IINFORMATIK

Roboter, die sich selbst vermehren

Was Karnickeln nicht schwer fällt, scheint für künstlich hergestellte Dinge unmöglich - bislang. Computersimulationen weisen neue Wege zu Maschinen, die sich selbst fortpflanzen können.

Von Moshe Sipper und James A. Reggia

matiker und Physiker John von Neumann (1903-1957), die bis dahin philosophische Frage zu einer Angelegenheit von Wissenschaft und Technik zu machen, indem er theoretisch ausarbeitete, wie eine selbstreplizierende Maschine beschaffen sein könnte. Einige Wissenschaftler habon rudimentäre Versionen solcher Maschinen tatsächlich hergestellt, zum Beispiel - aus Sperrholz - vor gut vierzig Jahren der britische Genetiker Lionel Penrose und sein Sohn Roger, der später als Physiker berühmt wurde. Aber die Realität ist so schwierig, dass die meisten Forscher sich bis heute auf die von John von Neumann entwickelte
theoretische Version beschränken: zweidimensionale zelluläre Automaten.

Ein zellulärer Automat ist im Grunde eine äußerst schlichte Welt mit Naturgesetzen, die der Konstrukteur selbst bestimmen kann. Realisiert wird sie als Computerprogramm. Da Gegenstände in dieser virtuellen Welt weitaus einfacher zu handhaben sind als in der echten - so braucht man sich um ihre Energieversorgung und ihre Stabilität keine Gedanken zu machen -, können die Forscher sich auf die grundlegenden Fragen des Informationsflusses konzentrieren. Wie können sich lebende Organismen ohne Hilfe fortpflanzen, während mechanische Ob -

[^0]Wenn ein Apfel einen Apfel ..produziert", dann sicher nicht mit einem Zeichengerät. Die Fortpflanzung von Maschinen aber muss genau so funktionieren: Erst baut die Maschine einen Kopierer. dann dupliziert sie damit ihren eigenen Bauplan.

jekte von Menschen konştruiert werden müssen? Wie ergibt sich die Replikation aus den unzähligen Wechselbeziehungen zwischen Gewebe, Zellen und Molekiulen in einem Organismus? Wie konnte die Evolution im Darwin'schen Sinne die Selbstreplikation begünstigen oder überhaupt erst entstehen lassen?

Diese Fragen sind nicht nur von philosophischem Interesse. Erste Antworten führten bereits zur Entwicklung sich selbst reparierender Siliziumchips. Nano-technologie-Forscher weisen seit jeher darauf hin, dass ihre nur wenige Moleküle großen Maschinen sich im Wesentlichen selbst zusammenbauen müssen: Eine Maschine, die eine Nanomaschine zusammenschraubt, wäre ihrerseits eine Nanomaschine, was das Konstruktionsproblem nur verlagern würde. Verfechter einer Besiedlung des Weltraums stellen sich als Vorhut Roboter vor, die - etwa auf dem Mars - unter Verwendung lokaler Materialien weitere Roboter herstellen. Jüngste Fortschritte lassen diese futuristischen Ideen glaubhaft klingen.

Wie in der Gentechnik, der Kernenergie und der Großchemie hat die Forschung zweierlei Probleme zugleich zu lösen: Die Selbstvermehrung von Maschinen muss funktionieren, und es ist zu verhindern, dass sie außer Rand und Band gerät.

Sciencefiction-Romane stellen die Selbstvermehrung einer Maschine gerne als natürliche Fortentwicklung der heutigen Technik dar, verschweigen aber das entscheidende Problem: Wie vermeidet man den unendlichen Regress? Nehmen wir an, ein System sei in der Lage, mittels eines Bauplans, das heißt einer Beschreibung seiner selbst, eine perfekte Kopie von sich herzustellen. Der Bauplan darf zwar physisch kleiner sein als das gesamte System, muss aber dessen gesamte Information enthalten.

Der Bauplan des Bauplans

Offensichtlich ist dieser Bauplan Teil des Systems und muss daher mit repliziert werden. Ein Teil der Beschreibung des Systems, nämlich die Beschreibung des Bauplans, müsste also mindestens so viel Information enthalten wie die Beschreibung des Gesamtsystems. Wie kann das sein? Anders gefragt: Was ist der Bauplan des Bauplans? Und was der Bauplan des Bauplans des Bauplans?

Es ist so, als müsste ein Architekt eine perfekte Kopie seines Büros bauen lassen, mit Hilfe eines Bauplans, der ebenfalls im Architekturbüro steckt. Der Bauplan müsste eine Miniaturversion des Bauplans enthalten, welcher wiederum eine Minikopie des Bauplans enthält, und so weiter. Ohne diese Informa-
tion wäre es unmöglich, das Büro bis ins Kleinste nachzubauen; es bliebe eine leere Stelle dort, wo der Bauplan war.

Von Neumanns große Leistung bestand darin, einen Ausweg aus dem unendlichen Regress zu finden. Er erkannte, dass die Selbstbeschreibung eines Systems doppelt genutzt werden kann: erstens als Anleitung zur Herstellung einer identischen Kopie des Systems, und zweitens als Daten, die unverändert kopiert und dem neuen System mitgegeben werden, sodass es ebenfalls die Fähigkeit zur Selbstreplikation erhält. Dank diesem Zwei-Phasen-Prozess braucht die Selbstbeschreibung keine Beschreibung ihrer selbst zu enthalten. In unserem Beispiel würde der Bauplan des Architekturbüros eine Bauanleitung für ein Kopiergerät enthalten. Sobald das neue Büro und der Kopierer gebaut sind, würden die Bauarbeiter einfach eine Kopie der Baupläne herstellen und im neuen Büro ablegen.

