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Evolving Both Search and Strategy for Reversi Players using
Genetic Programming

Amit Benbassat and Moshe Sipper

Abstract—We present the application of genetic programming
to the zero-sum, deterministic, full-knowledge board game of
Reversi. Expanding on our previous work on evolving board-
state evaluation functions, we now evolve the search algorithm
as well, by allowing evolved programs control of game-tree
pruning. We use strongly typed genetic programming, explicitly
defined introns, and a selective directional crossover method.
We show that our system regularly churns out highly competent
players and our results prove easy to scale.

I. I NTRODUCTION

Developing players for board games has been part of
AI research for decades. Board games have precise, easily
formalized rules that render them easy to model in a pro-
gramming environment. In this work we will focus on full
knowledge, deterministic, zero-sum board games, expanding
on our previous work on Lose Checkers [2] and other
games [3, 4].

We apply tree-based Genetic Programming (GP) to evolv-
ing players for Reversi. Our guide in developing our algo-
rithm parameters, aside from previous research into games
and GP, is nature itself. Evolution by natural selection is first
and foremost nature’s algorithm, and as such will serve as a
source for ideas. Though it is by no means assured that an
idea that works in the natural world will work in our synthetic
environment, we see it as evidence that it is more likely
too. We are mindful of evolutionary theory, particularly as
pertaining to the gene-centered view of evolution. This view,
presented by Williams [27] and expanded on by Dawkins
[8], focuses on the gene as the unit of selection. It is from
this point of view that we consider how to adapt the ideas
borrowed from nature into our synthetic GP environment.

In much of the work on games the focus is on a single
game, the goal being to reach a high level of play. In such
research much effort goes into integrating domain-specific
expert knowledge into the system in order to get the best
possible player. For many games opening books of game-
specific strong opening moves are created offline and used
in order to give the player an edge over a less-prepared rival
[10]. In Checkers, a game with only two piece types, with the
number of pieces on the board tending to drop towards the
end, endgame databases are often used to allow the player
to “know” which moves lead to victory from numerous
precomputed positions [23, 24]. This trend culminated in the
construction of a database of all possible3.9 × 1013 game
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states in American Checkers that contain at most 10 pieces
on the board [24].

Conversely, our focus is on multi-game generality. Using
our game system, which we have demonstrated to be flexible
and easily applicable to multiple games, we choose to avoid
using both specialized techniques and expert domain knowl-
edge in favor of generic, easily transferable evolutionary
techniques.

II. REVERSI

Reversi, also known as Othello, is a popular game with
a rich research history [15, 18? , 19]. The most popular
Reversi variant is a board game played on an 8x8 board.
Reversi is a piece-placing game, meaning that moves are
made by placing a new piece on the board rather than by
moving existing pieces around as in games such as Chess
and Checkers. The players place their pieces on the board
in turns, attempting to capture and convert opponent pieces
by locking them between friendly pieces. In Reversi, the
number of pieces on the board increases during play, rather
than decrease as it does in Chess and Checkers. This fact
makes endgame databases all but useless for Reversi. On the
other hand, the number of moves (not counting the rare pass
moves) in Reversi is limited by the board’s size, making it
a short game. There is also 10x10 variant of Reversi, which
is quite popular. In this paper we focus on the 8x8 version.

III. R ELATED WORK

In the years since Strachey [26] first designed an American
Checkers-playing algorithm, there has been some work on
board game-playing computer programs. Notable progress
was made by Samuel [21, 22], who was the first to use
machine learning to create a competent Checkers-playing
computer program. Samuel’s program managed to beat a
competent human player in 1964. In 1989 a team of re-
searchers from the University of Alberta led by Jonathan
Schaeffer began working on an American Checkers program
called Chinook. By 1990 it was clear that Chinook’s level
of play was comparable to that of the best human players
when it won second place in the U.S. Checkers championship
without losing a single game. Chinook continued to grow in
strength, establishing its dominance [23].

