (Fig. 3). Figure 5(a) shows that this CA exhibits
an error peak at the proximity of cell 00, a much sharper one than that of CA 2,
resulting in error containment. Again, cell 00 is at the border of two rule blocks (see
Appendix). Figure 5(a) exhibits a minimum at cell 16, which is also a border cell
(between rule blocks), demonstrating that such border rules may act in the opposite
manner, "stifting" error spreading rather than enhancing it. CA 1 consists of two
major rule blocks, exhibiting different error dispersion behavior, as demonstrated in
Fig. 6. Thus, by introducing time and space measures, we have shown that although
all three CAs are within the fault-tolerant zone, their behavior is quite different.

The final issue we consider is that of recupemtion time. Since our CAs are in
effect computational systems, we wish to learn not only whether they recover from
faults but also how long this takes. Toward this end we introduced the following
measure: the CA of size N = 149 is run for 600 time steps with a given fault

probability PI' H the Hamming distance between the perfect and faulty versions
passes a certain threshold, which we have set to O.O5N bits, at time tl, and then
falls below this threshold at time t2, staying below for at least three time steps,
then recuperation time is defined as t2 - tl. Note that such "windows" of faulty

INote that applying the performance meuures mentioned in the previous section to the deter-
ministic versions of the three evolved synchronization CAs discussed herein revealed no differences
between them.

$Y!d_Jz-..1 -
~2 SV,d..IMD8IkIn 3 --

~

~

0 . 18 - - - -~

I
r
f

"'d , 1 -
"'d~' 2-
SYtIt,;~...3r ';c.

r 3
.c,

r 2

1

0 ~ 1. 1S1 81-..
(b)

Fig. 3. Hamming ~ce as a function of time for three CAs that were evolved to perform the
synchronization task. Grid size is N = 149. Each CA is run on 1000 random initial configurations
for 300 time steps; the Hamming distance per time step is averaged over these configurations.
(a) PI = 0.00005. (b) PI = 0.0001.

behavior may occur more than once during the CA's run (i.e., during the 000 time
steps); also note that t2 may equal 600 if the CA never recovers. Simply put, this
measure indicates the proportional amount of time that the CA is within a window
of unacceptable error level. Our results are depicted in Fig. 7. For PI < 0.0001

~

Ioi.

St.dring Probabilutic Fa"lt, in Evohled Non-Uniform Cellular Automata 931

(a.)

932 M. Sipper, M. Tomulini, tJ O. B~

Fig. 4. Synchronization CA 2: Critical zones. (a) Hamming distance per cell (averaged over 1000
random initial configurations, each run for 300 time steps). Note the peak around cell 60 (the
leftmost cell is numbered 0). (b) Perturbing this cell causes an "avalanche" of error spreading.
The figure depicts the operation of the CA upon p~Dtation of a random initial configuration;
after approximately 200 time steps cell 60's state is ftipped. This cell is situated at the border of
rule blocks (see Appendix). PI = 0.0001 for both (a) and (b). Grid size is N = 149.

Fig. 5. Synchronization CA 3. (a) Hamming distance per cell (averaged over 1000 random initial
configurations, each run for 300 time steps). Note the peak around cell 90, much sharper than that
of Fig. 4. (b) Perturbing this cell does not cause an "avalanche" and the error remains contained.
This results in a lower Hamming distance as function of time (Fig. 3). The figure depicts the
operation of the CA upon presentation of a random initial configuration; after approximately 200
time steps cell 90's state is flipped. This cell is situated at the border of rule blocks (see Appendix).
PI = 0.0001 for both (a) and (b). Grid size is N = 149.

Stuciping ProbGbilutic Fault. in Etloltleci N Oft'- Uniform Cellula,. Automata 933

934 M. Sjpper, M. Tom...mi, 6 O. B-t

Fig. 6. Synchronization CA 1. (a) Hanuning distance per cell (averaged over 1000 random initial
configurations, each run for 300 time steps). Two major rule blocks are present, each exhibiting a
different error dispersion behavior, the highest error level being that of the "middle" block (note
that the left and right blocks contain the same rule, as can be seen in the Appendix, and therefore
constitute one block due to the grid's circularity). (b) Three cells are perturbed, in different parts
of the grid (cells 20, 70, 120). The error introduced in the middle block propagates, whereas the
other two are immediately stifled. The figure depicts the operation of the CA upon presentation
of a random initial configuration; after approximately 200 time steps the states of the above three
cells are flipped. PI = 0.0001 for both (a) and (b). Grid size is N = 149.

i

I

Fig. 7. Recuperation time as a function of fault probability P f . Each of the three evolved CAs
was run on 1000 random initial configurations for 600 time steps. Average results are depicted ~
the graph. Grid size is N = 149.

recuperation time is quite short for all three CAs, however, above this fault level,
CA 3 exhibits notably higher recuperation time than the other two. It is interesting
in that this CA has the lowest error level over time (Fig. 3).h Thus, it is more
robust to errors in general, however, certain faults may cause severe problems in
terms of recuperation time. This result, along with the others obtained above,
demonstrates the intricate interplay between temporal and spatial factors in our
evolved non-uniform CAs.