Genau diesen doppelten Gebrauch machen lebende Zellen von ihrer Selbstbeschreibung (ihrem Genom), die in Form von DNA im Zellkern abgelegt ist: Erstens wird die DNA als Bauplan zur Herstellung von Proteinen verwendet; zweitens wird sie bei der Zellteilung unverändert kopiert und je ein Exemplar den Tochterzellen mitgegeben. Von Neumann erkannte dieses Prinzip, noch be-
vor den Biologen die Rolle der DNA klar war, und seine Ergebnisse gaben ihnen entscheidende Denkanstöße.

Um seine Ideen zu demonstrieren, entwickelten von Neumann und der Mathematiker Stanislaw M. Ulam das Konzept des (zweidimensionalen) zellulären Automaten. Es handelt sich um ein beliebig ausgedehntes Schachbrett. Jedes seiner Felder (jede ,ZZelle") ist entweder leer oder befindet sich in einem von mehreren möglichen Zuständen. Mit jedem Ticken einer gedachten Uhr ändert sich der Zustand einer jeden Zelle in Abhängigkeit von ihrem bisherigen Zustand
und dem ihrer Nachbarn. Diese Zu standsänderung folgt einigen relativ einfachen Regeln, die für alle Zellen gleich sind. Die Regeln bilden die Naturgesetze dieser Primitivwelt.

Zelluläre Automaten

Wie in der echten Welt sind alle Wechselwirkungen lokaler Natur: Eine Zelle wird nur von dem beeinflusst (erhält nur Information über das), was sich in ihrer unmittelbaren Nachbarschaft abspielt. Weit voneinander entfernte Zellen können nur vermittels der dazwischen liegenden Zellen aufeinander einwirken.

Die scheinbare Einfachheit zellulärer Automaten triugt: Ihr Verhalten ist alles andere als langweilig. Der berühmteste unter ihnen, John Horton Conways „Spiel des Lebens" (game of life) vom Anfang der siebziger Jahre (SdW 11/1998, S. 112), erzeugt erstaunlich komplexe Muster. Viele Aussagen über das Verhalten zellulärer Automaten sind formal nicht entscheidbar; das heiBt, es gibt keinen kürzeren Weg, ein Muster der Zukunft vorherzusagen, als das Verhalten explizit zu simulieren (vergleiche die Diskussion von Langtons Ameisen in SdW 8/1995, S. 10, 9/1995, S. 12 und 10/1995, S. 10). Auf

Bauen Sie Ihre eigene vermehrungsfähige Maschine

Ein Schachbrett bietet ausreichend Lebensraum für eine kleine, selbstreplizierende Schleife.

Das hier vorgestellte Modell ist ein zellulärer Automat mit vier verschiedenen Elementen: Bauern, Springer, Läufer und Türme. Genauer: Jede Zelle kann leer sein oder einen von sieben verschiedenen Zuständen annehmen, die "Bauer", "Turm", "Läufer" und viermal "Springer" heißen, denn beim Springer kommt es darauf an, in welche Richtung er blickt; das ist in den Diagrammen die Richtung, in die seine Schnauze weist. Die im Schachspiel üblichen Zugregeln spielen hier keine Rolle.
Zu Anfang besteht die Maschine aus vier Bauern, einem Springer und einem Läufer. Sie hat zwei Teile: die Schleife selbst, die aus einem 2×2 Felder großen Quadrat besteht, und den Konstruktionsarm („Ausleger") auf der rechten Seite.
Die Selbstbeschreibung besteht aus dem Springer und dem Läufer. Der Springer bestimmt die Richtung, in der die Maschine ihre Knospen treibt, während der Läufer für die Größe der Schleife verantwortlich ist. Die Bauern sind Platzhalter für die freien Plätze in der Schleife, und der Turm ist ein kurzlebiges Signal, das die Konstruktion eines neuen Auslegers einleitet.

Im Verlaufe der Zeit durchlaufen durch die Wirkung der Regeln (siehe rechts) der Springer und der Läufer die Schleife
entgegen dem Uhrzeigersinn. Sowie sie am Ausleger ankommen, verdoppelt sich das Läufer-Springer-Paar: Ein Exemplar wandert am Ausleger entlang und erzeugt im Laufe der Zeit (siehe unten) eine komplette Maschine, während das Original weiter die Schleife durchläuft.

Verwenden Sie zweckmäBig zwei Schachbretter, eines für den aktuellen Zustand und das andere für den Aufbau des folgenden. Setzen Sie auf jedes Feld des zweiten Bretts eine Figur - oder auch gar keine - gemäß den Spielregeln; dabei kommt es auf den Zustand des entsprechenden Feldes auf dem ersten Brett und seiner vier unmitfelbaren Nachbarfelder an. Wenn keine der (rechts aufgeführten) Regeln zutrifft, bleibt das Feld unverändert. Randfelder werden behandelt, als hätten sie leere Nachbarfelder außerhalb des Brettes.

Wenn Sie für jedes Feld des zweiten Bretts den neuen Zustand aufgebaut haben, ist der Zug zu Ende. Räumen Sie das erste Brett ab, schieben Sie das zweite Brett an die Stelle des ersten und umgekehrt, und beginnen Sie von neuem. Da die Regeln kompliziert sind, braucht es am Anfang ein wenig Geduld. Sie können sich auch die Simulation (unter Windows oder Unix) als Animation ansehen: Is/www.epfl.ch/chess.