Games attract considerable interest from AI researchers.
The field of evolutionary algorithms is no exception to this
rule. Over the years many games have been tackled with
the evolutionary approach. A GA with genomes representing
artificial neural networks (ANNs) was used in 1995 by Mo-
riarty and Miikkulainen [18] to attack the game of Reversi,



resulting in a competent player that employed sophisticated
mobility play. ANN-based American Checkers players were
evolved by Chellapilla and Fogel [5, 6] using a GA, their
long runs resulting in expert-level play. GP was used by
Azaria and Sipper [1] to evolve a strong Backgammon
player. GP research by Hauptman and Sipper produced both
competent players for Chess endgames [12] and an efficient
solver for the Mate-in-N problem in Chess [13]. In 2010
we provided evidence that good board evaluation functions
for Lose Checkers could indeed be evolved [2]. Gauci and
Stanley [9] used the HyperNEAT system to evolve artificial
neural networks that prune the search tree in an existing
Checkers playing algorithm called Cake, allowing it to search
deeper and outperform the regular version of Cake.

The 8x8 variant of Reversi has received its fair share
of research attention. Early landmark work by Rosenbloom
[19] yielded IAGO, an expert level Reversi program. Sub-
sequent work by Lee and Mahajan [15] greatly improved
on IAGO’s level of play by utilizing Bayesian learning
to improve the player’s evaluation function.? ] presented
Logistello, a strong Reversi player that achieved dominance
over world-class human opponents. The evolutionary ap-
proach was applied to Reversi by several researchers. A
genetic algorithm (GA) with genomes representing ANNs
was used in 1995 by Moriarty and Miikkulainen [18] to
tackle the game of Reversi, resulting in a competent player
that employed sophisticated mobility play. Chong et al. [7]
presented a program using shallow search with evolved feed-
forward ANNs encoded with board-spatial features as its
board evaluation function. In 2011 we expanded on our
previous work and evolved strong board evaluation functions
for 8x8 Reversi [3].

IV. EVOLUTIONARY SETUP

In our basic system the individuals in the population act as
board-evaluation functions, to be combined with a standard
game-search algorithm—in our case alpha-beta. The value
an individual returns for a given board state is seen as an
indication of how good that board state is for the player
whose turn it is to play. In this work we add another evolvable
feature, namely, search. A second evaluation function is
evolved, which at each internal node chooses the more-
promising child nodes for expansion and further evaluation,
and discards the rest.

The evolutionary algorithm was written in Java. We chose
to implement a strongly typed GP framework [17] supporting
a boolean type and a floating-point type. Support for a
multi-tree interface was also implemented. On top of the
basic crossover and mutation operators described by Koza
[14], another form of crossover was implemented—which
we designated “selective crossover”—as well as a local
mutation operator. The original setup is detailed in [2, 3].
Its main points along with recent updates and novel results
are detailed in this paper. To achieve good results on multiple
games using deeper search we enhanced our system with the
ability to run in parallel multiple threads.

TABLE I
BASIC TERMINAL NODES. F: FLOATING POINT, B: BOOLEAN.

Node name Return type Return value
ERC() F Ephemeral Random Constant
False() B Booleanfalse value
One() F 1
True() B Booleantrue value
Zero() F 0

TABLE II
DOMAIN -SPECIFIC TERMINAL NODES THAT DEAL WITH BOARD

CHARACTERISTICS.

Node name Type Return value
EnemeyManCount() F The enemy’s man count
FriendlyManCount() F The player’s man count
ManCount() F FriendlyManCount()

– EnemeyManCount()

Mobility() F
The number of plies available to
the player

FriendlyCornerCount() F
Number of corners in friendly con-
trol

EnemyCornerCount() F
Number of corners in enemy con-
trol

CornerCount() F
FriendlyCornerCount() –
EnemyCornerCount()

A. Basic Terminal Nodes

Several basic domain-independent terminal nodes were
implemented. These nodes are presented in Table I.