5. Concluding Remarks

We studied the effects of random faults on the behavior of one-dimensional, non-
uniform CAs that perform given computational tasks. The CA systems examined
were obtained by an artificial evolution approach, known as cellular programming.
Using the "system replicas" methodology, involving a comparison between a perfect,
non-perturbed version of the CA and a faulty one, we found that our evolved systems
exhibit graceful degradation in performance, able to tolerate a certain level of faults.
We then zoomed into the fault-tolerant zone, where "good" computational behavior
is exhibited, introducing measures to fine-tune our understanding of the faulty CAs'
operation. We studied the error level as a function of time and space, as well as the
recuperation time needed to recover from faults.

bThough Fig. 3 shows results for PI $ 0.0001, we have verified that the same qualitative behavior
is exhibited for PI > 0.0001.

Studying Probabili$tic Faul" in Evolved Non-Unifonn Cellular Automata 935

:

" I::!

$IrF~..~~ 1 - .:"I.._~. 2 - I
. sy".j.0I~. 3 ;/1

:i " eo. "
.!: '. ,,'.1

0' ;: -,.:! :,. Co ;

,.. 0..,

936 M. Sipper, M. T~-..i- t; O. Bnnt

Our study of evolved non-uniform CAs performing computational tasks revealed
an intricate interplay between temporal and spatial factors, with the presence of
different rules in the grid giving rise to complex dynamics. Clearly we have only
taken the first step, and there is much yet to be explored. Other types of measures
can be considered, such as fault behavior as a function of grid size, permanent faults
along with their effects with respect to the rules distribution within the grid, and
"total damage time," i.e., the time required for all sites to be damaged at least once.
Another interesting issue involves the introduction of faults during the evolutionary
process itself to see how well evolution copes with such non-deterministic CAs.
Future computing systems may contain thousands or even millions of computing
elements; for such large numbers of components, the issue of resilience can no longer
be ignored since faults will be likely to occur with high probability.

Evolving cellular systems hold potential both scientifically, as vehicles for study-
ing phenomena of interest in the domain of complex adaptive systems, as well as
practically, showing a range of potential future applications ensuing the construc-
tion of adaptive systems. We hope this paper has shed some light on the behavior
of such systems under faulty conditions.

Appendix. Specification of the Evolved Non-Uniform CAs

This appendix specifies the five non-uniform, r = 1 CAs discussed in the paper,
evolved via cellular programming. The listing includes the rule found in each cell,
where rule numbers are given in accordance with Wolfram's convention,33 repre-
senting the decimal equivalent of the binary number encoding the rule table. All
grid sizes are N = 149. Cell 0 is the leftmost cell.

Studying Probabilistic Fault. in EtJoltJeIl Non-Uniform CeU.lar Automata 937

Synch. 1:

Synch. 2:

Syncl1. 3:

References

1. S, Wolfram, "Universality and complexity in cellular automata," PhY.9ica DID, 1
(1984).
T. Toffoli and N. Margolus, Cellular Automata Machines (The MIT Press, Cambridge,
Massachusetts, 1987).
G. Y. Vichniac, P. Tamayo, and H. Hartman, "Annealed and quenched inhomogeneous
cellular automata," Journal of Statistical PhY.9iC.9 45, 875 (1986).
H. Hartman and G. Y. Vichniac, "Inhomogeneous cellular automata," in DUordered
System.9 and Biological Organization, eds. E. Bienenstock, F. Fogelman, and G. Weis-
buch (Springer-Verlag, Berlin, 1986), pp. 53-57.
M. Sippel, "Non-uniform cellular automata: Evolution in rule space and formation of
complex structures," in Artificial Life IV, eds. R. A. Brooks and P. Maes, (The MIT
Press, Cambridge, Massachusetts, 1994), pp. 394-399.
S. Wolfram, Cellular Automata and Complezity (Addison-Wesley, 1994).
K. Lindgren and M. G. Nordahl, "Universal computation in simple one-dimensional
cellular automata," Complex SY.9tem.9 4, 299 (1990).
K. Preston, Jr. and M. J. B. Duff, Modem Cellular Automata: Theory and Applications
(Plenum Press, New York, 1984).

2.

3.

4.

5.

6.
7.

8.

~ cell To eeu Rule

0,. 226
40 40 234
41 71 226
72 72 234

'13 142 226
143 144 224
145 148 226.,

Ft-. ~ ~ cell ...

0 32 31
33 105 83

106 106, ~~.,
107 148 31

Density 1;

c~ eeI1 TotleO RMIe
,

0 101 226

107 108 214

109 181 226

132 112 .284
133 148 226 '

Density 2:

C' 'I.