Stufen der Selbstreplikation

Zu Beginn steht die Selbstbeschreibung - das Genom -, bestehend aus einem Springer und einem Läufer, am Ansatzpunkt des Auslegers.

1 Der Springer und der Läufer wandern entgegen dem Uhrzeigersinn die Schleife entlang. Eine Kopie des Springers wandert den Arm entlang.

2 Das ursprüngliche Springer-Läufer-Paar umläuft weiter die Schleife, und eine Kopie des Läufers folgt dem Springer am Arm entlang hinaus.

3 Der Springer erzeugt zwei Ecken der Tochterschleife. Der Läufer folgt hinterdrein, womit das Erbgut vollständig übertragen ist.

4 Der Springer bildet die letzte Ecke der Tochterschleife. Beide Schleifen sind durch den Ausleger und einen neu entstandenen (den ${ }_{\eta}$ wilden") Springer verbunden.

seine Weise kann ein zellulärer Automat so komplex sein wie die echte Welt.

Insbesondere gibt es in der Welt der zellulären Automaten so etwas wie Fortbewegung. Es kommt nämlich vor, dass ein Muster wandert, das heißt nach einer gewissen Zahl von Zeitschritten in genau derselben Gestalt wieder erscheint, nur um ein paar Felder in irgendeiner Richtung versetzt. Wie in der klassischen Mechanik bewegt sich das Muster in der Folge dann geradlinig und gleichförmig fort, bis es auf ein Hindernis trifft.

Was bedeutet nun Selbstvermehrung in der Welt eines zellulären Automaten?

Wir haben die Freiheit, eine beliebige Gruppe von Zellen als eine „Maschine" aufzufassen. Wenn nun der Lauf der Welt, sprich die deterministische Zeitentwicklung des Automaten nach den Regeln, dazu führt, dass in der näheren Umgebung einer Maschine eine exakte Kopie von ihr entsteht und sie selbst in den Ursprungszustand zurïckkehrt, dann hat sie sich offensichtlich selbst repliziert. Von Neumann hatte theoretisch eine solche Maschine in seinem zellulären Automaten entworfen. Sie enthielt ihrerseits eine Maschine, den Universal Constructor, der mit einer geeigneten Folge von Anwei-
sungen jedes beliebige Muster herstellen kann. Der Constructor bestand aus verschiedensten Bauteilen, die sich über zehntausende Zellen erstreckten und deren Definition ein Manuskript in Buchlänge erforderte. Wegen seiner Komplexität ist er bis heute nie vollständig simuliert, geschweige denn gebaut worden. Ein Constructor in der Welt des „Game of Life" wäre noch komplizierter, da Funktionen, die in von Neumanns Modell von einer einzigen Zelle ausgeführt werden darunter Signalübertragung und Herstellung neuer Bauteile -, nun ganze Zellkomplexe erfordern würden.

Springer: Wenn sich links von oder hinter ihm ein Läufer befindet, ersetze den Springer durch einen Läufer.

- Ansonsten entferne den Springer, falls mindestens eines seiner Nachbarfelder besetzt ist.
Bauer: Befindet sich auf einem Nachbarfeld ein Springer, so ersetze den Bauern durch einen Springer: $>$ Schaut der Nachbarspringer weg vom Bauern, so zeigt der neue Springer in die entgegengesetzte Richtung. - Anderenfalls: Wenn es genau einen benachbarten Bauern gibt, schaut der neue Springer ihn an.
- Anderenfalis schaut der neue Springer in die gleiche Richtung wie das Original.

Läufer und Türme werden durch Bauern ersetzt.

Leeres Feld: Befinden sich zwei Springer auf den Nachbarfeldern, und mindestens einer schaut auf das leere Feld, setze einen Turm dorthin.

- Wenn nur ein Springer auf den Nachbarfeldern ist und dieser auf das leere Feld schaut, setze einen Springer hinein; dessen Blickrichtung gegenüber dem anderen um neunzig Grad gegen den Uhrzeigersinn gedreht ist

- Befindet sich nur ein Springer auf den Nachbarfeldern, hat dieser das leere Feld zur Linken und sind alle anderen Felder leer, so setze einen Bauern.
- Befindet sich ein Turm auf den Nachbarfeldern und sind alle anderen Felder leer, so setze ebenfalls einen Bauern.

Befinden sich genau drei Bauern auf den Nachbarfeldern, so setze einen Springer, der zum vierten, leeren Nachbarfeld schaut.

5 Der wilde Spinger zieht aufwärts, um das Original mit einem neuen Arm zu versehen. Mit einem Zeittakt Verzögerung spielt sich das Gleiche in der Tochterschleife ab.

6 während der.alte Arm verschwindet, erzeugt der wilde Springer mit dem ursprünglichen Springer-Läufer-Paar einen Turm.

7 Der Turm schlägt den wilden Springer und erzeugt den neuen, nach oben gerichteten Arm. Ein zweiter Turm schickt sich an, das Gleiche in der Tochterschleife zu tun.

8 Schließlich sind beide Schleifen getrennt und vollständig. Die Selbstbeschreibungen kreisen weiter, ansonsten ist aber alies ruhig.

