ROMERO’S ODYSSEY TO SANTA FE:
FROM SIMULATION TO REAL LIFE

CHRISTOF TEUSCHER, EDUARDO SANCHEZ and MOSHE SIPPER

Logic Systems Laboratory, Swiss Federal Institute of Technology,
INN-Ecublens, CH-1015 Lausanne, Switzerland.
E-mail: {name.surname}@epfl.ch, URL: hitp://Islwww.epfl.ch.

ABSTRACT

Many a researcher in evolutionary robotics would love to have at his or her disposal a real
population of bopping critters. Toward this end, the ultimate goal of our work is twofold:
(1) to build a robot that is cheap, modular, and adaptable; and (2) to use a population of
such robots in evolutionary-robotics experiments. As a first step in the study of adaptive
robotics using populations of cheap robots, we have designed the Lausanne trail, a real-
world version of the simulated Santa Fe trail. We use Lego-based robots equipped with
low-cost sensors and actuators to evolve solutions in the real world to the trail-following
problem. We describe two different sets of experiments and conclude that the real-world
problem exhibits fundamental differences from the virtual one; in particular, the robot’s
lack of positional information hinders greatly its performance. We propose to study in
the future collective map building, an important and interesting problem, which will,
among others, provide a solution to the Lausanne-trail problem.
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INTRODUCTION

Researchers working in the field of robotics and especially in the field of evolutionary robotics are
confronted with several problems: (1) How many sensors does a robot need in order to perform
a given task in optimal time? (2) What is the best fitness-function definition? (3) What is the
best problem representation? (4) Will my robot be “intelligent” enough to perform the task?
(5) In what ways do the robot’s goals and its environment influence the evolutionary approach?
These questions are hard and probably do not have general answers. Every roboticist knows that
solving a problem, even using an evolutionary approach, requires a considerable amount of human
knowledge. Unconstrained and open-ended evolution is still too computation intensive and is not
yet suitable for solving real-world problems.

In this paper we try to explore the physical limits of a robot and of the evolutionary algorithms
applied to a simulated and to a real-world setup of the Santa Fe trail. We describe the problems
encountered when our robot escapes from the simulated Santa Fe trail into the real-world Lausanne
trail. We performed various experiments both with the real-world setup and with a simulator in
order to investigate the lower bounds of complexity necessary to eat the “food pellets” lying along
the trail.

This paper is organized as follows: the next section describes the Santa Fe trail, followed by a
motivation for our approach and a discussion of the importance of working with real robots. Then,
our simple robot is presented that we used in all our experiments. A description of the real-world
setup is followed by a presentation of the experiments and the results obtained. We conclude the
paper with thoughts on future work in the last section.



THE SANTA FE TRAIL

In search for a simple task in an environment that would be easy to create, we have taken interest
in ant navigation and foraging tasks. This class of problems—inspired by nature [8]—is still a
topic for many researchers in biology.

Jefferson et al. described in [9] what they called the Tracker task. This evolutionary experiment
was inspired by the behavior of certain species of ants which lay down pheromone trails in a process
of collective foraging. In the initial Tracker setup, an ant was required to follow a crooked, broken
trail of black cells in a white toroidal grid (John Muir trail [9, p. 557]). The trail gets more and
more difficult towards its end. The ant’s task was to move from cell to cell, traversing as much of
the trail as possible in a given time. A somewhat more difficult trail was used by Koza [11]: the
Santa Fe trail, designed by Christopher Langton [11, p. 55].

Ant navigation and foraging tasks are advantageous for evolutionary robotics in real-world
setups because they normally take place in simple environments (e.g., a black trail on a white
surface) and require simple robots with few sensors. They are thus easy to set up. Their solution,
however, is far from easy.

In the Santa Fe trail (e.g., [11]) an artificial ant is placed on a 32 x 32 grid of cells, its objective
being to collect as many food pellets strewn about as possible in a given number of times steps.
The ant starts out facing south, and positioned in the upper left-hand cell of the grid, identified by
coordinates (0,0). At each time step it can turn in any direction and walk one cell in that direction.
The main difficulty faced by the ant lies in the positions of the pellets, which are not arranged
in a simple, consecutive manner: the trail comprises an obstacle course of ascending difficulty,
containing different kinds of gaps. All in all, the meandering trail contains 89 food pellets.