The ERC (Ephemeral Random Constant) returns a value
in the range[−5, 5) that is set at random when the node is
created.

B. Domain-Specific Terminal Nodes

The domain-specific terminal nodes are listed in two
tables: Table II shows nodes describing characteristics that
have to do with the board in its entirety, and Table III shows
nodes describing characteristics of a certain square on the
board.

A man-count terminal returns the number of men the re-
spective player has, or a difference between the two players’
man counts. The mobility node is an addition that greatly
increases the playing ability of the fitter individuals in the
population. This terminal allows individuals to more easily
adopt a mobility-based, game-state evaluation function.

The square-specific nodes all return boolean values. They
are very basic, and encapsulate no expert human knowledge
about the game. In general, one could say that all the domain-
specific nodes use little human knowledge about the game,
with the possible exception of the mobility terminal. This

TABLE III
DOMAIN -SPECIFIC TERMINAL NODES THAT DEAL WITH SQUARE

CHARACTERISTICS. THEY ALL RECEIVE TWO PARAMETERS—X AND

Y—THE ROW AND COLUMN OF THE SQUARE, RESPECTIVELY.

Node name Type Return value
IsEmptySquare(X,Y) B True iff square empty

IsFriendlyPiece(X,Y) B
True iff square occupied by
friendly piece

IsManPiece(X,Y) B True iff square occupied



TABLE IV
FUNCTION NODES. Fi : FLOATING-POINT PARAMETER, Bi : BOOLEAN

PARAMETER.

Node name Type Return value
AND(B1,B2) B Logical AND of parameters
LowerEqual(F1,F2) B True iff F1 ≤ F2

NAND(B1,B2) B Logical NAND of parameters
NOR(B1,B2) B Logical NOR of parameters
NOTG(B1,B2) B Logical NOT of B1
OR(B1,B2) B Logical OR of parameters
IfTrue(B1,F1,F2) F F1 if B1 is true andF2 otherwise
Minus(F1,F2) F F1 − F2

MultERC(F1) F
F1 multiplied by preset random
number

NullJ(F1,F2) F F1

Plus(F1,F2) F F1 + F2

goes against what has traditionally been done when GP is
applied to board games [1, 12, 13, 25]. This is partly due to
the difficulty in finding useful board attributes for evaluating
game states in some games (Benbassat and Sipper [2] deals
with a game that is a perfect example of this)—but there is
another, more fundamental, reason. Not introducing game-
specific knowledge into the domain-specific nodes means the
GP algorithm defined is itself not game specific, and thus
more flexible (it is worth noting that mobility is a universal
principle in playing board games, and therefore the mobility
terminal can be seen as not game-specific).

C. Function Nodes

Several basic domain-independent functions have been
defined. These are presented in Table IV. No domain-specific
functions were defined.

The functions implemented include logic functions, basic
arithmetic functions, one relational function, and one condi-
tional statement. The conditional expression renders natural
control flow possible and allows us to compare values and
return a value accordingly. In Figure 1 we see an example of
a GP tree containing a conditional expression. The subtree
depicted in the figure returns 0 if the friendly corners count
is less than double the number of enemy men on the board,
and the number of enemy men plus 3.4 otherwise.

Enemy

ManCount
Friendly

CornerCount

IFT

Zero
<=

MultERC[2.0]

Enemy

ManCount

+

ERC[3.4]

Fig. 1. Example of a subtree in our setup.

Fig. 2. One-way crossover: Subtree T2 in donor tree (left) replaces subtree
T4 in receiver tree (right). The donor tree remains unchanged.