9 Die Elternschleife bereitet sich auf eine neue Ge burt vor, und im nächsten Schritt beginnt auch die Tochterschleife, sich fortzupflanzen.

Am anderen Ende der Komplexitätsskala ist es sehr einfach, Beispiele für Selbstreplikation zu finden. Eines wäre ein zellulärer Automat, dessen Zellen auBer dem leeren Zustand nur einen anderen kennen; nennen wir ihn „+". Das Naturgesetz ist ebenfalls sehr einfach: Wenn
unter den vier Nachbarn einer Zelle genau ein + ist, dann wird sie ebenfalls + ; ansonsten wird sie leer. Ein einsames + auf weiter Flur wird im ersten Zeitschritt zu vier identischen Nachkommen, die in den folgenden Zeitschritten ebenfalls Nachwuchs bekommen, und so weiter.

Die Pluszeichen wachsen zwar wie Unkraut; gleichwohl würde man kaum von Selbstreplikation reden, da es keine nennenswerte Maschine gibt. Was aber unterscheidet eine ,nennenswerte" Maschine von einer Gruppe Zellen, die sich nur deshalb vermehrt, weil das schon in

Roboter, heile dich selbst !

Sich selbst reparierende Computer bilden die ersten Anwendungen von künstlicher Fortpflanzung.

Ein Forscher schätzt es in der Regel nicht, wenn sein Gerät mutwillig zerstört wird. Daniel Mange aber ist es gerade recht, wenn Besucher an einer seiner Schöpfungen den dort angebrachten „Kill"-Knopf drücken. Im Mai vergangenen Jahres stellte seine Arbeitsgruppe ihr jüngstes Werk auf einer Wissenschaftsmesse der Öffentlichkeit vor und lud die Besucher ein, das System nach Kräften zu beschädigen.
Mange will elektronische Schaltkreise mit der Fähigkeit ausstatten, trotz einiger Schrammen weiter zu funktionieren, wie Kreaturen aus Fleisch und Blut eben. Die Genauigkeit und Geschwindigkeit digitaler Hardware mit der gesunden Robustheit organischen Gewebes - das ist eins der Traumziele der modernen Elektronik.
Fehlertolerante Schaltkreise sind nichts Neues. Das Space Shuttle hat sogar fünf Prozessoren, von denen vier die gleichen Berechnungen ausführen, während der fünfte kontrolliert, ob die Ergebnisse übereinstimmen, und jeden Abweichler abschaltet. Allerdings stehen und fallen diese Systeme mit der zentralen Kontrollinstanz. Was passiert, wenn diese ausfällt?
Mutter Natur hat dieses Problem durch radikale Dezentralisierung gelöst. Unsere Körperorgane bestehen aus lauter im

Wesentlichen gleichen Zellen; jede von ihnen erfüllt ihre spezielle Aufgabe eigenständig und begeht Selbstmord im Falle einer Infektion oder ihres Versagens, sodass neue Zellen ihre Aufgaben übernehmen können. Mit genau diesen Qualitäten will Professor Mange von der Eidgenössischen Technischen Hochschule in Lausanne elektronische Schaltkreise ausstatten. Sein seit 1993 laufendes Projekt heißt "Embryonics" wie embryonale Elektronik.

Eine seiner ersten Erfindungen ist eine künstliche Zelle namens Mictree (microinstruction tree, "Mikro-Befehlsbaum"). In einem knapp streichholzschachtelgroßen Plastikgehäuse stecken ein einfacher Prozessor und ein Vier-Bit-Register. Mit elektrischen Kontakten an den Seiten können die Zellen wie Legosteine zusammengesteckt werden. Wie in den zellulären Automaten stehen die Mictree-Zellen nur mit ihren vier unmittelbaren Nachbarn in Kontakt.

Die Zellen folgen den Anweisungen ihres "Genoms" - eines kleinen Programms in der Programmiersprache Pascal. Wie ihre biologischen Vorbilder enthält jede Zelle das gleiche Genom. Sie führt aber nur einen gewissen Teil davon aus, der von ihrer Position im Gesamtsystem bestimmt wird. Diese Position errechnet die Zelle durch Verständigung mit ihren unmittelbaren Nachbarn. Es gibt weit mehr Zellen als nötig; aber dank dieser Verschwendung kann das System den Tod einzelner Zellen verkraften. Wenn jemand den "Kill"Knopf drückt, schaltet die Zelle sich ab, und ihr linker Nachbar wird direkt mit dem rechten verbunden. Letzterer berechnet seine Position neu und übernimmt damit die Arbeit seines verstorbenen Kollegen. Seine eigenen Aufgaben werden von der Zelle zur Rechten übernommen, die ihrerseits ihre Position neu berechnet hat, und so weiter, bis eine zuvor inaktive Reservezelle in den Dienst gestellt wird.
Wie bei jedem Parallelrechner ist auch bei dem Mictree-Gitter die Gesamtaufgabe geschickt in Teilaufgaben für die einzelnen Zellen zu zerlegen. Als echter Schweizer wählte Mange als Gesamtaufgabe, die Zeit anzuzeigen - eine Stoppuhr mit besonderer Zuverlässigkeit. Die Darstellung von Minuten und Sekunden erfordert vier Zellen, eine pro Ziffer. Das Genom hält Anweisungen für zwei Zelltypen bereit: einen Zähler von null bis neun für die Einer und einen von null bis fünf für die Zehner. Ein Oszillator sendet einen Puls pro Sekunde in die äußerste rechte Zelle. Diese zählt für jeden Puls eins hoch; nach dem zehnten Puls setzt sie sich auf null zurück und sendet einen Impuls zu ihrem linken Nachbarn. Der zählt bis sechs, setzt sich zurück, schickt dabei einen Impuls nach links und so weiter.