From ceO To cen Rule

I 0 . c U '13'

18 Ie Sf~.
.. '17 ' 29 ,St"

'30 t8t a'"
90 100 ~.' , '" ';', 'PI .,):01 ", :1..,c

"t ,
102 148 sa

938 M. Sipper, M. Tom...;.;, 6' O. B8WJet

9. A. Broggi, V. D'Andrea, and G. Destri, "Cellular automata as a computational model
for low-level vision," International Journal of Modem Physics ~, 5 (1993).

10. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation
(John Wiley, New York, 1992).

11. M. Sipper, "Co-evolving non-uniform cellular automata to perform computations,"
Physica D92, 193 (1996).

12. M. Sipper and E. Ruppin, "Co-evolving architectures for cellular machines," Physica
D, 1996 (to appear).

13. M. Sipper and E. Ruppin, "Co-evolving cellular architectures by cellular program-
ming," in Proceedings of IEEE Third International Conference on E1Jolutionary
Computation, ICEC'96 (1996), pp. 306-311.

14. M. Sipper and M. Tomassini, "Co-evolving parallel random number generators," in
H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (editors), PanJllel Problem
Soltling from Nature - PPSN IV, volume 1141 of Lecture Notes in Computer Science

(Springer-Verlag, Heidelberg, 1996), pp. 950-959.
15. M. Sipper and M. Tomassini, "Generating parallel random number generators by

cellular programming," International Journal of Modem Physics CT, 181 (1996).
16. M. Sipper, "Evolving uniform and non-uniform cellular automata networks," to ap-

pear in Annual Retliews of Computational Physics, Volume V, ed. D. Stauffer (World
Scientific, 1997).

17. S. A. Kauffman, The Origins of Order (Oxford University Press, New York, 1993).
18. D. Stauffer, "Computer simulations of cellular automata," Journal of Physics A: Math-

ematical and GenenJl 24, 909 (1991).
19. H. E. Stanley, D. Stauffer, J. Kertesz, and H. J. Herrmann, "Dynamics of spreading

phenomena in two-dimensional Ising models," Physical Retliew Letters 59, 2326 (1987).
20. A. Coniglio, L. de Arcangelis, H. J. Herrmann, and N. Jan, "Exact relations

between damage spreading and thermodynamical properties," Europhysics Letters 8,
315 (1989).

21. N. Jan and L. de Arcangelis, "Computational aspects of damage spreading," in Annual
Retliews of Computational Physics, Volume I, ed. D. Stauffer (World Scientific, 1994),
pp. 1-16.

22. J. P. Crutchfield and M. Mitchell, "The evolution of emergent computation," in
Proceedings of the National Academy of Sciences USA 92, 10742 (1995).

23. M. Mitchell, J. P. Crutchfield, and P. T. Hraber, "Evolving cellular automata to
perform computations: Mechanisms and impediments," PhysiC4 DT5, 361 (1994).

24. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson, "Evolving globally syn-
chronized cellular automata," in Proceedings of the Sixth International Conference on
Genetic Algorithms, ed. L. J. Eshelman (Morgan Kaufmann, San Francisco, CA, 1995),
pp. 336-343.

25. M. Tomassini, "A survey of genetic algorithms," in Annual Retliews of Computational
Physics, Volume Ill, ed. D. Stauffer (World Scientific, 1995), pp. 87-118. Also available
as: Technical Report 95/137, Department of Computer Science, Swiss Federal Institute
of Technology, Lausanne, Switzerland, July, 1995.

26. M. Tomassini, "Evolutionary algorithms," in Towards E1Jol1Jable Hardware, Volume
1002 of Lecture Notes in Computer Science, eds. E. Sanchez and M. Tomassini
(Springer-Verlag, Berlin, 1996), pp. 19-47.

27. Z. Michalewicz, Genetic Algorithms + Data Structures = E1Jolution Programs, 3rd ed.
(Springer-Verlag, Berlin, 1996).

28. M. Sipper, "Designing evolware by cellular programming," to appear in Proceed-
ings of The First International Conference on E1Jol1Jable SY6tems: from Biology to

St.aying Probabilutic Faalt, in Evolved Non-Unijonn Celltllar Automata 939

Hamware (ICES96), Lecture Notes in Computer Science (Springer-Verlag, Heidelberg,
1996).
M. Sipper, "The evolution of parallel cellular machines: Toward evolware," BioSys-
terns, 1996 (to appear).
M. Land and R. K. Belew, "No perfect two-state cellular automata for density classi-

29.

30.

31.

32.

33.

fication exists," Phy,ical Retliew Letter, 14,5148 (1995).
M. S. Capcarrere, M. Sipper, and M. Tomassini, "A two-state, r = 1 cellular automa-
ton that classifies density," Phy,ical Retliew Letter" 1996 (to appear).
S. A. Kauffman, "Metabolic stability and epigenesis in randomly constructed genetic
nets," Journal of Theoretical Biology 22, 437 (1969).
S. Wolfram, "Statistical mechanics of cellular automata," Retliew, of Modem Phy,ics
55, 601 (1983).