D. Selective Crossover

One-way crossover, as opposed to the typical two-way
version, does not consist of two individuals swapping partsof
their genomes, but rather of one individual inserting a copyof
part of its genome into another individual, without receiving
any genetic information in return. This can be seen as akin to
an act of “aggression”, where one individual pushes its genes
upon another, as opposed to the generic two-way crossover
operators that are more cooperative in nature. In our case, the
one-way crossover is done by randomly selecting a subtree
in both participating individuals, and then inserting a copy
of the selected subtree from the first individual in place of
the selected subtree from the second individual. An example
is shown in Figure 2.

This type of crossover operator is uni-directional, with a
donor and a receiver of genetic material. This directionality
can be used to make one-way crossover more than a random
operator. In this work, the individual with higher fitness was
always chosen to act as the donor in one-way crossover.
This sort of nonrandom genetic operator favors the fitter
individuals as they have a better chance of surviving it. Algo-
rithm 1 shows the pseudocode representing how crossover is
handled in our system. As can be seen, one-way crossover is
expected to be chosen at least half the time, giving the fitter
individuals a survival advantage, but the fitter individuals
can still change due to the standard two-way crossover. The
algorithm can be seen as describing a new genetic operator,
which we dubselective crossover, since it exerts selective
pressure because less-fit individuals are more likely to receive
genetic information from fitter ones than vice versa.

Using the vantage point of the gene-centered view of
evolution it is easier to see the logic of crossover in our



Algorithm 1 Selective crossover.
Randomly choose two different previously unselected in-
dividuals from population for crossover:I1 andI2
if I1.F itness ≥ I2.F itness then

Perform one-way crossover withI1 as donor andI2 as
receiver

else
Perform two-way crossover withI1 andI2

end if

system. In a gene-centered world we look at genes as
competing with each other, the more effective ones out-
reproducing the rest. This, of course, should already happen
in a framework using the generic two-way crossover alone.
Using selective crossover, as we do, just strengthens this
trend. When selective crossover applies one-way crossover,
the donor individual pushes a copy of one of its genes into the
receiver’s genome at the expense of one of the receiver’s own
genes. The individuals with high fitness that are more likely
to get chosen as donors in one-way crossover are also more
likely to contain more good genes than the less-fit individuals
that get chosen as receivers. The selective crossover operator
thus causes an increase in the frequency of the genes that lead
to better fitness.

Both basic types of crossover used have their roots in
nature. Two-way crossover is often seen as analogous to
sexual reproduction. One-way crossover also has an analog
in nature in the form of lateral gene transfer that exists in
bacteria.

E. Local Mutation

It is difficult to define an effective local mutation operator
for tree-based GP. Any change, especially in a function node
that is not part of an intron, is likely to radically change
the individual’s fitness. In order to afford local mutation
with limited effect, we changed the GP setup. To each node
returning a floating-point value we added a floating-point
variable (initialized to 1) that served as a factor. The return
value of the node was the normal return value multiplied by
this factor. A local mutation would then be a small change
in the node’s factor value.

Whenever a node returning a floating-point value was
chosen for mutation, a decision had to be made on whether to
activate the traditional tree-building mutation operator, or the
local factor mutation operator. Toward this end we designated
a run parameter that determined the probability of opting for
the local mutation operator.

F. Explicitly Defined Introns

Our system also incorporatesExplicitly Defined Introns
(EDIs) that appear under eachNullJ andNotG. Introns in
GP are comprised of code that has no effect on overall fitness.
EDIs are introns that have been designed to be introns, and
therefore can be safely ignored when compiling the program,
thus saving runtime. Luke [16] discusses introns in some

detail. For more discussion of introns in our system see
Benbassat and Sipper [2].

G. Multi-Tree Individuals

Support of multi-tree individuals was also implemented
in our setup. In this work we used a second GP-tree to
evaluate internal game tree nodes and decide on forward
pruning. In principle, our system supports multiple GP-trees
for individuals and these can be adapted to a variety of roles
(see Benbassat and Sipper [2] for other uses).