Die Uhr lebt auf zwölf in einer Reihe zusammengesteckten Zellen; wenn eine Zelle stirbt, verschiebt sich die Uhr entsprechend und arbeitet weiter. Natürlich ist die Robustheit auch dieser Uhr begrenzt; wie die sprichwörtliche Katze hat sie nur neun Leben.
den „Naturgesetzen" steckt? Bisher weiß niemand darauf eine gute Antwort. Offensichtlich muss jedoch die Kopiervorrichtung eine gewisse minimale Komplexität aufweisen. So muss sie aus mehreren verschiedenen Komponenten bestehen, deren Zusammenwirken den Replikationspro-
zess ablaufen lässt: das sprichwörtliche Ganze, das mehr ist als die Summe seiner Teile. Eine dieser Komponenten muss die Selbstbeschreibung sein, die innerhalb der vermehrungsfähigen Struktur abgelegt ist.

Seit von Neumanns bahnbrechender Arbeit haben viele Forscher das weite

Feld zwischen dem Komplexen und dem Trivialen erkundet. Ein großer Schritt in Richtung einer Vereinfachung gelang 1984 Christopher G. Langton an der Universität von Michigan in Ann Arbor. Er bemerkte, dass schleifenförmige Speicher, die bereits in früheren selbstre-

Die Zellen des Prototyps Mictree sind noch fest verdrahtet und daher nur sehr beschränkt verwendbar. In einem kommerziellen Produkt würde man stattdessen ein field-programmable gate array (FPGA) verwenden, eine Anordnung elektronischer Bauelemente, deren Verschaltung im laufenden Betrieb geändert werden kann (Spektrum der Wissenschaft $8 / 1997$, S. 44). Manges Arbeitsgruppe entwickelt zurzeit ein Gate Array namens Muxtree (multiplexer tree), das für künstliche Zellen optimiert ist. Im biologischen Bild sind dessen Komponenten die Molekülle, aus denen die Zelle aufgebaut ist. Jedes „Molekül" besteht aus einem Logikgatter, einem Datenbit und einer Reihe von Konfigurationsbits, welche die Funktion des Gatters festlegen.
Dieses Bauprinzip bietet nicht nur Flexibilität, sondern auch zusätzliche Robustheit. Jedes Molekül enthält zwei Exemplare des Gatters und drei des Datenbits. Wenn die beiden Gatter unterschiedliche Ergebnisse liefern, schaltet sich das Molekül zum Wohle der gesamten Zelle ab. Mit seinem letzten Atemzug sendet es sein Datenbit (welches durch dreifache Speicherung gesichert ist) und seine Konfiguration an den rechten Nachbarn. Der übernimmt die Aufgabe, tritt seinen eigenen Job an seinen rechten Nachbarn ab und so weiter, bis sich ein Reservemolekül findet. Diese zweite Stufe der Fehlertoleranz verhindert, dass ein einziger Fehler die gesamte Zelle unbrauchbar macht.

Zweitausend "Moleküle" in vier Zellen der Größe 20×25 bilden "BioWall" - die riesige digitale Uhr, die Manges Team kürzlich vorführte. Jedes Molekül sitzt in einem kleinen Gehäuse mit einem „Kill"-Knopf und einer Leuchtanzeige. Einige Moleküle führen Berechnungen aus, andere bilden die Pixel, aus denen die Ziffernanzeige zusammengesetzt ist. Ich gab mir alle Mühe, das System durch eifriges Betätigen von Knöpfen abstürzen zu lassen - was mir normalerweise auf Anhieb gelingt. Die hartnäckige Uhr aber hielt eisern durch. Ihre Ziffern sahen zwar zum Teil etwas verzert aus, wenn einzelne Leuchtpixel nach rechts auswanderten, aber sie waren immer noch lesbar, im Gegensatz zu den meisten defekten elektronischen Anzeigen.
Die gleichwohl noch auftretenden Defekte schreibt Mange Synchronisationsfehlern zu. Die Rechenleistung ist zwar dezentralisiert, aber die Kommunikation findet synchron nach den Vorgaben eines zentralen Taktgebers statt, und manchmal kommen Zellen aus dem Takt. Ein Team unter der Leitung von Andy Tyrell von der Universität York (England) experimentiert mit Zellen, die wie ihre biologischen Vettern asynchron arbeiten. Spezielle Signale (handshake) dienen zur Eröffnung und zur Beendigung einer Kommunikation. Mit einigen Fehlern kommt das System im gegenwärtigen Zustand noch nicht zurecht, darunter fehlerhafte Konfigurationsbits. Tyrells Team denkt an den Einsatz von Aufpassermolekülen -

ein Immunsystem, das unter anderem die Konfigurationen auf Defekte überprüft.
Diese Systeme erfordern zwar großen Materialaufwand aber das trifft auch auf andere fehiertolerante Systeme zu. Außerdem sollte es nicht allzu schwer sein, einen Muxtree auf die Größenordnung von Nanometern zu verkleinern. Seine "Moleküle" sind einfach genug, um durch echte Moleküle realisierbar zu sein. Mange sagt: "Wir bereiten uns darauf vor, dass die Elektronik sich in der gleichen Größenordnung abspielt wie die Biologie."