To the best of our knowledge, no one has studied the Santa Fe trail problem in a real-world
setup.

MINIMAL ROBOTICS AND WHY WE NEED REAL ROBOTS

The interest in minimal robotics has largely influenced our work. Simple approaches to solve
complex problems—if they exist—are often fascinating, need few sensors, simple hardware, and
simple basic behaviors. The phenomenon commonly called emergent behavior, where the sum
is greater than its parts [1, 14], should not be considered as mystical. Emergent behavior is
the consequence of the complexity of the world, where a system—in our case a robot—moves,
perceives, and interacts. In the field of robotics, Braitenberg [4] demonstrated striking examples
of complex robot behavior emerging from simple rules. Emergent behavior becomes even more
interesting if the robot not only interacts with the environment but also with other individuals.

For the present work, we chose a simple example which was relatively easy to analyze and easy
to decompose into sub-problems, i.e., basic behaviors. We tried to use very simple approaches to
solve the problem in order to find the lower bounds of robot and algorithm complexity needed
to eat all the food pellets lying along the trail. This task turned out to be a real challenge,
particularly for the real-world setup.

Embodied evolution (EE) [7,18] avoids the pitfalls of the simulate-and-transfer approach. Ficici
et al. describe the method as follows: “We define EE as evolution taking place within a population
of real robots where evaluation, selection, and reproduction are carried out by and between the
robots in a distributed, asynchronous, and autonomous manner” [7]. This technique allows to
speed-up evaluation time through parallelism. Note that in EE, there is no central controller or
supervisor. EE also highlights the need for populations of real robots. The problems occurring
when transferring an algorithm from simulation to reality are mostly due to lack of fidelity in the
simulator. It is very difficult to take into account all the physical characteristics of the robots and
the environment. “The world is its own best model” [5] summarizes the problem of the inability
to model faithfully the world.

When working in the real world, total predictability is no longer possible nature is noisy. Even
when working with very simple environments, “...it is very hard to simulate the actual dynamics of
the real world” [6, p. 4]. Generally, the number of trials (generations) needed to evolve a system



discourages the use of physical robots, at least during the training period. However, a real and
large population of robots can markedly speed up the process of evolution.

We acknowledge that simulation is a valuable tool to validate and understand different algo-
rithms and setups. For our experiments, we built a very simple simulator used for comparison with
the real-world experiments. The simulator was not intended to provide high-fidelity simulation
of the Lausanne trail. We use the simulator to identify problems and critical factors as early as
possible in the evolutionary process of a robot controller, but we did not transfer solutions from
simulation to reality.

ROMERO: A MINIMAL ROBOT

We decided to build a robot population that is cheap, modular, and adaptable. LEGO™ Mind-
Storms [10,12] allows one to build any of several types of robots in a matter of minutes, adapting
it to a specific experiment, or to a given environment. Our very simple robot dubbed Romero
(Spanish for pilgrim) [16,17]: it is cheap, uses modular LEGO components, and can be easily
adapted and re-adapted to new tasks and novel environments. Romero is equipped lightly: it
has two wheels, each controlled by a separate motor, and can be equipped with up to seven light
sensors or touch-buttons. For our experiments, the sensors were attached to the bottom panel and
directly faced the ground. Romero is built of Lego components, except for the controller, which we
designed and build ourselves. Each robot is equipped with a sonar receiver/transmitter attached
onto the mainboard. Compared to the well-known Khepera robot [13], Romero is more lightly
equipped with sensors and electronic yet cheaper, thus opening up the possibility of building a
true robot population.