H. Fitness Calculation

Fitness calculation was carried out in the fashion described
in Algorithm 2. Evolving players face two types of oppo-
nents: external “guides” (described below), and their own
cohorts in the population. The latter method of evaluation is
known as coevolution [20], and is referred to below as the
coevolution round.

Algorithm 2 Fitness evaluation
// Parameter:GuideArr—array of guide players
for i← 1 to GuideArr.lengthdo

for j ← 1 to GuideArr[i].NumOfRoundsdo
Every individual in population deemed fit enough
playsGuideArr[i].roundSizegames against guidei

end for
end for
Every individual in the population playsCoPlayNum
games as black againstCoPlayNumrandom opponents in
the population
Assign 1 point per every game won by the individual, and
0.5 points per drawn game

The method of evaluation described requires some param-
eter setting, including the number of guides, their designa-
tions, the number of rounds per guide, and the number of
games per round, for the guides arrayGuideArr (players
playedX rounds ofY games each). The algorithm also needs
to know the number of co-play opponents for the coevolution
round. In addition, a parameter for game point value for
different guides, as well as for the coevolution round, was
also required. This allowed us to ascribe greater significance
to certain rounds than to others. Tweaking these parameters
allows for different setups.

Guide-Play Rounds.We implemented two types of guides:
A random player and an alpha-beta player. The random
player chose a move at random and was used to test initial
runs. The alpha-beta player searched up to a preset depth in
the game tree and used a handcrafted evaluation function for
states in which there was no clear winner. To save time, not
all individuals were chosen for each game round. We defined
a cutoff for participation in a guide-play round. Before every
guide-play round began, the best individual in the population
was found. Only individuals whose fitness trailed that of the
best individual by no more than the cutoff value got to play.
When playing against a guide each player in the population



received 1 point added to its fitness for every win, and 0.5
points for every draw.

Coevolution Rounds.In a co-play round, each member of
the population in turn played Black in a number of games
equal to the parameterCoP layNum againstCoP layNum

random opponents from the population playing White. The
opponents were chosen in a way that ensured that each in-
dividual also played exactlyCoP layNum games as White.
This was done to make sure that no individuals received
a disproportionately high fitness value by being chosen as
opponents more times than others. When playing a co-play
game, as when playing against a guide, each player in the
population received 1 point added to its fitness for every win,
and 0.5 points for every draw.

I. Selection and Procreation

The change in population from one generation to the
next was divided into two stages: A selection stage and a
procreation stage. In the selection stage we used tournament
selection to select the parents of the next generation from
the population according to their fitness. In the procreation
stage, genetic operators were applied to the parents in order
to create the next generation.

Selection was done by the following simple method: Of
several individuals chosen at random, copies of a subset of
fitter individuals was selected as parents for the procreation
stage. The pseudocode for the selection process is given in
Algorithm 3.

Algorithm 3 Selection(TourSize,WinTourSize)
repeat

Randomly choose TourSize different individuals from
population :{ I1 . . . ITourSize }
Select a copy of{ J1 . . . JWinTourSize }, the subset
of { I1 . . . ITourSize } containing theWinTourSize

individuals with the highest fitness score, for parent
population.

until number of parents selected is equal to original
population size

Two more parameters are crossover and mutation probabil-
ities, denotedpxo andpm, respectively. Every individual was
chosen for crossover (with a previously unchosen individual)
with probability pxo and self-replicated with probability
1−pxo. The implementation and choice of specific crossover
operator was as in Algorithm 1. After crossover every
individual underwent mutation with probabilitypm (another
parameter,plm, denotes the probability of the algorithm
choosing to perform local mutation). There is a slight break
with traditional GP structure, where an individual goes
through either mutation or crossover but not both. However
our system is in line with the GA tradition where crossover
and mutation act independently of each other.