Vom philosophischen Standpunkt kommt Embryonics dem Traum von der selbstreplizierenden Maschine besonders nahe. Es ist zwar nicht ganz so dramatisch wie ein Roboter, der im Elektronikfachgeschäft Bauteile einkauft und sie sich zu Hause anlötet, oder der sich einen liebenden Partner nach seinen Vorstellungen zusammenbastelt. Im Endeffekt läuft es aber auf das Gleiche hinaus. Ob die Maschinen ihre Chips umprogrammieren oder mit neuronalen Netzen oder genetischen Algorithmen neues, ungeahntes Wissen erwerben - allein die Vorstellung, sie könnten ihr Schicksal selbst bestimmen, klingt Angst einflößend. Vielleicht sollten wir eher darüber freuen, dass die Maschinen uns immer ähnlicher werden: unvollkommen, fehlbar, aber auch mit robuster Kreativität.

Goorge Musser
Der Autor ist unvollkommener, aber kreativer Redakteur bei Scientific American.

Literaturhinweise

Towards Robust Integrated Circuits: The Embryonic Approach. Von D. Mange et al. in: Proceedings of the IEEE, Bd. 88, Nr. 4, S. 516, 2000.
Von Neumann's Legacy: On Self-Replication. Von M. Sipper et al. (Hg.). Sonderheft von Artificial Life, Bd. 4, Nr. 3, 1998.
Emergence of Self-Replicating Structures in a Cellular Automata Space. Von H. Chou und J. Reggia in: Physica D, Bd. 110, Nr. 3-4, S. 252, 1997.
Simple Systems That Exhibit Self-Directed Replication. Von J. Reggia et al. in: Science, Bd. 259, Nr. 5099, S. 1282, 26. Februar 1993.

Self-Reproducing Machines. Von Lionel S. Penrose in: Scientific American, Juni 1959, S. 105.
Weblinks bei www.spektrum.de unter ",Aktuelles Heft"
plizierenden Maschinen enthalten waren, so programmiert werden können, dass sie sich selbst fortpflanzen.

Solche Speicher bestehen gewöhnlich aus zwei Teilsystemen: der Schleife selbst, das ist eine Reihe von Elementen, die den Rand eines rechteckigen Gebiets entlangwandern, und einem Konstruktionsarm (dem „Ausleger"), der von einer Ecke des Rechtecks nach außen ragt. Die wandernden Elemente enthalten Anweisungen für ihre eigene Fortbewegung in der Schleife. Sowie sie den Konstruktionsarm erreichen, werden sie durch die Wirkung der Regeln dupliziert. Das Original wandert weiter durch die Schleife, während die Kopie durch den Ausleger geht, wo sie als Folge von Anweisungen interpretiert wird.

Selbstreplizierende Schleifen

Indem Langton im Gegensatz zu von Neumann nicht darauf bestand, dass seine Maschinen jedes geforderte Muster herstellen können, gelang ihm die Konstruktion eines Replikators aus sieben Komponenten in nur 86 Zellen. Einer von uns (Reggia) hat mit unseren Kollegen sogar noch kleinere und einfachere selbstreplizierende Schleifen gebaut (Kasten Seite 28/29). Da sie aus mehreren wechselwirkenden Komponenten bestehen und eine Selbstbeschreibung enthalten, sind sie nicht trivial. Erstaunlicherweise spielt Asymmetrie eine unerwartete Rolle: Die Regeln, welche die Vermehrung steuern, können oft einfacher gehalten werden, wenn die Komponenten nicht rotationssymmetrisch sind.

Alle diese selbstreplizierenden Strukturen wurden mit viel Fantasie und He-
rumprobieren konstruiert. Dies ist ein mühevoller und oftmals frustrierender Prozess: Kleine Änderungen in den Regeln führen zu einem vollkommen verschiedenen globalen Verhalten - meist zur Zerstörung der aufwendig konstruierten Struktur. Neuere Arbeiten schlagen daher einen anderen Weg ein. Statt die Regeln für das Funktionieren eines bestimmten Maschinentyps zurechtzubasteln, spielen die Forscher „Schöpfer": Sie definieren verschiedene Naturgesetze, füllen ihre zellulären Automaten mit zufällig ausgewählten Elementen (der "Ursuppe") und warten ab, ob Selbstreplikatoren sich spontan herausbilden.

Hui-Hsien Chou, heute an der Staatsuniversität von Iowa, und Reggia bemerkten 1997, dass selbstreplizierende Schleifen regelmäßig erscheinen, wenn die Konzentration der freien Komponenten einen gewissen Schwellenwert überschreitet. Kollidierende Schleifen vernichten sich gegenseitig, sodass sich ein stetes Wechselspiel von Geburt und Tod ergibt. Im Laufe der Zeit vermehren sich manche Schleifen, wachsen und mutieren unter dem Einfluss von Bruchstücken früherer Zusammenstöße. Obwohl die Automatenregeln deterministisch sind, können diese Mutationen wegen der Komplexität des Systems und der zufälligen Anfangspositionen der Elemente als zufällig angesehen werden.