THE LAUSANNE TRAIL: A REAL-WORLD SETUP

The Lausanne trail (Figure 1) is a real-world version of the original, simulated trail, intended
for use with actual robots. We added a dark-colored track enclosing the environment, which the
robot uses to get back to the starting point; furthermore, the 32 x 32 grid is not toroidal, as with
previous simulated setups. The proportion between gaps and trail has been respected. For our
experiments, we printed the trails on A0 paper, i.e., of size 90cm x 120cm. The Lausanne trail is
well adapted to the size of the robots, contains no active and complicated elements, is cheap, and
needs no maintenance.

Figure 1: The Lausanne trail experimental setup. We added a special track enclosing the envi-
ronment, which is used to guide the robot back to the starting point.

There are some important differences between the real-world setup and the original simulated
environment: Romero has—apart from the ground-facing light sensors—no other navigation or
localization system. Moreover, as opposed to the simulated worlds, the grid markings (i.e., the
cells) have been removed; thus, Romero cannot move from cell to cell—as these latter do not exist.
We felt that this was closer to the predicament of real ants, which do not live on a checkerboard.

In Koza’s simulations [11], the food pellets were removed when the robot passed over them,
whereas in our case this is not possible (the pellets form part of the printed environment). One
problem raised by the pellets’ fixity is that the robot can collect much food by simply revolving



about its axis like a spinning top. As we will see later on, this is one of the major problems arising
in the Lausanne trail.

EXPERIMENTS AND RESULTS

We currently have but two robots. Nonetheless, we proceeded under the “wishful” illusion that
we were dealing with a population of fifty real robots. Fifty Lausanne trails were thus arranged
in a line, with one robot per trail (an extension of the situation depicted in Figure 1). This was
done virtually, i.e., each of the (fifty) individual robots was tested on one of the two real robots;
nonetheless, they were (virtually) arranged along a line. The linear arrangement allowed us to
localize the selection operation by using tournament selection [3,15]. Basically, a robot “sees” only
those genomes of its neighbors which are within sensor range; in our current virtual tournament,
each robot saw its neighbor to the immediate left and its neighbor to the immediate right. (Other
neighborhood topologies—e.g., two-dimensional—are also possible.)

The local tournaments took place asynchronously (in a manner reminiscent of steady-state
genetic algorithms): each robot, upon terminating an evaluation run (either due to a timeout or
when the genome program has been executed), sent independently its calculated fitness along with
its genome to its two neighbors—which transmitted their own fitness values and genomes in turn.
Crossover then took place between the genome of the higher-fitness neighbor and the robot’s own
genome. This operation was performed in a standard manner by selecting a crossover point at
random, and exchanging the genome parts after this point. The genome thus formed replaced the
robot’s old genome.

In the simulated-environment works [9,11], an individual was run for a given number of time
steps, at the end of which its fitness was the number of food pellets amassed (thus, the maximal
fitness value was 89 the number of food pellets along the trail). Such a fitness function was not
possible in our case, since Romero could not distinguish between two pellets in a contiguous block.
To overcome this problem, we used a different measure of fitness: the time (in seconds) spent over
food “cells” (note that this time is proportional to the number of pellets amassed, provided the
robot is on the move): fitness = Zi’l:ofks (tout — tin), where blocks is the number of contiguous
food blocks the robot traverses, and t,,; — t;, expresses the traversal time for such a block.

The First Experiment and the Lessons Learned. Similarly to how Koza [11] defined the ba-
sic actions of the robot, we used four tokens—LEFT (L), RIGHT (R), FORWARD (F), NOP (N)—
representing elemental movements Romero is able to make. Furthermore, Romero had two innate
(non-evolved) behaviors: (1) it traversed innately a contiguous block of food pellets; and (2) it
traversed innately a single corner gap. The evolved behavior thus involved the decisions to be
taken at the remaining possible gaps. Analysis of the Santa Fe trail revealed that only six possi-
ble behaviors existed upon encountering such a gap: F, FF, FL, FR, FFL, FFR. Based on these
six basic behaviors we defined the following genetic “codons” NNN, NNF, NFF, NFL, NFR, FFL,
FFR. A NOP command was added so as to render all codons of equal length. Romero’s genome was
defined straightforwardly as a sequence of codons, e.g., -NNF-FFL-NNN-FFR-. The seven codons
thus formed the set of basic evolutionary building blocks.