J. Players with Forward Pruning

Our evolutionary system evolves GP players that use the
alpha-beta search algorithm implemented for the guides, but

instead of evaluating non-terminal states via a handcrafted
evaluation function the system does so using the evolving
GP individual, thus combining GP game-state evaluation
with minimax search. This method adds search power to
our players but creates a program wherein deeper search
creates more game states to be evaluated, taking more time.
Therefore, we recently added selective search in the form of
forward pruning. This method speeds up play if the search
depth is kept constant, but at the cost of losing information
about the game tree.

Our system currently supports two approaches to selective
search via forward pruning. One relies on a parameter
called SelectiveSearchRatio. This parameter is a floating-
point number in the range(0, 1]. It sets the ratio of sibling
states that get further expanded as long as the final search
depth has not been reached (the number of siblings actually
expanded is rounded up to the nearest integer). If, for exam-
ple, SelectiveSearchRatio=0.25, this means that out of every
four child nodes a board state has in the game tree, one will
be expanded further and the others will be pruned. The other
approach relies on a parameter calledMaxBranchingFactor.
This parameter is a positive integer and sets a hard limit
for the effective branching factor of the searched game tree.
If, for example,MaxBranchingFactor=5, this means that at
most five sibling nodes anywhere in the game tree will be
expanded for further search. Our system can use either or
both parameters to limit the breadth of its search. We also
implemented a method to temper the ill effects of too much
forward pruning, using a third parameter,FullSearchDepth.
This parameter is a non-negative integer and dictates that the
search algorithm will behave normally up to a certain given
depth. If, for example,FullSearchDepth=2, this means that
up to depth 2 in the search tree all nodes that the base search
algorithm (alpha-beta in our case) would normally expand
will also be expanded by the selective search algorithm.
Control of the maximal search depth is a feature that exists
in our system anyway and is managed by a fourth parameter
calledSearchDepth.

Forward pruning in our system is achieved by using a
second state evaluation function that allows us to sort sibling
nodes according to their heuristic value and select those
evaluated as better to be expanded and searched further. We
can have this done either by using the same evolved heuristic
evaluation function used for evaluating board states at the
bottom of the search tree, or we can use a different evolved
GP tree for this task. In this work we used a different evolved
evaluation function to guide search.

K. Summary of Run Parameters

• Number of generations: 100
• Population size: 120
• Crossover probability: 0.8
• Mutation probability: 0.2
• Local mutation ratio: 0.5
• Maximum depth of GP tree: 15
• Player to serve as benchmark for the best player of each

generation (αβ5p)



TABLE V
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK(GUIDE)

PLAYERS IN REVERSI. HERE AND IN THE SUBSEQUENT TABLESαβi
REFERS TO AN ALPHA-BETA PLAYER USING A SEARCH DEPTH OFi AND

A MATERIAL EVALUATION FUNCTION .

1st Player 2nd Player 1st Player win ratio
αβ2 random 0.8471
αβ3 αβ2 0.6004
αβ5 αβ3 0.7509
αβ7 αβ5 0.7662

• Search depth used by GP players during run (varies for
different runs)

• Selective search pruning parameters (vary for different
runs)

V. RESULTS

In order to test the quality of evolved players we created
hand-written players. Our approach was to use a standard
algorithm employed with board games: alpha-beta search.
The search proceeds up to a certain, predetermined depth, at
which point a game-dependent evaluation function is called
upon. As we shall see below, these alpha-beta players were
used both during evolution as “guides” for fitness evaluation
and also as benchmark players used to test our evolved
players post-evolutionarily.

We made a point of making our players’ strategy contain
a random element so as to render the development of a
specialized strategy against them more difficult and to allow
for their use as benchmark opponents. Before beginning
the evolutionary experiments, we first evaluated our guide
players by testing them against each other in matches of
10,000 games (with players alternating between playing
either side). Table V shows the relative strengths of the
different players in the different games.