Solche Schleifen sind zwar als abstrakte Maschinen gedacht und nicht als Modell für etwas Biologisches; gleichwohl ist es interessant, sie mit molekularbiologischen Strukturen zu vergleichen. Eine Schleife hat eine gewisse Ähnlichkeit mit der ringförmigen DNA eines Bakteriums und der Konstruktionsarm mit dem Enzym, das deren Replikation katalysiert. Überzeugender ist der Vergleich auf einer abstrakteren Ebene: Einfache lokale Wechselwirkungen können zu komplexem globalem Verhalten führen. Die Be standteile zellulärer Automaten scheinen einem klassischen Spruch der Alternativen zu folgen: Lokal handeln - global denken. Im weitesten Sinne trifft dies auch auf die Molekularbiologie zu.

In einem neueren Computerexperiment variierten Jason Lohn, inzwischen am Ames-Forschungszentrum der Nasa, und Reggia statt der Strukturen die Regeln. Es gelang ihnen, zu jedem
zufällig gewählten Block aus vier Komponenten Regeln zu finden, unter denen sich dieser Block selbst repliziert. Diese Regeln fanden sie mit einem Optimierungsverfahren, das der Evolution nachempfunden ist: einem genetischen Algorithmus (SdW 9/1992, S. 44).

Evolution zur

besten aller möglichen Welten

Wie jedes Optimierungsverfahren soll auch dieses eine Struktur (in diesem Falle die Regeln) so variieren, dass sie eine gegebene Anforderung (hier die Replikationsfähigkeit) optimal erfüllt. Ein genetischer Algorithmus lässt stets mehrere Exemplare dieser Struktur gegeneinander konkurrieren, verwifft die ungeeigneten und entwickelt die geeigneten weiter, durch Mutation und eine Art „Kreuzung", bei der die Eigenschaften beider Partner gemischt werden. Nur: Was ist in diesem Falle ein brauchbarer Maßstab für Eignung (fitness)? Die Replikationsfähigkeit selbst kann es nicht sein, da wohl kaum eine der konkurrierenden Strukturen von Anfang an darüber verfügt. Es ist dasselbe Problem, das sich auch den Evolutionsbiologen stellt: Wenn erst eine voll ausgebildete Fähigkeit einen Selektionsvorteil bringt, aber keine ihrer Vorformen: Wie kann dann die Evolution die Entstehung dieser Fähigkeit begünstigen?

Für unser pseudobiologisches Problem fanden wir schließlich ein geeignetes Fitnessmaß. Es bestand in der gewichteten Summe dreier Kenngrößen:
> eine unspezifische Vermehrungsrate: das AusmaB, in dem jeder Elementtyp mehr von seinesgleichen hervorbringt;
$>$ ein Maß für den Zusammenhalt: das Ausmab, in dem benachbarte Elemente

über mehrere Zeitschritte hinweg zusammenbleiben; und

- ein Maß für die Anzahl der tatsächlich vorhandenen Replikatoren, das heißt selbstreplizierenden Teilstrukturen.

Mit der richtigen Fitnessfunktion kann die „Evolution" eines genetischen Algorithmus in ungefähr 150 Generationen aus unfruchtbaren Regelsystemen fruchtbare machen. Wohlgemerkt: Es sind nicht die Strukturen selbst, die der Evolution unterworfen sind, sondern ganze Welten mit ihren jeweils eigenen Naturgesetzen.

Die so gefundenen Replikatoren funktionieren auf völlig neue Art. Sie wandern und legen unterwegs Kopien ihrer selbst ab, anders als die in der Regel ortsfesten replizierenden Schleifen. Sie bestehen aus mehreren lokal wechselwirkenden Komponenten, enthalten jedoch keine abgrenzbare Selbstbeschreibung, kein "Genom". Genau das, nämlich Vermehrung ohne abgrenzbares Genom, müssen die frühen Vorformen des Lebens auch bewerkstelligt haben. Insofern studieren wir in unseren künstlichen Welten ein Zwischending zwischen Belebtem und Unbelebtem.

Viele Forscher haben sich neben den traditionellen zellulären Automaten an anderen mathematischen Modellen versucht. In asynchronen zellulären Automaten ändern die Zellen ihren Zustand nicht nach einem zentralen Zeittakt; in nichtuniformen Automaten gelten an verschiedenen Plätzen verschiedene Regeln. Ein völlig anderes Konzept steckt hinter dem "Krieg der Kerne" (core war, vergleiche SdW 1/1993, S. 10) und seinen Nachfolgem, wie dem System „Tierra" des Ökologen Thomas S. Ray. Die „Organismen" in diesen Computersimulationen sind Programme, die um Speicherplatz und Rechenzeit konkurrieren. Ray beobachtete die Herausbildung von „Parasiten", Computerviren in einem sehr direkten Sinne, die sich des Replikationscodes anderer Organismen bemächtigen.

Aus der virtuellen
 in die echte Welt

Was hat man nun von diesen Maschinen? Von Neumanns Universal Constructor ist zwar außer zur Vermehrung auch zum Rechnen fähig, aber doch ein unhandliches Monster. Die Entwicklung einfacherer, dennoch nützlicher Replikatoren war daher ein großer Fortschritt. Gianluca Tempesti von der Eidgenössischen Technischen Hochschule in Lausanne vereinfachte 1995 die Selbstbeschreibung einer Schleife, sodass sie mit einem kleinen Programm verschachtelt werden konnte - das in diesem Falle den abgekürzten Namen seines Institutes LSL
(Logic Systems Laboratory) in den zellulären Automaten schreibt. Er erfand Regelsysteme, unter denen sich eine Schleife in zwei Schritten vermehrt. Wie Langtons Vorbild stellt sie zunächst eine Kopie von sich her. Die Tochterschleife sendet danach ein Signal zur Mutter, woraufhin diese ihre Arbeit verrichtet, nämlich die drei Buchstaben zu schreiben.