The two robots were then subjected to a few days of experimenting on the real-world Lausanne
trail. The most successful robots evolved amassed about 75% of the food “pellets.” At first we
thought that evolution did not have sufficient time to complete the task. We then verified that
the simulation produced the same results.

So what was the problem? Nature is noisy! One can see that the linear sequence of instructions
is extremely sensitive to noise. Executing the same genome in reality does not always result in
the same path being taken. We concluded that this approach, though efficient in its genomic
representation, was too simple for the real-world setup. One has to note that the codons contained
an important amount of human knowledge about the environment. The evolutionary algorithm
would certainly fail on another trail because of the codons being tailored for the Lausanne trail.



The Second Experiment and the Lessons Learned. We next looked for solutions less
sensitive to noise and for alternative sensor inputs. One genomic representation we implemented
was that of a rule-based system with a memory of two or three previous steps . The notion of a
“step” had to be defined, since our trail is continuous, as opposed to the discrete, checkerboard-like
simulated environments. Again, this is part of the real-world problem’s difficulty.

The simulated robots were equipped with two additional sensors, one to the left and one to
the right of the original centered infrared sensor. All three sensors faced the ground. At time t,
the sensor input of these three sensors was stored in memory. The action (N, L, R, M) executed
at time ¢ depended on the current sensor inputs and on the past (i.e., memorized) two or three
sensor inputs. The system can easily be implemented as a look-up table, each entry representing
a rule (i.e., a basic action).

Results. This genomic representation worked very well with the simulated Santa Fe trail where
the food pellets were removed when the robot passed over them. But it did not work with the
simulated Lausanne trail! The reason is quite simple a posteriori: the food pellets could not be
removed and thus the robot learned quickly to turn and increase its fitness ad infinitum on a small
segment at the beginning of the trail.

The simulated Lausanne trail was used only to identify problems and critical factors as early
as possible in the evolutionary process. For example, we did not transfer the above described
experiment to the real-world setup because it did not even work in simulation. Enlarging the
memory, adding more sensors, removing sensors, or changing the definition of the fitness did not
help. The problem remained the same: the robot did not have sufficient knowledge about the
environment, in particular about its position, in order to detect loops (which was not necessary
in the original setup because the pellets were removed when the robot passed over them).

CONCLUSION

Is the simulated setup easier to solve than the real-world setup? No. The problems are different!
The original Santa Fe trail and the Lausanne trail, prima facie equivalent, are in fact very different.
The main difference is that the food pellets cannot be removed in the real-world setup. This makes
the problem very different from the original Santa Fe food-collecting task.

Our experiments showed that the robot had to be well adapted to a given problem. Alas,
to adapt a robot to a given environment, human knowledge (about the environment, e.g., its
difficulties, its specialties, etc.) is required. How far should we go in this process, if we wish to
study as open-ended and unconstrained an evolutionary scenario as possible? Should we start
evolving the morphology of the robot? That is certainly an option.

The lack of information about the current position of the robot is the main reason why the
algorithms did not work in our real-world setup: there was simply no means to detect loops.

From this standpoint, our robot is too simple. Adding an odometry device—even if inaccurate—
would allow Romero to determine the approximate position in the environment and would thus
allow to detect loops. One could say that the human knowledge (i.e., robot morphology, genomic
representation) we put into the project at the beginning was not sufficient. In other words, the
most critical factor in an evolutionary setup is still the system designer. What we currently call
“evolution,” “evolutionary algorithm,” etc, are in fact a very small part in the complete design of
a system.

A solution to our problem may be the following: one does not necessarily need an odometry
system to determine an approximate position of the robot. A robot with a given sensorimotor
system can learn a set of features and build an internal, cognitive map [2]. We propose to use
a population of robots to explore in parallel the Lausanne trail and to collate the information
gleaned about the environment so as to form a collective map, available to the entire population.
The cognitive map will allow the robot to detect loops and thus to follow the Lausanne trail
without passing several time over the same location.
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