In our tests we observed a trend where players differ in
level of play based not just on how deep their search is, but
also on whether the depth is odd or even. This is due to what
is sometimes referred to as theOdd-Even Effect[11], where
the depth of the search being odd or even greatly affects play
strategy due to the identity of the player who gets to play
last in the expanded game tree. We made sure to always test
our evolved players against hand-crafted players that wereat
least as strong as all hand-crafted players with lower search
depths and in most cases also stronger than some hand-
crafted players with greater search depths. In Table V we
omitted the weak handcrafted players that use even search
depths.

In Benbassat and Sipper [3] our handcrafted players were
overwhelmed by players using far less search. In order to
supply our evolved players with more of a challenge we
wrote new players that use a stronger evaluation function.
Table VI shows the level of the new handcrafted players that
use search depths of 5 and 7 in relation to the old ones.

In all evolutionary runs that follow we used 8 cores of
3 IBM x3550 M3 servers with 2 Quad Core Xeon E5620
2.4GHz SMT processors with 12MB L3 cache and 24GB
RAM. Runs took 2–4 days.

TABLE VI
RELATIVE LEVELS OF PLAY FOR DIFFERENT BENCHMARK(GUIDE)

PLAYERS IN REVERSI THAT SHOW SUPERIORITY OF NEW HANDCRAFTED

PLAYERS. NEW HANDCRAFTED PLAYERS ARE DENOTED BY A‘ P’ AT THE

END OF THEIR NAME.

1st Player 2nd Player 1st Player win ratio
αβ5p αβ5 0.6342
αβ7p αβ5p 0.8418
αβ7p αβ7 0.62855

TABLE VIII
COMPARISON OF GAME-STATE EXPANSION BETWEEN DIFFERENT

PLAYERS. PLAYER 161 CONDUCTS FULLαβ SEARCH OF DEPTH4. THE

OTHER PLAYERS USE FORWARD PRUNING TO LIMIT SEARCH BREADTH

AND SEARCH DEEPER.

Run Search Branching Average # of Standard
identifier depth factor states expanded Deviation

limit per turn
161 4 – 563.14 124.89
162 5 5 186.73 46.66
167 6 3 162.34 25.36

We ran eight different simulations. In the first two, runs
160 and 161 (we tagged every run with a unique integer
identifier), individuals used a full search of depth 4. The rest
used forward pruning with deeper search. Runs 162 and 163
used a search depth of 5 withMaxBranchingFactor=5. Runs
164 and onward used a search depth of 6 withMaxBranch-
ingFactor=3. Fitness was evaluated by having each individual
play 25 games as Black and 25 games as White against other
individuals in the population (coevolution). Table VII con-
tains the results of the best individuals of these runs against
αβ5p andαβ7p. In the last two runs we added guide play to
fitness evaluation in an attempt to correct erratic changes in
benchmark score behavior caused by coevolutionary fitness
evaluation. We tweaked the run parameters so that fitness
that could potentially be accrued during a guide play round
was half the fitness that could potentially be accrued in a
coevolution round.

As we can see our evolved players using forward pruning
hold their own against the deeper-searching handcrafted
players, though the results seem to be weaker than the results
from the runs using full search (run 162 does very well
againstαβ7p but this result may be a fluke). All these
players, however, are significantly faster than the players
using a full search of depth 4.

A. Speed advantage of players using forward pruning

A major advantage of using forward pruning in search is
that a player can search deeper into the game tree in less time.
We ran an analysis comparing three players that use different
search strategies by having each one play 100 games against
a stochastic opponent and checked how many game states
each player expanded on average per turn before selecting a
move. The results are presented in Table VIII. The winner
of run 161, which uses full search, expands more states per
move than the deeper-searching winners from runs 162 and
167.



TABLE VII
REVERSI: RESULTS OF TOP RUNS. Benchmark OpponentUSESαβ SEARCH OF DEPTHS5 AND 7 COUPLED WITH A MATERIAL EVALUATION FUNCTION .

Run Fitness Search Branching Benchmark Score Benchmark Score
identifier Evaluation depth factor limit vs αβ5p vs αβ7p

160 25Co 4 – 891.5 575.0
161 25Co 4 – 935.0 605.0
162 25Co 5 5 922.5 881.5
163 25Co 5 5 602.0 286.0
164 25Co 6 3 824.5 458.0
165 25Co 6 3 851.5 607.0
166 20Co40αβ3 6 3 742.5 408.0
167 20Co40αβ3 6 3 897.0 443.5

TABLE IX
REVERSI: RESULTS OF RUNS. Benchmark OpponentUSESαβ SEARCH OF

DEPTH 7 COUPLED WITH A MATERIAL EVALUATION FUNCTION .

Run Branching Benchmark Score
identifier factor limit vs αβ7p

164 3 458.0
164 4 637.5
164 5 799.0
165 3 607.0
165 4 728.5
165 5 817.0
166 3 408.0
166 4 824.5
166 5 811.0
167 3 443.5
167 4 629.0
167 5 862.0

VI. SCALING SELECTIVE SEARCH

In Benbassat and Sipper [2] results did not scale well when
changing the search depth. Here we have an option to try
and scale our results without changing the search depth, by
changing the forward pruning parameters after the fact (i.e.,
after evolution). Runs 163 to 167 use a search depth of 6
with a maximum branching factor of 3. This low branching
factor made possible evolving strong individuals. Now, by
altering theMaxBranchingFactorparameter a posteriori in
the best individuals from evolutionary runs we can create
stronger players that search more thoroughly for more time,
without having to pay the high cost ofevolving them that
way.

Table IX shows how well the best players from runs 163 to
167 fared againstαβ7p when we increased their branching
factor. As can be seen, the level of play increases as breadth
of search increases (with but one exception, where a high
level of play is achieved forMaxBranchingFactor=4and
slightly goes down forMaxBranchingFactor=5).

Table X contains an analysis of players using a search
depth of 6 and various maximal branching factors. As the
table shows a maximal branching factor of 5 means more
states are expanded than in a full search of depth 4. Time
considerations may deter us from evolving this type of player
directly, and the fact that players can easily be scaled post-
evolutionarily is a very strong property of our system. Note
that all these players conduct less search than our benchmark

TABLE X
COMPARISON OF GAME-STATE EXPANSION BETWEEN DIFFERENT

PLAYERS WITH DIFFERENT BRANCHING FACTORS. THE “D EPTH 4 FULL”
PLAYER IS THE WINNER OF RUN161 AND SERVES AS A BASELINE. ALL

PLAYERS USING A DEPTH OF6 ARE BASED ON THE WINNER OF RUN167.
THE “D EPTH 5 FULL” AND “D EPTH 7 FULL” PLAYERS ARE BENCHMARK

PLAYERSαβ5p AND αβ7p, RESPECTIVELY.

Search Average # of States Standard
parameters expanded per Turn Deviation

Depth 6 branching 3 162.34 25.36
Depth 6 branching 4 432.18 77.46

Depth 4 full 563.14 124.89
Depth 6 branching 5 925.21 198.16

Depth 5 full 1545.03 688.99
Depth 7 full 111328.99 72323.21

opponents that conduct a full search of depths 5 and 7.

VII. C ONCLUDING REMARKS AND FUTURE WORK

Expanding on our previous work we presented the genetic
programming approach as a tool for discovering effective
strategies for playing zero-sum, deterministic, full-knowledge
board games. Using our extant GP gaming system, we
introduced several tools that allow us to apply GP to evolving
game players that use selective search with forward pruning
and a heuristic evaluation function, with the search method
itself being an evolvable feature. We have established that
our approach yields players that achieve similar or better
results than full-search players, with less actual search work.
Our tool allows us to evolve fast players that look deeper
into the game-tree than we could before. As these results
scale with branching factor increase we can create even
stronger players that search more thoroughly without paying
the higher computational price for evolving them.
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