Im folgenden Jahr entwickelten JeanYves Perrier, Jacques Zahnd und einer von uns (Sipper) eine selbstreplizierende Schleife mit der Fähigkeiten einer universellen Turing-Maschine - ein äußerst primitiver, aber voll funktionstüchtiger Computer. Unsere Maschine arbeitet mit zwei „Bändern", das sind lange Ketten voň Elementen, von denen eine das Programm, die andere die Daten enthält. Die Schleifen können sowohl beliebige Programme ausführen als auch sich selbst replizieren. In gewissem Sinne sind sie so komplex wie der Computer, der den ganzen zellulären Automaten und damit auch die Schleifen simuliert. Ihre wesentliche Beschränkung besteht darin, dass das Programm unverändert in die Tochterschleife kopiert wird, sodass alle Schleifen dasselbe tun.

Chou und Reggia überwanden 1998 auch diese Schranke. Sie zeigten, wie selbstreplizierende Schleifen mit individuell verschiedenen Informationen anstelle geklonter Programme zur Lösung des so genannten Erfüllbarkeitsproblems eingesetzt werden können: Gesucht sind Werte für die Variablen eines logischen Ausdrucks (das heißt einer Formel, die diese Variablen mit den logischen Operationen ,,und", „oder" und „nicht" auf beliebig komplizierte Weise verknüpft), sodass der gesamte Ausdruck den Wert "wahr" erhält. Dieses Problem ist NPvollständig, das heißt, es gehört zusammen mit dem Rundreiseproblem (travelling salesman problem) zu einer Gruppe schwieriger Probleme, für die keine effiziente Lösung bekannt ist. In Chous und Reggias Automatenuniversum erhält jeder Replikator einen anderen Kandidaten für eine Lösung. Während des Replikationsprozesses mutieren diese Lösungsversuche; Replikatoren mit viel versprechenden Lösungen dürfen sich fortpflanzen, während die Versager aussterben.

Einige Forscher haben sogar zelluläre Automaten in elektronischer Hardware gebaut, statt sie zu simulieren, aber für praktische Zwecke ist das ein viel zu hoher Materialaufwand; dafür waren sie auch nie gedacht. Ihr Zweck ist vielmehr, die der Replikation zu Grunde liegenden Prinzipien herauszuarbeiten und dadurch zu konkreteren Anstrengungen zu inspirieren.

Eine Arbeitsgruppe der Nasa unter Leitung von Robert Freitas jr. schlug 1980 vor, auf dem Mond eine selbstreplizierende Fabrik zu installieren, die unter Verwendung von Mondmaterial ein groBes Gebiet mit immer größerer Geschwindigkeit besiedelt. Eine ähnliche Sonde könnte die gesamte Galaxie bevölkern, argumentiert der Physiker Frank J. Tipler von der Tulane-Universität in New Orleans, der durch seine „Physik der Unsterblichkeit" Aufsehen erregt hat. Hod Lipson von der Cornell-Universität und Jordan B. Pollack von der BrandeisUniversität haben mit Primitiv-Robotern experimentiert, die ihre eigenen Nachkommen - bis zu einem gewissen Grade - selbst zusammenbauen. Diese Systeme sind zwar nicht selbstreplizierend im eigentlichen Sinne, da der Nachwuchs viel einfacher gebaut ist als die Eltern; dennoch kommt man mit ihnen der eingangs erwähnten Forderung der schwedischen Königin schon näher.

Sowie selbstreplizierende physikalische Maschinen technisch möglich werden, gewinnt auch die Horrorvorstellung von den künstlichen Kreaturen, welche die natürlichen verdrängen, an Realität. Wir ziehen das optimistischere und plausiblere Szenario vor, in welchem die Replikatoren zum Wohle der Menschheit eingesetzt werden. Als der englische Philosoph William von Ockham im 14. Jahrhundert empfahl: entia non sunt multiplicanda praeter necessitatem - „Wesenheiten sind nicht über das Notwendige hinaus zu vermehren", meinte er mit entia zwar eher theoretische Konzepte; aber bezogen auf unsere fruchtbaren Roboter sollten wir seine Empfehlung gleichfalls beherzigen.

[^0]: Roplikation findet statt, wenn ein (natürliches oder künstliches) System ein zweites Exemplar seiner selbst herstell. Die Fachleute unterscheiden die (genaue) Replikation von der Reproduktion, bei der die Kinder sich von den Eltern unterscheiden düfen.
 Zellulăror Automat eine Anordnung von, Zellen " (typischerweise im Rechteckgitter), die verschiedene Zustände annehmen können In diskreten Zeitschritten ändert sich der Zustand jeder Zelle nach deterministischen Regeln in Abhängigkeit vom eigenen Zustand und dem ihrer unmittelbaren Nachbarn. Leere Zelle: der „Grundzustand" der Zelle eines zellulären Automaten. Leere
 A Zellen bleiben zumindest so lange leer, wie ihre Umgebung leer ist.
 R Element eines zellularen Automaten: eigentlich nur ein nicht-leerer Zustand einer Zelle. Gedanklich schreibt man Elementen ein Eigenleben zu; so können sie „wandern", wenn kraft einer Regel der Zustand in einen anderen Zustand übergeht und zugleich in einer benachbarten Zelle neu entsteht:

